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S1 Model-free evaluation of ECTs in presence of positive treatment

effects

Hypothetical ECTs can be generated using the TMZ+RT arm of one of the studies in Table 1. For

each study, the algorithm iterates the following steps.

(a) Select randomly (without replacement) n patients with clinical profiles Xi and outcomes Yi from

the TMZ+RT arm of the study

(b) For all selected patients (step-a) with negative outcome Yi = 0, change randomly and with a fixed

probability ∆ (0 < ∆ < 1) the value of Yi from 0 to 1. Then use the clinical profiles Xi and

(modified) outcomes Yi of all n patients as experimental arm of the ECT. 1

If ∆ = 0 the whole procedure becomes identical to the one discussed in the main manuscript.

(c) Use the TMZ+RT arms of the remaining studies (Table 1) as external control.

(d) Estimate the treatment effect TE comparing the experimental arm (step a+b) and the external

control (step c) using one of the adjustment methods (Section S3), and test the null hypothesis

of no-benefit, H0 : TE ≤ 0, at a targeted type I error rate of 10%.

Repeat steps (a-c) 10,000 times and compute for each study the proportion of ECT tests that

rejected the null hypothesis at 10% type I error level.

S2 Model-based evaluation of ECTs

We also used a model-based approach to evaluate the ECT. Based on studies in Table 1, we estimated

a logistic model for the response to TMZ+RT given patient characteristics, P̂ r(Y = 1|A = 0, X) =

F (X ′β̂), where F (x) = 1/(1+exp{−x}). We fitted the model assuming identical regression coefficients

β̂ across all studies. A positive treatment effect γ (regression parameter) is added to specify a

probability model P̂ r(Y = 1|A = 1, X) = F (X ′β̂ + γ) for an effective experimental treatment. We

1The parameter ∆ can be consideblack the magnitude of the experimental treatment effect compablack to the control.
Using counterfactual notation ∆ = Pr(Yi(T ) = 1|Yi(C) = 0), where Yi(T ) and Yi(C) are the potential outcomes if the
patient i receives the experimental or the control therapy. This is the probability of a positive outcome Yi(T ) = 1 under
the experimental treatment conditionally on the fact that the outcome would have been negative if the patient was treated
with the control Yi(C) = 0. We assume Pr(Yi(T ) = 1|Yi(C) = 1) = 1.
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then generate for each study in Table 1 a hypothetical ECT with effective experimental arm and fixed

sample size n:

(a) Select n patient profiles X (with replacement) from the study and generate the corresponding

outcomes Y using P̂ r(Y = 1|A = 1, X) = F (X ′β̂ + γ) for the experimental arm.

(b) Randomly select N patient profiles X from the remaining studies (where N is the sample size

of external control data) and generate outcomes Y using P̂ r(Y = 1|A = 0, X) = F (X ′β̂) for

TMZ+RT.

(c) Conduct a covariate-adjusted ECT test using experimental arm data (step a) and the external

control (step b).

We repeated steps (a-c) 10,000 times and computed for each study the proportion of ECT tests

that rejected the null hypothesis at α = 0.1. By repeating this calculation over a grid of sample sizes

we determine the smallest size that achieve an 80% power. We repeated this analysis for all 5 studies

in Table 1.

S3 Statistical Details for the ECT design

We summarize the four methods (direct standardization, matching, inverse probability weighting,

marginal structural models) that we used to estimate treatment effects

TE = EX

{
Pr[Y = 1|X,A = 1]− Pr[Y = 1|X,A = 0]

}

in the ECT design. The first method uses a probit regression model to estimate the unknown prob-

abilities Pr(Y = 1|A,X) and the unknown treatment effect TE. Whereas the remaining methods use

matched pairs of outcomes Yi (matching) and weighted samples Yi of patients in the experimental and

control arm to estimate the unknown TE, without directly estimating the conditional probabilities

Pr(Y = 1|A,X).

All adjustment methods use assumptions that are difficult to test, for instance the absence of

unmeasublack confounders, and use modeling assumptions that may be violated in practice. This

motivates the use of a model-free procedure (see the method section of the manuscript) to evaluate

bias, type I error rates and other operating characteristics.
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(i) With direct standardization [1, 2] the average treatment effect TE,

TE = EX

{
Pr[Y = 1|X,A = 1]− Pr[Y = 1|X,A = 0]

}

is estimated by first fitting a regression mode for the response to treatment P̂ r[Y = 1|X,A = a]

given the pre-treatment characteristics vector X and treatment assignment a = 0, 1. We use a logistic

regression model. Then, for each patient i with characteristics Xi, irrespective of the actual treatment

Ai, the difference between P̂ r[Y = 1|Xi, Ai = 1] and P̂ r[Y = 1|Xi, Ai = 0] is computed, conditioning

on the hypothetical events that the patient had been assigned to arm Ai = 1 or Ai = 0. Lastly, the

difference is averaged over patients i = 1, . . . , n,

T̂EDS =
∑
i

{
P̂ r[Y = 1|Xi, Ai = 1]− P̂ r[Y = 1|Xi, Ai = 0]

}/
n .

(ii) We used a Matching algorithm based on estimates êi of the patient’s propensity scores

ei = Pr(A = 1|Xi). Under standard (non-verifiable) assumptions [3] each individual pair of poten-

tial/counterfactual outcomes, under the control and experimental treatment, is independent of the

treatment assignment Ai given ei. The propensity score can be used to match patients i in the experi-

mental arm and patients j in the control arm with similar propensity scores ei ≈ ej . If exact matching

on ei can be achieved, then the distribution of pre-treatment variables would be identical on both arms

[4]. For each patient i in the experimental arm, Ai = 1, we indicate with j(i) the index of the patients

on the control arm with estimate propensity score closest to patient i (|êi − êj(i)| ≤ |êi − êj′ | for all j′

with Aj′ = 0). Then the average treatment effect with PX = PSAT is estimated by

T̂EM = 1/nm
∑

i:Ai=1

{
Yi − Yj(i)

}
I(|êi − êj(i)| < ε),

where ε (see [3]) restricts matching to patients with low propensity score dissimilarity and nm indicates

the number of patients i with Ai = 1 that are matched, |êi − êj(i)| < ε.

(iii) Inverse probability weighting (IPW) methods [5, 6, 7] estimate the average treatment

effect in a population with reference distribution PX by contrasting weighted averages of outcomes

Yi of patients in the control and experimental arms. More specifically, the IPW estimator T̂EIPW is
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defined as

T̂EIPW =
∑
i

Ai × wi,1 × Yi −
∑
i

(1−Ai)× wi,0 × Yi,

where for both groups a = 1 and a = 0 the weights wi,a ∈ [0, 1] sum to 1 =
∑

i:Ai=awi,a [7]. These

weights wi,a are used to re-weight the outcomes Yi of patients in both treatment groups to produce

pseudo-samples of control and experimental patients with (approximately) common distribution of

pre-treatment characteristics Xi ∼ PX , and are defined as

wi,a ∝ a
h(ei)

ei
+ (1− a)

h(ei)

1− ei
. (S1)

The function h(·) defines the particular reference distribution PX [6, 7], and Table S1 summarizes the

functions h(·) that we used [7] .

h(x) Target population X

1 Combined population
ei SAT population

1− ei External control population
ei(1− ei) Overlap population

I{ei ∈ [α, 1− α]} Truncated combined population
min{ei, 1− ei} Matching

Table S1: Reference Distributions used in IPWs and MSMs

(iii) Marginal structural (regression) models (MSMs) [8, 9] estimate the average treatment

effect TE by first estimating a marginal regression functions EPX
[E[Y |A = a,X]] = g(β0 + βTEa)

for the outcome Y given experimental and control treatment a = 0, 1 and then setting T̂Eave =

g(β0) − g(β0 + βTEa) [9]. The marginal regression function is estimate by maximizing the weighted

log-likelihood l(β) =
∑n

i=1wi,Ai logPr(Yi|Ai, β) [9] with weights wi,Ai defines as in IPW (see Table S1

and equation (S1)) .

For all four methods, confidence intervals for the average treatment effect have been generated

by a bootstrap algorithm [3, 10, 11]. Let nE and nC be the sample size of the experimental and

control arm. The algorithm draws nE patients (with replacement) from the original set of experimental

patients (Xi, Ai = 1, Yi), i = 1, · · · , nE and nC patients from the observed control arm (Xi, Ai =

0, Yi), i = 1, · · · , nC . We then apply one of the above causal inference methods to the resampled

data and estimate the average treatment effect T̂E
(boot)

. We repeat these two steps 10000 times to
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obtain resampled bootstrap estimates T̂E
(boot,c)

, c = 1, · · · , 10000 and use the empirical 5% and 95%

percentiles of these estimates to obtain approximate 90% confidence intervals.

S3.1 ECT design with OS outcomes

Various methods to control for confounding (imbalance in the distribution of pre-treatment variables)

with time-to-event data have been proposed; for instance MSMs and direct standardization for Cox

and accelerated failure time models [12, 13, 14], and IPW methods to estimating survival functions

[15, 16]. We use an IPW method for survival functions proposed by [15]. Let tj , j = 1, . . . , J indicate

the ordeblack failure times in the sample, Ci ∈ {0, 1} indicate if the patient outcome Yi is censoblack

(Ci = 0), wi,a is defined as above in (S1), and dw,a(tj) =
∑

i I(Yi = tj , Ci = 1, Ai = a)wi,a and

Nw,a(tj) =
∑

i I(Yi ≥ tj , Ai = a)wi,a indicate the weighed number of deaths and patients at risk at

time tj for patients in the experimental arm a = 1 and external control arm a = 0. Then the IPW

estimate of the survival function for arm a = 0, 1 equals

Ŝa(t) =
∏

j:tj≤t

(
1− dw,a(tj)

Nw,a(tj)

)
. (S2)

S3.2 Prior work on integration of external data into clinical trials

Most RCTs and single arm trial designs to evaluate experimental therapies utilize either a study-

specific control arm or a single historical benchmark value for the control therapy. Pocock [17], to

the best of our knowledge has been the first to discuss statistical methods to incorporate an external

control data into a RCT with binary endpoints by modeling inter-study variability with random effects.

Thall and Simon [18] consideblack an RCT design that leverages external control data and selects the

randomization parameters with the aim to minimizes the variance of the treatment effect estimate,

again utilizing a random effects model. We previously discussed methods specific for Bayesian multi-

arm studies and platforms [19, 20, 21, 22] that evaluate multiple treatment, in some cases studied during

different periods [23, 24], sharing a control arm [25, 26, 27]. Bayesian models to incorporate external

control data in the evaluation of new treatments, based on power priors, commensurate priors, and

meta-analysis techniques, have been discussed in Neuenschwander et al. [28], Schmidli et al. [29], Viele

et al. [30], van Rosmalen et al. [31], Kaizer et al. [32] and references therein. Most of these methods
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focus on study-specific marginal probabilities Pr(Y |A), without modeling individual profiles Pr(x)

and conditional distributions Pr(Y |A, x) across studies. Hobbs et al. [33] and Murray et al. [34]

used Bayesian regression models to incorporate historical control data for normal and time-to-event

outcome data. These approaches are based on hierarchical models and commensurate priors that

allows estimation of conditional treatment effects TE(x) = Pr(Y |A = 1, x) − Pr(Y |A = 0, x). The

ECT design that we evaluated in this manuscript builds on established methods from causal inference,

which estimate marginal treatment effects. These methods correct, similar to Hobbs et al. [33], Murray

et al. [34], for differences in the patient populations across studies, but estimate marginal effects TE =

EX [Pr(Y |A = 1, X) − Pr(Y |A = 0, X)]. Operating characteristics of both types of treatment effect

estimates relative to RCTs and single arm studies can be evaluated using the proposed model-free

validation algorithm.
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S4 Supplementary Material Figures and Tables

  PubMed 
ID NCT ID Treatment Enrollment Primary  Sample OS 

      Control Experimental  Period Endpoint Size Events 

Historical 
Control 15758009 NCT00006353   TMZ+RT 8/2000-3/2002 OS 

305 254 

Phase II RCT 25910950 NCT00441142 TMZ+RT  2/2009-6/2011 OS 29 - 
 26481741 - TMZ+RT   6/2008-6/2012 OS 52 - 
 26843484 NCT00589875 TMZ+RT   1/2006-1/2010 OS 134 133 
 29126203 NCT01062399 TMZ+RT   12/2012-9/2013 PFS 83 44 
 28142059 NCT00190424 TMZ+RT   10/2005-10/2008 OS-24  42 42 
 21135282 NCT01013285 TMZ+RT  8/2006-11/2008 OS 110 48 

  22120301 - TMZ+RT  8/2005-2/2011 OS 16 15 

Phase IIII RCT 24552318 NCT00943826 TMZ+RT   6/2009-3/2011 OS & PFS 463 458 
 24101040 NCT00304031 TMZ+RT   1/2006-6/2008 OS 411 320 

  NCT00884741 TMZ+RT  4/2009-5/2011 OS & PFS 309 198 

Phase II SAT  20564147 NCT00544817 NCT00006353: TMZ+RT   4/2007-7/2008 PFS 54 - 
 20615924 NCT00262730 NCT00006353: TMZ+RT   1/2006-1/2007 OS 97 75 
 21531816 NCT00597402 NCT00006353: TMZ+RT   4/2007-9/2008 OS-16 75 - 
 22706484 NCT00805961 NCT00006353: TMZ+RT   2/2009-10/2009 PFS 68 - 

  25586468 NCT00458601 NCT00006353: TMZ+RT   8/2007-11/2009 PFS-5.5 65 56 

Table S1: Single Arm trials (SATs) and randomized controlled trials (RCTs) in newly diagnosed Glioblastoma during the 
period if 2000-2016. For SATs the “control treatment” column indicates the historical trial (and treatment arm is the trial) 
that was used in the SAT to define a benchmark value for the SATs’ experimental arm. 
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Figure S1: Reported estimates (point estimates and 95% confidence intervals (error bars)) of the
overall survival (OS) functions, OS proportion at 12 months (OS-12) from randomization and median
OS for the TMZ+RT arm in 10 RCTs that enrolled patients during the years 2000 – 2014. For median
OS and OS-12 the error bars cover to the RCTs enrollment period.
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Figure S2: Treatment effect estimates of the ECT design. For each study the RT+TZM arm was
used as ECT’s experimental arm and (after adjustments for patent characteristics) compablack to the
RT+TZM arms of the remaining five studies. The figures shows covariate adjusted treatment effects
estimates T̂AAve (point estimates and 90% confidence interval) for each of the 6 studies.
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Figure S3: Adjusting ECT’s treatment effect estimates for different sets of patients’ covariates. The
figure shows covariate-adjusted treatment effect estimates (point estimates and 90% confidence interval)
for each of the five studies (DFCI and UCLA cohorts, NCT00943826, PM22120301 and NCT00441142)
RT+TZM arm, when we consider a SAT using the RT+TZM arm of EORTC-NCIC as historical
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variables.
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