V-ATPase-associated prorenin receptor is upregulated in prostate cancer after PTEN loss

SUPPLEMENTARY MATERIALS

2D-difference gel electrophoresis (DiGE)

A pooled internal standard, consisting of 25 µg of protein of each replicate was labelled with Cy2. Experimental samples were combined along with the pooled internal standard, 4.5 µL of 1% immobilized pH gradient (IPG) buffer (GE Healthcare), 5.4 µL of DeStreak Reagent (GE Healthcare), and rehydration buffer (7M Urea, 2M Thiourea, 4% CHAPS, 0.002% Bromophenol blue). Samples were then loaded onto 24 cm pH 3-11 non-linear Immobiline DryStrips (GE Healthcare). Active rehydration and isoelectric focusing (IEF) were performed using the Ettan IPGphor IEF system (GE Healthcare). Immediately following IEF, the IPG strips were equilibrated in equilibration buffer (100 mM Tris, 6M Urea, 30% Glycerol, 2% SDS, 0.002% Bromophenol blue), first in buffer containing 5 mg/mL DTT, then in equilibration containing 45mg/mL iodoacetamide. IPG strips were loaded onto 12.5% SDS-PAGE gels and sealed in place using 1% agarose.

Tissue microarrays (TMAs) immunohistochemistry

Tissue sections of 4µm from TMAs were deparaffinized, rehydrated and incubated in a methanol/0.3% H2O2 solution. Immunostaining for phosphorylated Akt was performed as in mice tissues (below). Immunostaining for PRR, SPON-2, and CST3 was performed using a XT autostainer (Ventana Medical System Inc.). Antigen retrieval was obtained using Cell Conditioning 1 (Ventana Medical System Inc.) for 60min. Antibody dilutions (PRR: Genetex, 1: 100; SPON-2: R&D System, 1:500; CST3: R&D System, 1:500) were manually added to the slides and incubated at 37° C for 60 minutes. Reactions for PRR were developed using the UltraView universal DAB detection kit (Ventana Medical System Inc.). For SPON-2 and CST3 IHCs, however, prediluted anti-goat secondary antibody (Santa-Cruz) was automatically dispensed and reactions were developed using the iView DAB detection kit without secondary antibody (Ventana Medical System Inc.). Counterstaining was performed with Hematoxylin and bluing reagent (Ventana Medical System Inc.). All sections were scanned using a VS-110 microscope with a 20×0.75 NA objective and a resolution of 0,3225 µm (Olympus). Images were analyzed with the OlyVIA software (Olympus). The intensity of staining in epithelial cells was assessed based on the following scale: negative or very weak (0), weak (1+), intermediate (2+) and elevated (3+). Final values for each core were calculated as the average of the scores determined by two independent blinded scorers.

Immunohistochemistry (IHC) of mouse prostates

Four-micrometer sections were used for H&E staining and IHC. For IHC, slides were heated for 20 minutes at 60°C, deparaffinized in xylenes and rehydrated in ethanol gradient. Antigen retrieval was performed using sodium citrate pH 6.0 (p-AKT) or EDTA pH 8.0 (PRR) buffer in a pressure cooker (Cuisinart). Endogenous peroxidase was deactivated with 3% H_2O_2 , and slides were blocked using a protein blocking reagent (Dako) at room temperature. Tissue sections were incubated with primary antibodies overnight at 4° C (PRR: Gene Tex, 1:50 000; p-AKT: Cell signaling, 1:50) and then with their respective biotin-conjugated secondary antibodies (Santa-Cruz). Staining was developed using DAB (Sigma-Aldrich) containing 0.015% H_2O_2 . Counterstaining was performed with hematoxylin.

Lysotracker image processing

Using a Zeiss microscope with 20X objective and an AxioCam HR camera, four to six images were taken from each well. *Image J* software was used to process the images. Cells on the bright-field images were manually counted using the *Image J* cell counter plugin. The mean gray value of images was then measured using the same software. Mean gray values were added and divided by the total number of cells counted from the corresponding bright-field images to find the mean gray value per cell.

Tumor tissue sample preparation

The dissected tissues were frozen at -20° C with OCT compound (Tissue-Tek; Miles Scientific), and 5-µm slices were cut and immediately fixed in formalin to perform H&E staining for pathological examination. Tumor zones were delimitated together with the adjacent non-cancerous tissues by a clinical pathologist, and further dissections were performed accordingly on the

frozen tissues to isolate tumor regions. To prepare tissue lysates, frozen tissues were washed with nano-pure RNase-free water (Wisent) to remove all apparent traces of OCT compound. The tissues were then finely grinded in liquid nitrogen and lysed in RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton-X-100 and 1% NP40) with freshly added protease inhibitors (Complete Mini, Roche). Samples were incubated for 20 minutes on ice and vortexed every 10 minutes before being clarified by centrifugation (17,000 × g, 4° C, 30 minutes). Protein concentrations were determined using the Bicinchoninic Acid assay (Pierce).

TCGA prostate cancer mRNA levels.

To evaluate the clinical relevance between *PRR/ ATP6AP2* gene expression and clinical Gleason score, we included the annotated TCGA samples Gleason-6 (n = 49), Gleason-7 (n = 276), Gleason-8 (n = 63), Gleason-9 (n = 129) and Gleason-10 (n = 3) but excluded samples Gleason-N/A (n = 28). Mean Centered *PRR/ATP6AP2* log2 transformed data were filtered based on log2 ratio differences greater than 2. Significance was determined by Wilcoxon rank *T*-test (P < 0.05). The R console (version R 3.3.2), Bioconductor source (http://bioconductor.org) and TIGR MultiExperiment Viewer software package MeV version 4.8.1 [1] were used to perform microarray data analysis.

REFERENCE

 Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J. TM4 microarray software suite. Methods Enzymol. 2006; 411:134–93. <u>https://doi.org/10.1016/S0076-6879(06)11009-</u> <u>5. [PubMed]</u>

TMA Series		TF123			
Number of patients		285			
	Mean	62			
	Median	63			
Age at Diagnosis	25	59			
(years)	Percentile 50	63			
	75	67			
	Mean	128			
	Median	129			
Follow-up	25	76			
(montus)	Percentile 50	129			
	75	174			
	No	169			
Biochemical Relapse	Yes	116			
	0.2 and Rising	74			
Biochemical Relapse Type	Failed Radical Prostatectomy	42			
	No	258			
Bone Metastasis	Yes	27			
	No	258			
Castrate Resistant	Yes	27			
	PCa specific	19			
Death	Other cause	30			
	Overall	49			
	<3+3	138			
	3+4	94			
Gleason Score Radical	4+3	19			
Prostatectomy	>4+4	29			
	Unknown	5			
	2	64			
	- 2a	40			
	2b	52			
pTNM	2c	49			
Leene	3a	50			
	3b	22			
	3c	8			
	No	196			
I ymph Node Invasion	Ves	9			
Lymph rode mydsion	Unknown	80			
	No	205			
Capsular Penetration	Ves	80			
	No	269			
Seminal Gland Invasion	Yes	16			
	Negative	185			
Margin status	Positive	95			
Bill Survey					

Supplementary Table 1: Clinical parameters of the Centre Hospitalier de l'Université de Montréal TMA patient cohort

Supplementary Table 2: Correlation values of p-Akt staining with Biochemical Recurrence (BCR), pre-operative PSA levels, and surgical margins status (SMS) on TMA analysis

Clinico-pathological parameter		BCR	Pre-op PSA	SMS
p-Akt	Correlation Coefficient	0.193**	0.144*	0.141*
Spearman's rho	Sig. (2-tailed)	0.001	0.016	0.02
correlation	Ν	280	280	275

Supplementary Table 3: Clinical parameters of patients from Centre Hospitalier Universitaire de Sherbrooke sampled for normal adjacent and tumor tissues

Patient number	Biobanking (REF)	Gleason Score	PSA at Diagnosis	Prostate weight (g)	Extra- prostatic extension*	Invaded Seminal Vesicles*	рТ	pN	рМ	Margins	Biochemical recurrence	Metastasis
46	-110	3+3	3.6	126	0	0	pT2c	0	х	0	0	0
48	-152	4+3	9	46	1	0	pT3b	х	х	0	1	0
57		3+3	6.6									
72	-149	4+3	7.45	56	1	1	pT3b	0	Х	0	1	2
83	-103	3+4	2.9	34	0	0	pT2c	х	х	0	0	0
84	-98	4+3	9.1	84	0	0	pT2c	х	х	0	1	0
86		3+4	15.2									
97	-97	3+4	18.4	54	0	0	pT2b	0	х	2	0	0
105	-96	3+3	9.7	116	0	0	pT2b	х	х	1	0	0
109	-95	4+3	5.7	66	0	0	pT2c	х	х	0	0	0
113	-143	3+3	5.6	42	0	0	pT2b	х	х	0	1	0
120	-90	3+3	7.2	36	0	0	PT2a	х	х	1	0	0
136	-137	3+4	12	40	N/A	0	pT2a	0	х	1	1	0
137	-79	4+3	4.5	28	1	0	pT3	х	х	0	0	0
154	-73	4+3	6.7	42	1	0	pT3a	х	х	2	0	0
158	-129	3+4	36.5	75	1	0	pT3a	1	х	0	1	0
179	-55	3+3	4.4	50	0	0	pT2c	х	х	0	0	0
180	-54	4+3	5.32	40	1	1	pT3b	х	х	2	0	0
194	-123	3+4	3.46	34	0	0	pT2c	х	х	0	1	0
195	-122	3+4	9.6	102	0	0	pT2c	х	х	1	1	0

*0 = No, 1 = Yes, **0: Negative, 1: Unifocal, 2: Multifocal, ***1: yes if > 0.2 ng/mL, 0: no, ****0: None, 1: Lymph node, 2: bones, 3: visceral.

Plasma specimens				
Number of patients		155		
	Mean	62		
Age at Diagnosis (years)	Median	62		
	25	58		
	Percentile 50 75	62		
		66		
	Mean	117		
Follow-up (Months)	Median	124		
	25 D (1) 50	65		
	75	124		
		168		
Biochemical Relapse	No	106		
	Yes	49		
Biochemical Relapse Type	0.2 and Rising	29		
	Failed Radical Prostatectomy	20		
	No	137		
Bone Metastasis	Yes	18		
Contrate Provisiont	No	138		
Castrate Resistant	Yes	17		
	Prostate cancer specific	13		
Death	Other cause	12		
	Overall	25		
	≤3+3	78		
Gleason Score Radical Prostatectomy	3+4	50		
	4+3	11		
	<u>≥</u> 4+4	13		
	Unknown	3		
	2	44		
	2a	18		
pTNM	2b	34		
	2c	14		
	3a	26		
	3b	15		
	3c	4		
Lymph Node Invesion	No	106		
	Yes	5		
	Unknown	44		
Capsular Penetration	No	110		
	Yes	45		
Seminal Gland Invasion	No	146		
	Yes	9		
Margin status	Negative	99		
	Positive	53		
	Unknown	3		

Supplementary Table 4: Clinical parameters of patients from the Centre Hospitalier Universitaire de Sherbrooke sampled for plasma and urine ELISA

Supplementary Table 5: RT-PCR primer sequences

Gene	Primer name	Sequence (5'-3')
Insulin-likegrowthfactorbinding protein 2	IGFBP2 Fwd	GGAGGAGCCCAAGAAGCTGCG
Insulin-like growth factor binding protein 2	IGFBP2 Rev	CCCGTTCAGAGACATCTTGCACTG
ATPase, H+ transporting, lysosomal accessory protein 2	<i>HT028</i> Fwd	GACACCTCCCTCATTAGGAAGAC
ATPase, H+ transporting, lysosomal accessory protein 2	<i>HT028</i> Rev	GATCATTATCCAAAGTACCATGTTG
Calsyntenin 1 (CLSTN1)	CLSTN2 Fwd	GGAACACCGCTCCTTTGTTGACCTG
Calsyntenin 1 (CLSTN1)	CLSTN2 Rev	CCGCATGGTCCGCCGATGTG
Vinculin	VCL2 Fwd	CTACTAGGCAAAATGAGAGGGCAG
Vinculin	VCL2 Rev	GAAGGAAGGATGTTCAGGCAAGG
Phosphatase and Tensin homolog	<i>PTENa</i> FWD	CAAGTTCATGTACTTTGAGTTCCC
Phosphatase and Tensin homolog	PTENa REV	GCACGCTCTATACTGCAAATGC
Protein tyrosine phosphatase, receptor type, F	LAR Fwd	ACGCTCTGCCAACTACACC
Protein tyrosine phosphatase, receptor type, F	LAR Rev	CACAAGATCAATCGGAGGCTT
Desmoglein 2	DSG2 Fwd	TGATGCTGCTGCTTAGGTGCC
Desmoglein 2	DSG2 Rev	CCTGGGTTGCTTTACTGGACGGC
Chaperonin containing TCP1, subunit 8 (theta)	CCT8 Fwd	AGGAGGGAGCGAAACACTTTT
Chaperonin containing TCP1, subunit 8 (theta)	CCT8 Rev	GCAGGATGCTGTACTTCTAGTTC
Ribonuclease/Angiogenin Inhibitor 1	RNH1 Fwd	CCTGCTGCTGCTCTCCCTGG
Ribonuclease/Angiogenin Inhibitor 1	RNH1 Rev	GGCAGAAATAAGCGGATCTGAGCGT
Spondin 2	SPO2 Fwd	GAGGGCACAGGGGGTTTCGC
Spondin 2	SPO2 Rev	AGAGCAGACGGGGACACGGGG
Prostate specific antigen precursor	PSA Fwd	TGAACCATGTGCCCTGCCCG
Prostate specific antigen precursor	PSA Rev	AGGGGTGCTCAGGGGTTGGC
Cystatin C	CST3 Fwd	TGCGGCGTGCACTGGACTTT
Cystatin C	CST3 Rev	GCTACGATCTGCTTGCGGGCG
Alpha-1 collagen VI	COL6A1 Fwd	ACACCGACTGCGCTATCAAG
Alpha-1 collagen VI	COL6A1 Rev	CACCGAGAAGACTTTGACGC
Alpha actinin 4	ACTN4 Fwd	TGGAGGTCATATCAGGGGAGC
Alpha actinin 4	ACTN4 Rev	CTTCTGCCCCGATGGAGAC
Glyceraldehyde-3-phosphate dehydrogenase	GAPDH Fwd	AGGGCTGCTTTTAACTCTGGT
Glyceraldehyde-3-phosphate dehydrogenase	GAPDH Rev	CCCCACTTGATTTTGGAGGGA

Supplementary Table 6: PRR shRNA and siRNA sequences

PRR shRNA/siRNA	Name	Sequence (5'-3')
shRNA 1	TRCN0000038605	CCGGGCAGTGTCATTTCGTACCCTTCTCGAGAAGGGTACGA AATGACACTGCTTTTTG
shRNA 2	TRCN0000308100	CCGGAGTCTTGACAGTGTTGCAAATCTCGAGATTTGCAACA CTGTCAAGACTTTTTTG
shRNA 3	TRCN0000289297	CCGGCCTGGATATGATAGCATCATTCTCGAGAATGATGCTATC ATATCCAGGTTTTTG
siRNA 1	SASI_Hs01_00147063	GAGUGUAUAUGGUAGGGAA
siRNA 2	SASI_Hs01_00147062	GUCUUGACAGUGUUGCAAA

Supplementary Figure 1: Identification of secreted factors regulated by PTEN. (A) Western blot analysis demonstrating PTEN expression and p-Akt downregulation in the presence of PTEN in whole cell extracts of Ad-PTEN WT infected LNCaP cells compared to Ad-LacZ infected controls. Total Akt was used as a control for p-Akt levels and Actin was used as a loading control. (B) Representative scan of a 2D-DiGE gel where proteins isolated from conditioned media of LNCaP cells infected with wild type PTEN Adenovirus (Ad-PTEN WT) were labelled with Cy5 dye (red), and proteins from cells infected with LacZ Adenovirus (Ad-LacZ) labelled with Cy3 dye (green). (C) Representative silver stained gel labelled for spots identified by mass spectrometry.

Supplementary Figure 2: PRR and p-Akt TMA scoring and PRR antibody TMA validation. (A) Representative scoring of immunohistochemistry staining intensities for p-Akt and PRR in prostate cancer TMAs. (B) Immunofluorescence images $(20\times)$ of murine breast cancer cells 4T1 (High PRR expression) and 67NR (Low PRR expression) stained with the anti-PRR antibody used in TMA staining (Genetex [N3C3] GTX114169) or No primary antibody for control. Scale bar measures 50 µm. (C) Western blot analysis demonstrating the band level of PRR expression and the specificity of the antibody used to detect PRR in 3 replicates of 67NR and 4T1 cell lines. Total lane protein was used as a loading control.

Supplementary Figure 3: PRR expression affects cell growth and V-ATPase activity in HEK 293T cells. (A) LysoTracker DND-99 and corresponding brightfield images (20X) of Non-Silencing siRNA (NSC) (50 nM) transfected, PRR siRNA 1 or siRNA 2 (50 nM) transfected, or Bafilomycin A1 (Baf A1) (100 nM) treated HEK-293T cells. (B) Quantification of Mean LysoTracker signal per cell shows a decrease in LysoTracker signal after knocking down PRR using siRNA 1 (*P = 0.036), siRNA 2 (*P = 0.049), or after Bafilomycin A1 (100 nM) (** P = 0.0028) treatment in HEK-293T cells (n = 4). Western blot analysis validating PRR knockdown in siRNA1 and siRNA 2 transfected cells. Tubulin was used as a loading control (Top Panel). (C) LysoTracker DND-99 and corresponding brightfield images (20X) of empty vector (EV) and PRR-HA transfected HEK 293T cells. (D) Corresponding Quantification of Mean LysoTracker signal per cell demonstrates an increase in LysoTracker signal in PRR-HA transfected (*P = 0.031) HEK-293T cells (n = 3). Western blot analysis validating PRR overexpression in HEK293T cells following PRR-HA transfection. Tubulin was used as a loading control (Top Panel). Scale bar measures 100 µm. Data are presented as the mean \pm SEM. Statistical tests conducted using Student's *t* test.