Risks and Benefits of Attention-Deficit/Hyperactivity Disorder Medication on Behavioral and Neuropsychiatric Outcomes: A Qualitative Review of Pharmacoepidemiology Studies Using Linked Prescription Databases

Supplemental Information

Supplementary Table S1. Included studies on the association between ADHD medication and behavioral or neuropsychiatric outcomes.

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
Injuries and	d traumas								
	Chen et al., 2017 (1)	Insurance claims database	Taiwan	6201 individuals diagnosed with ADHD	<18	Stimulants	Traditional regression adjustment	Long-term	Treatment duration vs no treatment: 1-180 days: HR= 1.18 (0.98–1.43); >180 days: HR= 0.77 (0.63–0.94).
	Chien et al., 2017 (2)	Insurance claims database	Taiwan	665 individuals diagnosed with ADHD	>=18	Any ADHD medication	Propensity score matching	Long-term	<i>Treatment vs no treatment:</i> HR= 0.774 (0.518-0.986). <i>Treatment duration:</i> HR= 0.914 (0.699-0.950).
	Dalsgaard et al., 2015 (3)	Whole-population register	Denmark	4557 individuals diagnosed with ADHD and 705 563 controls	5 to 26	Any ADHD medication	Within- individual comparison	Short-term	After vs before treatment: OR=0.82 (0.74-0.89).
	Jacob et al., 2017 (4)	Population-based database	Germany	2 894 individuals diagnosed with ADHD	6 to 19	Any ADHD medication	Traditional regression adjustment	Short-term and long-term	Treatment vs no treatment in the 12 months before the event: OR= 0.71 (0.64–0.79). Treatment duration: OR=0.61 (0.51–0.73).
	Liao et al., 2018 (5)	Insurance claims database	Taiwan	124 438 individuals diagnosed with ADHD	<18	Stimulants	Traditional regression adjustment	Long-term	Different defined daily dosage (DDD) vs 0 DDD: 0–28 DDDs: HR= 0.88 (0.83–0.92) 28–84 DDDs: HR= 0.76 (0.72–0.80) >84 DDDs: HR= 0.49 (0.47–0.51)
	Liou et al., 2018 (6)	Insurance claims database	Taiwan	72 181 individuals diagnosed with ADHD	3-29	Any ADHD medication	Traditional regression adjustment	Long-term	Different defined daily dosage (DDD) vs <90 DDD: 90-364 DDD: HR= 1.04 (0.98-1.10) >=365 DDD: HR= 0.93 (0.80-0.99)
	Man et al., 2015 (7)	Whole-population register	Hong Kong	4934 individuals with a prescription for methylphenidate and a trauma-related ED admission	6 to 19	Stimulants	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: Overall: IRR= 0.91 (0.86-0.97); Males: IRR= 0.92 (0.86-0.98); Females IRR= 0.83 (0.68-1.00).
	Marcus et al., 2008 (8)	Insurance claims database	California	11 770 individuals diagnosed with ADHD	6 to 17	Stimulants	Traditional regression adjustment	Long-term	Treatment adherence: Medium vs low: HR= 0.97 (p=0.64); High vs low: HR= 0.89 (p=0.07).

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
	Mikolajczyk et al., 2015 (9)	Insurance claims database	Germany	2128 individuals diagnosed with ADHD with one hospitalization of injury	3 to 17	Any ADHD medication	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: All injuries: IRR= 0.87 (0.74-1.02); Brain injuries: IRR= 0.66 (0.48-0.91).
	Raman et al., 2013 (10)	Population-based database	United Kindom	328 individuals diagnosed with ADHD, with prescription for stimulants and a	1 to 18	Stimulants	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: Overall: IRR= 0.68 (0.50 to 0.91); Males: IRR= 0.63 (0.50 to 0.91); Females: IRR= 1.01 (0.46 to 2.21).
	van den Ban et al., 2014 (11)	Population-based database	Netherlands	1289 individuals with ADHD medication	<=18	Stimulants	Traditional regression adjustment	Short-term	<i>Current treatment vs prior treatment:</i> IRR= 0.68 (0.29-1.60).
Motor accid	lents								
	Chang et al., 2014 (12)	Whole-population register	Sweden	17 408 individuals diagnosed with ADHD	18 to 46	Any ADHD medication	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: Males: HR= 0.42 (0.23-0.75); Females: HR= 2.35 (0.83-6.64).
	Chang et al., 2017 (13)	Insurance claims database	United States	2 319 450 individuals diagnosed with ADHD or prescribed any ADHD medication	>=18	Any ADHD medication	Within- individual comparison	Short-term and long-term	Periods on treatment vs periods off treatment: Males: OR= 0.62 (0.56-0.67); Females: OR= 0.58 (0.53-0.62). Long-term: Males: OR= 0.66 (0.58-0.76); Females: OR= 0.73 (0.64-0.84).
Education									
	Jangmo et al., 2019 (14)	Whole-population register	Sweden	29 128 individuals diagnosed with ADHD; 16 054 individuals treated with ADHD medication	80% 15.5 to16.5	Any ADHD medication	Traditional regression adjustment	Long-term	Effect of 3 months of treatment: Not eligible for upper secondary school: OR= $0.80 (0.76-0.84)$ Not completed upper secondary school: OR= $0.89 (0.87-0.91)$ Grade point sum: $\beta = 9.35 (7.88-10.82)$ Grade point average: $\beta = 0.49(0.40-0.58)$
	Keilow et al., 2018 (15)	Whole-population register	Denmark	2659 individuals diagnosed with ADHD and treated with ADHD medication	16 (mean age at graduation)	Any ADHD medication	Traditional regression adjustment	Long-term	Discontinuation of treatment vs consistent treatment: Standardized Exam GPA: -0.22 Standardized Teacher Evaluation GPA: -0.18
	Lu et al., 2017 (16)	Whole-population register	Sweden	930 individuals diagnosed with ADHD who had taken the repeated tests during the study follow-up and used medication intermittently	22 (mean age at test in the ADHD group)	Any ADHD medication	Within- individual comparison	Short-term	Mean test score difference between periods on-treatment vs periods off- treatment: Overall: difference= 4.80 (2.26-7.34); Males: difference= 5.69 (2.14-9.23); Females: difference= 3.60 (0.06-7.14).

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
	Marcus et al., 2011 (17)	Insurance claims database	Philadelphia	3543 individuals diagnosed with ADHD or prescribed stimulants and at least one grade in the school records	Elementary (grades 1–4) and middle school (grades 5–8) students	Stimulants	Within- individual comparison	Short-term	Improvement in grade point average for adherence vs non-adherence during marking periods: Overall: difference= 0.108 (p<0.001); Males: 0.106 (p<0.001); Females: 0.111 (p<0.001).
	van der Schans et al., 2017 (18)	Population-based database	Netherlands	441 individuals with data with data on primary school tests (fourth and seventh	12 to 13	Stimulants	Traditional regression adjustment	Short-term and long-term	Mean and standard error of test scores: Current users= $532.58 \pm .48$ Past users= 531.67 ± 1.15 P-value= 0.470
				grade) current and past users of ADHD medication					Low dose= 533.16 ± .66 High dose = 532.45 ± .81 P-value= 0.498
Criminality	Zoega et al., 2012 (19)	Whole-population register	Iceland	236 individuals starting ADHD medication after 4th grade test	9 and 10	Any ADHD medication	Traditional regression adjustment	Long-term	Late start= 536.94 ± 1.51 Early start= $532.33 \pm .50$ P-value= 0.04 Decline in mathematics for later of treatment start vs <=12 months after 4 th grade: 13-24 months: RR= 1.1 (0.77-1.7); 25-36 months: RR= 1.7 (1.2-2.4). Decline in language arts for later of treatment start vs <=12 months after 4 th grade: 13-24 months: RR= 1.1 (0.71-1.7); 25-36 months: RR= 1.1 (0.73-1.8).
	Lichtenstein et al., 2012 (20)	Whole-population register	Sweden	25 656 individuals diagnosed with ADHD	>=15	Any ADHD medication	Within- individual comparison	Short-term and long-term	Periods on treatment vs periods off treatment: Males: $HR= 0.68 (0.63-0.73);$ Females: $HR= 0.59 (0.50-0.70).$ Previous treatment: HR= 0.94 (0.83-1.07).
	Mohr- Jensen, 2019 (21)	Whole-population register	Denmark	4231 individuals with ADHD; 3001 individuals treated with any ADHD medication	>=15	Any ADHD medication	Traditional regression adjustment	Short-term	Periods on treatment vs periods off treatment: Conviction: HR= 0.8 (0.7-0.9) Incarceration: HR= 0.7 (0.6-0.8)
Suicidality									
	Chen et al., 2014 (22)	Whole-population register	Sweden	37 936 individuals diagnosed with ADHD	10 to 46	Any ADHD medication	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: Overall: HR= 0.89 (0.79-1.00); Males: HR= 0.79 (0.64-0.98); Female: HR= 0.88 (0.76-1.02).

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
	Huang et al., 2018 (23)	Insurance claims database	Taiwan	20 574 individuals diagnosed with ADHD and 61 722 controls	12 to 29	Any ADHD medication	Traditional regression adjustment	Long-term	$\begin{array}{l} Different cumulative defined daily\\ dosage (cDDD) vs <30 cDDD for\\ stimulants:\\ Overall 30-364cDDD: HR= 1.07 (0.89–1.28);\\ Males 30-364cDDD: HR= 1.04 (0.84–1.30);\\ Females 30-364cDDD: HR= 1.11 (0.79–1.55);\\ Overall >=365cDDD: HR= 1.14 (0.89–1.47);\\ Males >=365cDDD: HR= 1.08 (0.80–1.45);\\ Females >=365cDDD: HR=1.30 (0.82–2.05).\\ Different cumulative defined dailydosage (cDDD) vs <30 cDDD foratomoxetine:Overall 30-364cDDD: HR= 1.51 (0.75–3.05);Males 30-364cDDD: HR= 1.44 (0.59–3.49);Females 30-364cDDD: HR= 1.58 (0.50–5.04).\\ \end{array}$
	Liang et al., 2018 (24)	Insurance claims database	Taiwan	84 898 individuals diagnosed with ADHD	<18	Stimulants	Traditional regression adjustment	Long-term	<i>Treatment vs no treatment:</i> 1-90 days: HR= 0-86 (0.53-1.41); 91-180 days: HR= 0.41 (0.19-0.90); >180 days: HR= 0.28 (0.17-0.48).
	Linden et al., 2016 (25)	Insurance claims database	United States	297 315 individuals (first-line treatment cohort) and 220 215 individuals (second- line treatment cohort) with a dispensed prescription for stimulants or atomoxetine	5 to 18	Any ADHD medication	Propensity score with inverse probability weighting	Short-term and long-term	Current atomoxetine vs current stimulants: First-line treatment cohort: HR= 0.88 (0.50-1.56); Second-line treatment cohort: HR= 0.65 (0.31-1.36). Former atomoxetine vs current stimulants: First-line treatment cohort: HR= 0.88 (0.53-1.46); Second-line treatment cohort: HR= 0.67 (0.36-1.24).
	Man et al., 2017 (26)	Whole-population register	Hong Kong	154 individuals with a prescription for methylphenidate and a suicide attempt	6 to 25	Stimulants	Within- individual comparison	Short-term	Frist 90 days on treatment vs 90 days preceding treatment initiation: IRR= 0.78 (0.26-2.35).

Chang et al.

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
Substance	use disorder		U						
	Chang et al., 2014 (27)	Whole-population register	Sweden	38 753 individuals diagnosed with ADHD	8 to 46	Any ADHD medication	Within- individual comparison	Short-term and long-term	Periods on treatment vs periods off treatment: HR=0.73(0.68-0.77). Previous treatment: HR=0.69 (0.57-0.84). Treatment duration: HR=0.87 (0.80-0.94).
	Quinn et al., 2017 (28)	Insurance claims database	United States	2 993 887 diagnosed with ADHD or prescribed any ADHD medication	>=13	Any ADHD medication	Within- individual comparison	Short-term and long-term	Periods on treatment vs periods off treatment: Males: $OR= 0.65 (0.64-0.67);$ Females: $OR= 0.69 (0.67-0.71).$
									Previous treatment: Males: OR=0.81 (0.78-0.85); Females: OR=0.86 (0.82-0.91).
	Steinhausen et al., 2014 (29)	Whole-population register	Denmark	20 742 individuals diagnosed with ADHD	3 to 60	Stimulants	Traditional regression adjustment	Long-term	Treatment vs no treatment: HR=0.92(0.74-1.15).
Depression	1								
	Chang et al., 2016 (30)	Whole-population register	Sweden	38 752 individuals diagnosed with ADHD	8 to 46	Any ADHD medication	Within- individual comparison	Short-term and long-term	Periods on treatment vs periods off treatment: HR=0.80(0.70-0.92). Previous treatment: HR=0.58 (0.51-0.67); Treatment duration: HR=0.79 (0.75-0.83)
	Lee et al., 2016 (31)	Insurance claims database	Taiwan	71 080 individuals diagnosed with ADHD and 71 080 controls	9 (mean age at diagnosis/ recruitment)	Any ADHD medication	Traditional regression adjustment	Long-term	Treatment duration: Stimulants: $OR=0.91$ (0.88-0.94); Atomoxetine: $OR=0.80$ (0.52-1.22).
Bipolar dis	sorder and mania	ı							
	Viktorin et al., 2017 (32)	Whole-population register	Sweden	2 307 individuals diagnosed with bipolar disorder initiating methylphenidate	>=18	Stimulants	Within- individual comparison	Short-term and long-term	After vs before treatment initiation in individuals without mood-stabilizing medication: 0-3 months after: HR= 6.67 (1.98-22.4); 3-6 months after: HR= 9.67 (2.94-31.7). After vs before treatment initiation in individuals with mood-stabilizing medication: 0-3 months: HR= 0.56 (0.36-0.87); 3-6 months: HR= 0.91 (0.50-1.67).

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
	Wang et al., 2016 (33)	Insurance claims database	Taiwan	144 920 individuals diagnosed with ADHD and 144 920 controls	7.7 and 7.8 (mean age at follow-up start for individuals with ADHD and controls, respectively)	Any ADHD medication	Traditional regression adjustment	Long-term	<i>Treatment duration vs no treatment for stimulants:</i> <=365 days: OR= 0.93 (0.85-1.01); >365 days: OR= 0.72 (0.65-0.80). <i>Treatment duration vs no treatment for atomoxetine:</i> <=365 days: OR= 1.08 (0.90-1.30); >365 days: OR= 0.69 (0.37-1.30).
Psychosis									
	Man et al., 2016 (34)	Whole-population register	Hong Kong	103 individuals with a prescription for methylphenidate and a psychotic event	6 to 19	Stimulants	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: IRR= 0.98 (0.52-1.86).
	Shyu et al., 2015 (35)	Insurance claims database	Taiwan	73 049 individuals diagnosed with ADHD and 73 049 controls	9.4 and 9.6 (mean age at follow-up start for individuals with ADHD and controls, respectively)	Stimulant	Traditional regression adjustment	Long-term	Treatment vs no treatment: Any psychotic disorder: HR= 1.20 (1.04-1.40); Schizophrenia: HR= 1.16 (0.94-1.42).
Seizure									
	Brikell et al., 2019 (36)	Whole-population register	Sweden	21 557 individuals with a seizure history	<19	Any ADHD medication	Within- individual comparison	Short-term	Periods on treatment vs periods off treatment: HR=0.73 (0.57-0.94)
	Liu et al., 2018 (37)	Insurance claims database	United States	73 083 individuals with epilepsy	3 to 18	Stimulants	Traditional regression adjustment	Short-term and long-term	Current treatment vs no treatment: HR= 0.95 (0.83-1.09). Former treatment vs no treatment: HR= 0.99 (0.86-1.15).
	McAfee et al., 2008 (38)	Insurance claims database	United States	34 727 individuals diagnosed with ADHD	6 to 17	Any ADHD medication	Traditional regression adjustment	Short-term and long-term	Current treatment vs past or no treatment: RR= 1.1 (0.6-2.1). Recent treatment vs past or no treatment: RR= 0.8 (0.0-3.4)
	McAfee et al., 2013 (39)	Insurance claims database	United States	13 398 individuals initiating atomoxetine to 13 322 individuals initiating stimulants	6 to 17	Any ADHD medication	Propensity score matching	Short-term	Naive initiators of atomoxetine vs naive initiators of stimulants: RR= 0.72 (0.37-1.38)

Outcome	Study	Data source	Country/ Region	Sample	Age (range or mean)	Exposure	Design	Long-term/short- term effect	Effect size
	Wiggs et al., 2018 (40)	Insurance claims database	United States	801 838 individuals diagnosed with ADHD or prescribed any ADHD medication	5 to 64	Any ADHD medication	Within- individual comparison	Short-term and long-term	Periods on treatment vs periods off treatment: Prior seizure: $OR=0.71 (0.60-0.85)$; No prior seizure: $OR=0.51 (0.43-0.62)$. Treatment duration: Prior seizure: $OR=0.87 (0.59-1.30)$; No prior seizure: $OR=1.01 (0.80-1.28)$.

Notes:

"Any ADHD medication" refers to stimulant (for example, methylphenidate and amphetamines) and non-stimulant (for example, atomoxetine, clonidine, guanfacine, and bupropion) medications commonly used for ADHD.

"Within-individual comparison" refers to any type of within-individual comparison, including, for example, difference-in-difference design and self-controlled case series.

"Effect size" when confidence intervals are not reported, p-values are reported.

Supplementary Figure S1. Flow diagram of the systematic review according to PRISMA guidelines.

Notes: "Full-text articles excluded: case series (n=1); studies which used data from a single institution (n=2) or from self- or parent-report (n=2) or from a clinical sample (n=1); studies which focused on multimodal interventions (n=1); studies where there was no direct comparison between ADHD medication and unexposed patients/time periods (n=2).

Supplemental References

- 1. Chen VC, Yang YH, Liao YT, Kuo TY, Liang HY, Huang KY, et al. The association between methylphenidate treatment and the risk for fracture among young ADHD patients: A nationwide population-based study in Taiwan. PLoS One. 2017;12(3):e0173762.
- 2. Chien W-C, Chung C-H, Lin F-H, Yeh C-B, Huang S-Y, Lu R-B, et al. The risk of injury in adults with attention-deficit hyperactivity disorder: A nationwide, matched-cohort, population-based study in Taiwan. Research in Developmental Disabilities. 2017;65:57-73.
- 3. Dalsgaard S, Leckman JF, Mortensen PB, Nielsen HS, Simonsen M. Effect of drugs on the risk of injuries in children with attention deficit hyperactivity disorder: a prospective cohort study. The lancet Psychiatry. 2015;2(8):702-9.
- 4. Jacob L, Kostev K. Impact of attention deficit hyperactivity disorder therapy on fracture risk in children treated in German pediatric practices. Osteoporosis International. 2017;28(4):1265-9.
- 5. Liao YT, Yang YH, Kuo TY, Liang HY, Huang KY, Wang TN, et al. Dosage of methylphenidate and traumatic brain injury in ADHD: a population-based study in Taiwan. Eur Child Adolesc Psychiatry. 2018;27(3):279-88.
- 6. Liou YJ, Wei HT, Chen MH, Hsu JW, Huang KL, Bai YM, et al. Risk of Traumatic Brain Injury Among Children, Adolescents, and Young Adults With Attention-Deficit Hyperactivity Disorder in Taiwan. The Journal of adolescent health : official publication of the Society for Adolescent Medicine. 2018;63(2):233-8.
- 7. Man KK, Chan EW, Coghill D, Douglas I, Ip P, Leung LP, et al. Methylphenidate and the risk of trauma. Pediatrics. 2015;135(1):40-8.
- 8. Marcus SC, Wan GJ, Zhang HF, Olfson M. Injury among stimulant-treated youth with ADHD. J Atten Disord. 2008;12(1):64-9.
- 9. Mikolajczyk R, Horn J, Schmedt N, Langner I, Lindemann C, Garbe E. Injury prevention by medication among children with attention-deficit/hyperactivity disorder: a case-only study. JAMA Pediatr. 2015;169(4):391-5.
- Raman SR, Marshall SW, Haynes K, Gaynes BN, Naftel AJ, Sturmer T. Stimulant treatment and injury among children with attention deficit hyperactivity disorder: an application of the self-controlled case series study design. Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention. 2013;19(3):164-70.
- 11. van den Ban E, Souverein P, Meijer W, van Engeland H, Swaab H, Egberts T, et al. Association between ADHD drug use and injuries among children and adolescents. Eur Child Adolesc Psychiatry. 2014;23(2):95-102.
- 12. Chang Z, Lichtenstein P, D'Onofrio BM, Sjolander A, Larsson H. Serious transport accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: a population-based study. JAMA Psychiatry. 2014;71(3):319-25.
- 13. Chang Z, Quinn PD, Hur K, Gibbons RD, Sjolander A, Larsson H, et al. Association Between Medication Use for Attention-Deficit/Hyperactivity Disorder and Risk of Motor Vehicle Crashes. JAMA Psychiatry. 2017;74(6):597-603.
- 14. Jangmo A, Stalhandske A, Chang Z, Chen Q, Almqvist C, Feldman I, et al. Attention-Deficit/Hyperactivity Disorder, School Performance, and Effect of Medication. Journal of the American Academy of Child and Adolescent Psychiatry. 2019;58(4):423-32.

- 15. Keilow M, Holm A, Fallesen P. Medical treatment of Attention Deficit/Hyperactivity Disorder (ADHD) and children's academic performance. PLoS One. 2018;13(11):e0207905.
- 16. Lu Y, Sjolander A, Cederlof M, D'Onofrio BM, Almqvist C, Larsson H, et al. Association Between Medication Use and Performance on Higher Education Entrance Tests in Individuals With Attention-Deficit/Hyperactivity Disorder. JAMA Psychiatry. 2017;74(8):815-22.
- 17. Marcus SC, Durkin M. Stimulant adherence and academic performance in urban youth with attentiondeficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry. 2011;50(5):480-9.
- 18. van der Schans J, Cicek R, Vardar S, Bos JH, de Vries TW, Hoekstra PJ, et al. Methylphenidate use and school performance among primary school children: a descriptive study. BMC psychiatry. 2017;17(1):116.
- 19. Zoega H, Rothman KJ, Huybrechts KF, Olafsson O, Baldursson G, Almarsdottir AB, et al. A population-based study of stimulant drug treatment of ADHD and academic progress in children. Pediatrics. 2012;130(1):e53-62.
- 20. Lichtenstein P, Halldner L, Zetterqvist J, Sjolander A, Serlachius E, Fazel S, et al. Medication for attention deficit-hyperactivity disorder and criminality. N Engl J Med. 2012;367(21):2006-14.
- 21. Mohr-Jensen C, Bisgaard CM, Boldsen SK, Steinhausen HC. Attention-Deficit/Hyperactivity Disorder in Childhood and Adolescence and the Risk of Crime in Young Adulthood in a Danish Nationwide Study. Journal of the American Academy of Child and Adolescent Psychiatry. 2019.
- 22. Chen Q, Sjolander A, Runeson B, D'Onofrio BM, Lichtenstein P, Larsson H. Drug treatment for attention-deficit/hyperactivity disorder and suicidal behaviour: register based study. BMJ. 2014;348:g3769.
- 23. Huang KL, Wei HT, Hsu JW, Bai YM, Su TP, Li CT, et al. Risk of suicide attempts in adolescents and young adults with attention-deficit hyperactivity disorder: a nationwide longitudinal study. The British journal of psychiatry : the journal of mental science. 2018;212(4):234-8.
- 24. Liang SH, Yang YH, Kuo TY, Liao YT, Lin TC, Lee Y, et al. Suicide risk reduction in youths with attention-deficit/hyperactivity disorder prescribed methylphenidate: A Taiwan nationwide population-based cohort study. Res Dev Disabil. 2018;72:96-105.
- 25. Linden S, Bussing R, Kubilis P, Gerhard T, Segal R, Shuster JJ, et al. Risk of Suicidal Events With Atomoxetine Compared to Stimulant Treatment: A Cohort Study. Pediatrics. 2016;137(5).
- 26. Man KKC, Coghill D, Chan EW, Lau WCY, Hollis C, Liddle E, et al. Association of Risk of Suicide Attempts With Methylphenidate Treatment. JAMA Psychiatry. 2017;74(10):1048-55.
- 27. Chang Z, Lichtenstein P, Halldner L, D'Onofrio B, Serlachius E, Fazel S, et al. Stimulant ADHD medication and risk for substance abuse. Journal of child psychology and psychiatry, and allied disciplines. 2014;55(8):878-85.
- 28. Quinn PD, Chang Z, Hur K, Gibbons RD, Lahey BB, Rickert ME, et al. ADHD Medication and Substance-Related Problems. The American journal of psychiatry. 2017;174(9):877-85.
- 29. Steinhausen HC, Bisgaard C. Substance use disorders in association with attentiondeficit/hyperactivity disorder, co-morbid mental disorders, and medication in a nationwide sample. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 2014;24(2):232-41.
- Chang Z, D'Onofrio BM, Quinn PD, Lichtenstein P, Larsson H. Medication for Attention-Deficit/Hyperactivity Disorder and Risk for Depression: A Nationwide Longitudinal Cohort Study. Biological psychiatry. 2016;80(12):916-22.

- 31. Lee MJ, Yang KC, Shyu YC, Yuan SS, Yang CJ, Lee SY, et al. Attention-deficit hyperactivity disorder, its treatment with medication and the probability of developing a depressive disorder: A nationwide population-based study in Taiwan. Journal of affective disorders. 2016;189:110-7.
- 32. Viktorin A, Ryden E, Thase ME, Chang Z, Lundholm C, D'Onofrio BM, et al. The Risk of Treatment-Emergent Mania With Methylphenidate in Bipolar Disorder. The American journal of psychiatry. 2017;174(4):341-8.
- 33. Wang LJ, Shyu YC, Yuan SS, Yang CJ, Yang KC, Lee TL, et al. Attention-deficit hyperactivity disorder, its pharmacotherapy, and the risk of developing bipolar disorder: A nationwide population-based study in Taiwan. Journal of psychiatric research. 2016;72:6-14.
- 34. Man KK, Coghill D, Chan EW, Lau WC, Hollis C, Liddle E, et al. Methylphenidate and the risk of psychotic disorders and hallucinations in children and adolescents in a large health system. Transl Psychiatry. 2016;6(11):e956.
- 35. Shyu YC, Yuan SS, Lee SY, Yang CJ, Yang KC, Lee TL, et al. Attention-deficit/hyperactivity disorder, methylphenidate use and the risk of developing schizophrenia spectrum disorders: A nationwide population-based study in Taiwan. Schizophrenia research. 2015;168(1-2):161-7.
- 36. Brikell I, Chen Q, Kuja-Halkola R, D'Onofrio BM, Wiggs KK, Lichtenstein P, et al. Medication treatment for attention-deficit/hyperactivity disorder and the risk of acute seizures in individuals with epilepsy. Epilepsia. 2019;60(2):284-93.
- 37. Liu X, Carney PR, Bussing R, Segal R, Cottler LB, Winterstein AG. Stimulants Do Not Increase the Risk of Seizure-Related Hospitalizations in Children with Epilepsy. Journal of child and adolescent psychopharmacology. 2018;28(2):111-6.
- 38. McAfee AT, Holdridge KC, Johannes CB, Hornbuckle K, Walker AM. The effect of pharmacotherapy for attention deficit hyperactivity disorder on risk of seizures in pediatric patients as assessed in an insurance claims database. Current drug safety. 2008;3(2):123-31.
- 39. McAfee AT, Landon J, Jones M, Bangs ME, Acharya N, Hornbuckle K, et al. A cohort study of the risk of seizures in a pediatric population treated with atomoxetine or stimulant medications. Pharmacoepidemiol Drug Saf. 2013;22(4):386-93.
- 40. Wiggs KK, Chang Z, Quinn PD, Hur K, Gibbons R, Dunn D, et al. Attention-deficit/hyperactivity disorder medication and seizures. Neurology. 2018;90(13):e1104-e10.