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Asymptotic convergence of the ADAMH-FSP-Krylov

Preliminaries on adaptive MCMC algorithms

We will derive ergodicity results in the following sections based on Theorem 1 in the paper

of Roberts and Rosenthal,1 and we will use some proof techniques of Theorem 1 from Cui et

al.2 for part of our analysis. All random variables we will discuss below will be of the form

X : Ω→ X where X is a metric space with the associated Borel σ-algebra B(X ).

Let X be the parameter space, assumed to have a metric space topology, and π : B(X )→

[0, 1] the target distribution to be sampled from by an adaptive MCMC algorithm. We will

assume that π has a density f : X → [0,∞). Let Kγ denote a transition kernel that depends

on an adaptation index γ ∈ Y , and assume that each Kγ has π as an invariant distribution.

We assume that for each fixed γ, an MCMC algorithm with Kγ as the Markov transition

kernel will eventually converge to π, that is

lim
n→∞

‖Kn(x, .)− π‖TV = 0

where ‖µ − ν‖TV = supB∈B(X ) |µ(B)− ν(B)| is the total variation distance between two

probability measures on X .

Let Xn be the random variable representing the state of the adaptive MCMC at iteration

n, and let Γn be the random variable representing the choice of kernel for updating from

Xn to Xn+1. The state of the algorithm is then modeled by the discrete-time stochastic

process {(Xn,Γn)}, whose transition between steps is determined by the underlying rules of

the algorithm. Finally, let Gn = σ ({X0, . . . , Xn,Γ0, . . . ,Γn}) denote the filtration generated

by {(Xn,Γn)}. Thus, each Γn+1 is a Gn+1-measurable random variable.

Roberts and Rosenthal proved the following important result, which gives sufficient con-

ditions for ergodicity of an adaptive MCMC.

Theorem 1 (Theorem 1 in Roberts and Rosenthal1). Consider an adaptive MCMC algo-
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rithm with state space X and adaptation index Y, with transition kernels Kγ, γ ∈ Y. The

algorithm is ergodic if the following conditions hold

(i) (Simultaneous uniform ergodicity) For every ε > 0, there exists N = N(ε) such that

‖Kn
γ (x, .)− π‖TV < ε

for every x ∈ X , γ ∈ Y, and n > N .

(ii) (Diminishing adaptation) limn→∞Dn = 0 in probability where

Dn = sup
x∈X
‖KΓn(x, .)−KΓn+1(x, .)‖TV

is a Gn+1-measurable random variable.

We immediately get a useful corollary.

Corollary 2. Consider an adaptive MCMC with state space X and transition kernels Kγ, γ ∈

Y that are ergodic w.r.t π. Assume that the following conditions are satisfied:

(i) The algorithm satisfies the diminishing adaptiation condition.

(ii) X is a compact metric space.

(iii) Y = ∪mj=1Yj where each Yj is a compact metric space.

(iv) For each n = 1, 2, . . ., and on each set X × Yj with the product metric space topology,

the mapping

(x, γ) 7→ S(x, γ;n, j) = ‖Kn
γ (x, .)− π(.)‖TV

is continuous.

Then, the adaptive MCMC algorithm is ergodic.
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Proof. Our proof is a modification of the proof of Corollary 3 in.1 Fix a number ε > 0 and

an index j ∈ {1, . . . ,m}. Let W j
n be the set of all (x, γ) ∈ X × Yj such that

S(x, γ;n, j) < ε.

Since each kernel is ergodic, for every (x, γ) ∈ X ×Yj there exists some n such that (x, γ) ∈

W j
n, and that S(x, γ;n′, j) < ε for all n′ > n. We thus have

X × Yj = ∪∞n=1Wn
j

Due to continuity, each Wn
j is an open set. By compactness, there exists a finite subcover

{Wni
j}rji=1 for X × Yj. Choose Nj(ε) to be the maximum of all n1, . . . , nrj . Then, choose

N(ε) = N1(ε)+. . .+Nm(ε), we have ‖Kn
γ (x, .)−π‖TV < ε for all n > N(ε) and (x, γ) ∈ X×Y .

Thus, simultaneous uniform ergodicity is satisfied. Combining with diminishing adaptation,

the preceding theorem shows that the algorithm is ergodic.

Convergence of adaptive DAMH with diminishing model adapta-

tions

In this section, we analyze the convergence of an adaptive variant of the DAMH. As seen

in the pseudocode of Algorithm 1, this variant modifies the approximation and the proposal

density at every step, using the samples accepted so far on the chain. The update of the

approximate model occurs randomly, with the upate probability at step n pre-specified as

a(n).

Proposition 3. Consider an adaptive delayed acceptance Metropolis-Hastings algorithm with

the target distribution supported on a state space X , proposal adaptation space Y, approx-

imation space Z. Let f be the density of the target distribution π with respect to a finite

reference measure λ, that is, π(dx) = f(x)λ(dx). Let f ?x,ϕ be the family of approximations
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Algorithm 1 Adaptive Delayed Acceptance MH with probabilistic approximation adapta-
tion.

Input:
Target density f(.);
Proposal densities qγ(., .);
Posterior density approximations f ?x,ϕ(.);
Adaptation probability a(n), , n = 1, 2, . . .;
Chain length N .

Assume that xn = x, γn = γ at iteration n.
The next sample is determined by the following steps.

1. Propose a candidate x′ from the proposal density qγ(x, .).

2. Compute the first-step acceptance probability

αγ,ϕ(x, x′) = min

{
1,
qγ(x

′, x)f ?x,ϕ(x′)

qγ(x, x′)f ?x,ϕ(x)

}

3. With probability αγ,ϕ, set y = x′. Otherwise, set y = x. The actual proposal distribu-
tion is

Q?
x,γ,ϕ(x, dz) = qγ(x, z)αγ,ϕ(x, z)λ(dz) + δx(dz)(1− rγ,ϕ(x)),

where

rγ,ϕ(x) =

∫
X
qγ(x, z

′)αγ,ϕ(x, z′)λ(dz′)

is the overall probability that a proposal is accepted in the first step.

4. Set xn+1 = y with probability

βγ,ϕ(x, x′) = min

{
1,
qγ(x

′, x)f ?x(x′)f(x′)

qγ(x, x′)f ?x(x)f(x)

}
.

Otherwise, set xn+1 = xn.

5. With probability a(n), update the approximation f ?x,ϕ.

6. Update the first-step proposal qγ(x, .).

Output: Samples x1, . . . , xN .
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to f . Let qγ be the first-step proposal densities. The algorithm is ergodic under the following

conditions:

(i) X ,Y are compact metric spaces, and Z = ∪mj=1Zj where each Zj is a compact metric

space.

(ii) For each fixed γ, ϕ, the transition kernel Kγ,ϕ is ergodic.

(iii) λ{x} = 0 for all x ∈ X .

(iv) The mapping (x, y, γ) 7→ qγ(x, y) is continuous and uniformly bounded on X × X × Y

which is a compact metric space equipped with the product space metric.

(v) For each y ∈ Y, the mapping (x, ϕ) 7→ f ?x,ϕ(y) is continuous on each X × Zj.

(vi) Diminishing adaptation: The chain (Γn,Φn) satisfies

lim
n→∞

sup
x∈X
‖KΓn+1,Φn+1(x, .)−KΓn,Φn(x, .)‖TV = 0

in probability.

Proof. The ADAMH could be viewed as an adaptive MCMC algorithm with state space X

and adaptation space Y ×Z. In order to apply corollary 2, we will prove that for any fixed

n = 1, 2, . . ., and fixed j = 1, . . . ,m, the mapping

(x, γ, ϕ) 7→ ‖Kn
γ,ϕ(x, .)− π‖TV

is continuous on X ×Y ×Zj. In order to do so, we proceed as in the proof of theorem 1 in.2

Fix (x, γ, ϕ) ∈ X × Y × Zj, the transition kernel for the DAMH associated with (x, γ, ϕ) is

Kγ,ϕ(x, dz) = qγ(x, z)αγ,ϕ(x, z)βγ,ϕ(x, z)λ(dz) + δx(dz)(1− ργ,ϕ(x)),
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where αγ,ϕ(x, z) = min
{

1,
qγ(z,x)f?x,ϕ(z)

qγ(x,z)f?x,ϕ(x)

}
is the first step acceptance probability, βγ,ϕ(x, z) =

min
{

1, qγ(z,x)f?x (z)f(z)

qγ(x,z)f?x (x)f(x)

}
is the second step acceptance probability, and

ργ,ϕ(x) =

∫
X
qγ(x, z)αγ,ϕ(x, z)βγ,ϕ(x, z)λ(dz)

is the overall probability for a proposal to be accepted.

Fix the value of z, then due to conditions (iv) and (v), g(x, z, γ, ϕ) = qγ(x, z)αγ,ϕ(x, z)βγ,ϕ(x, z)

is jointly continuous in (x, γ, ϕ) ∈ X ×Y ×Zj. Furthermore, condition (iv) implies that the

functions z 7→ g(x, z, γ, ϕ) is uniformly bounded for (x, γ, ϕ) ∈ X ×Y ×Zj. By the bounded

convergence theorem, ργ,ϕ(x) is jointly continuous in the three variables x, γ, ϕ.

By induction, we can show that the n-step transition kernel has the form

Kn
γ,ϕ(x, dz) = gn(x, z, γ, ϕ)λ(dz) + δx(dz) (1− ργ,ϕ(x))n

where gn is an appropriate function that is jointly continuous in x, γ and ϕ.

From condition (iii), δx and π are orthogonal measures. Therefore,

‖Kn
γ,ϕ(x, .)− π‖TV = (1− ργ,ϕ(x))n +

1

2

∫
X

(gn(x, z, γ, ϕ)− f(z))λ(dz).

The integral on the right hand side is jointly continuous in x, γ, ϕ due to the bounded

convergence theorem. This shows that ‖Kn
γ,ϕ(x, .) − π‖TV is continuous in the variable

(x, γ, ϕ) ∈ X × Y × Zj. From this, conditions (i), (vi) and corollary 2 combined show that

the algorithm is ergodic.

Proposition 4. Assume the ADAMH with probabilistic model adaptation satisfies conditions

(i)-(v) in proposition 3. Assume further that the proposal is symmetric, that the approxi-

mate posterior adaptation probability a(n) → 0 as n → ∞, and that dY(Γn+1,Γn) → 0

in probability (here dY denote the metric on Y). Then, the algorithm satisfies diminishing

adaptation.
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Proof. All conditions for ergodicity in proposition 3 are satisfied, except for the diminishing

adaptation that we will verify. Fix a value of n. Consider a fixed set of values (γj, ϕj)
n
j=1 of

adaptivity parameters of the ADAMH chain up to iteration n.

Fix an event A ∈ B(X ) and x ∈ X . We have

|Kγn+1,ϕn+1(x,A)−Kγn,ϕn(x,A)| ≤
∣∣Kγn+1,ϕn+1(x,A)−Kγn,ϕn+1(x,A)

∣∣︸ ︷︷ ︸
D1

+
∣∣Kγn,ϕn+1(x,A)−Kγn,ϕn(x,A)

∣∣︸ ︷︷ ︸
D2

We bound each term separately. First of all, we have D2 = 0 if ϕn = ϕn+1 and D2 ≤

Kγn,ϕn+1(x,A) + Kγn,ϕn(x,A) ≤ 2 if ϕn 6= ϕn+1, with the latter event taking place with

probability less than a(n).

Due to the symmetry of the proposal, the first and second step acceptance probabilities

do not depend on the choice of γ. This and the uniform continuity of qγ(x, y) gives us

D1 ≤ 2

∫
X
|(qγn+1(x, y)− qγn(x, y))αϕn(x, y)βϕn(x, y)|λ(dy)

≤ 2

∫
X
|qγn+1(x, y)− qγn(x, y)|λ(dy)

≤ C · dY(γn, γn+1)

where C > 0 is independent of x, y, γ and ϕ.

Combining the bounds on D1 and D2 we get

|Kγn+1,ϕn+1(x,A)−Kγn,ϕn(x,A)| ≤ C · dY(γn, γn+1) + 2χ([ϕn = ϕn+1])

where χ(A) = 1 if A is true and 0 otherwise. Taking the supremum over all x and A we get

Dn = sup
x∈X
‖Kγn+1,ϕn+1(x, .)−Kγn,ϕn(x, .)‖TV ≤ C · dY(γn, γn+1) + 2χ([ϕn 6= ϕn+1])

Fix a scalar ε > 0. The set of runs where Dn < ε include sample chains where both events

ϕn = ϕn+1 and C.dY(γn, γn+1) < ε hold. Therefore, the event [Dn ≥ ε] is a subset of the
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event [C · dY(Γn,Γn+1) ≥ ε] ∪ [Φn 6= Φn+1]. We therefore have

P[Dn ≥ ε] ≤ P[C · dY(Γn,Γn+1) ≥ ε] + P[Φn 6= Φn+1]

≤ P[dY(Γn,Γn+1) ≥ ε/C] + a(n).

The last right hand side of the inequality above converges to 0 as n → ∞. Therefore, Dn

converges to 0 in probability. The diminishing adaptation condition is satisfied and the

algorithm is ergodic.

Regularity of the ROM-based likelihood approximation

Let Sj be the set of all n × j matrices Q such that QTQ = Ij×j. It is known that Sj with

the metric defined by the induced matrix 2-norm

‖Q‖ = max
x6=0

‖Qx‖2

‖x‖2

is a compact metric space (indeed, it is the inverse image of Ij×j via the continuous mapping

A 7→ ATA). Let mmax be the maximum dimension allowed in the reduced basis and let Φ

be a particular basis set constructed during a run of the ADAMH chain, then there exists a

tuple (j1, . . . , jnB) with 1 ≤ jk ≤ mmax such that

Φ ∈ Sj1 × · · · × SjnB := Sj

Thus, the set of all possible choices of reduced basis set Φ is the finite union of all Sj

with j bounded elementwise by mmax. Note that each Sj is a compact metric space with the

product space topology. Thus, we can apply the theory developed in the previous section

to show that the ADAMH-FSP-Krylov is ergodic. The following propositions concern the

continuity in the change of the reduced-order approximations with respect to the change in

basis.
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Proposition 5. Fix a space Sj as above, and let Φ and Ψ be elements of this space. For

for every fixed θ ∈ Θ we have

L?Ψ(θ)→ L?Φ(θ)

as Ψ → Φ in Sj, where L?Φ is the approximation to the FSP log-likelihood as defined in

eq. (16) of the main text.

Proof. From eq. (9) of the main text, it is clear that the mapping Φ 7→ pΦ(tk) is continuous

on Sj for all time points tk. The mapping Φ 7→ L?Φ(θ) is a composition of continuous

mappings Φ 7→ pΦ(tk) and p 7→
∑ni

j=1 log(ε ∨ pj) and is therefore continuous.

Ergodicity of the ADAMH-FSP-Krylov algorithm

Proposition 6. The ADAMH-FSP-Krylov algorithm is ergodic.

Proof. We apply proposition 3 with X = Θ. The proposal densities of the first step are

Gaussian with γ being the modified empirical covariance matrix as in the adaptive Metropolis

Algorithm.3 Similar to the proof of Theorem 1 in Haario et al.,3 we can take Y to be a closed,

bounded subset of the set of positive definite matrices. The reduced model space is Z = ∪jSj

the finite union of the compact spaces Sj with j ≤ mmax pointwise. These spaces satisfy

condition (i), and the proposal density satisfies condition (iv).

The posterior density is

f(θ) = π0(θ) exp(−L(D|θ)),

and the approximate posterior densities are

f ?Φ(θ) = π0(θ) exp(−L?Φ(D|θ)),

where these are the densities of the true and approximate posterior distributions with respect

to the Lebesgue measure. From Theorem 1 in Christen and Fox,4 condition (ii) is satisfied.
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Condition (v) is then satisfied using proposition 5.

Since the empirical covariances are computed from values in a bounded set, the modifi-

cation to the empirical covariance matrix γ at step n is O(1/n), so changes in Γn converge

to 0 (see Haario et al.3). Thus, the conditions in proposition 4 are satisfied. The algorithm

therefore satisfies all sufficient conditions for ergodicity outlined in proposition 3.

References

(1) Roberts, G.; Rosenthal, J. S. Coupling and ergodicity of adaptive Markov chain. J. Appl.

Probability 2007, 44, 458–475.

(2) Cui, T.; Fox, C.; O’Sullivan, M. Adaptive error modelling MCMC sampling for large

scale inverse problems. Tech. Report 2011, Fac. of Engr., Univ. of Auckland .

(3) Haario, H.; Saksman, E.; Tamminen, J. An Adaptive Metropolis Algorithm. Bernoulli

2001, 7, 223.

(4) Christen, J. A.; Fox, C. Markov chain Monte Carlo using an approximation. J. Comput.

Graph. Stat. 2005, 14, 795–810.

11


