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Supplementary Figure 1 | MS-based quantification is accurate
MS measurements of phosphorylation events are highly consistent with previous immunoblot assays

comparing PDGFRA-driven HGGs to normal cortex (Paugh BS et al. 2013).
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Supplementary Figure 2 | MS-based proteomic analyses specify particularly small variations

(a) Pairwise standard deviation matrix of whole proteome and phosphoproteome displays particularly

small variations between replicates.

(b) Examples show distributions of representative Log, level whole proteome and phosphoproteome

variations between PDGFRA-driven HGG biological replicates and between two HGG tumors.



NTRK HGG RNA batch2 (FPKM)

NTRK1 expression

Q.

PDGFRA expression
(quantile normalized FPKM)

(ox

2000 -
1500 -
1000 A

500 -
0 -
0

_ 800

=

~

a.

w o

3 600

©

£

S 400

o

€

E% 20.0

0.0

400.0 PDGFRA

300.0 |

200.0 |

100.0

0.0 |

S 2000 -
R2 =0.97 E RZ =0.95
w .
n=13,573 ~ 1500 {1 n=13572 - .
S
3 . . .
< 1000 A .
z
[+
Q
® 500
I
<
i i . Y - - .
500 1000 1500 2000 g 1000 1500 2000
NTRK HGG RNA batchl (FPKM) PDGFRA HGG RNA batch1 (FPKM)
-NTRK1
il e O ——p— "Iﬂi-l'-ln" e — -m-—--—-u:-—-——-
PDGFRAHGG ~ NTRK1 Normal PDGFRA PDGFRA PDGFRA NTRK1 Other NTRK  No PDGFRA
HGG Cntrl Amp Mut Mut+Amp fusion fusion or
NTRK mut
Mouse Human
T
I =
= T . b4
L el == -_3'= |
PDGFRA HGG NTRK1 Normal PDGFRA PDGFRA PDGFRA NTRK1 Other NTRK No PDGFRA
HGG Cntrl Amp Mut Mut+Amp Fusion Fusion or
NTRK Mut
Mouse Human



Supplementary Figure 3 | HGG mouse models are reproducible

(a, b) Comparisons of RNAseq results on batch2 and batchl HGG mouse models show highly consistent
transcript abundance from tumors generated by independent experiments. Scatterplots show FPKM
values of genes in batch1 and batch2 HGG mouse models, Pearson correlations were performed and R?

values were shown on the upper left side of the panels.

(c, d) Mouse tumors express levels of mutated PDGFRA or NTRK fusion genes that are relevant to the
levels expressed in primary human tumors. Normalized RNAseq data was used to compare the
expression of the human NTRK1 (c) or PDGFRA (d) expression in mouse HGGs, control mouse cortex, or
human HGGs from Wu et al, Nat Genet, 2014, categorized as HGGs carrying amplified wild-type
PDGFRA, mutated PDGFRA, amplified and mutated PDGFRA, TPM3-TRK1 fusion gene, fusion genes
involving NTRK2 or 3, or HGGs without mutation in PDGFRA or NTRK genes. Expression of mouse
orthologs for NTRK1 (c) or PDGFRA (d) are shown in red. Analysis of variant allele frequency from whole
genome sequencing data showed that human tumors with TPM3-NTRK1 fusion gene carried the fusion
gene as a subclonal population comprising only 9-20% of the tumor cells. Therefore, expression of the
TPM3-NTRK1 from bulk tumor RNA is a significant underestimate of expression of the TPM3-NTRK1
fusion in human tumor cells. Boxplot center line, median; box limits, upper and lower quartiles;

whiskers, 1.5x interquartile range; points, outliers.
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Supplementary Figure 4 | Proteome-transcriptome comparison shows deep proteomic coverage

a) High percentage (84%) of expressed transcripts detected by MS. In the histogram of transcript
(a) High p ge (84%) p p y 8 p

log,FPKM, MS-detected proteins are highlighted in grey. To ensure data stringency, FPKM >1 were applied

in this analysis.

(b) The number of peptides identified for each protein in this MS analysis. > 96% of proteins were

identified by at least 2 distinct peptides.

(c) The MS coverage of theoretically observable amino acid sequences in a histogram. In average, 42% of

observable amino acid sequences were detected in this MS study.
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Supplementary Figure 5 | Proteomic analyses detect a global trend of increased expression and

phosphorylation of regulatory protein families in HGG tumors

(a - h) Deep proteomic data analyses show a global increase of protein expression and phosphorylation
of most of regulatory protein families (Kinase, epigenetic genes, transcription factors and cancer genes)
in HGG tumors compare to cortex, with higher magnitude of increase in NTRK-driven HGG than PDGFRA-
driven HGG. Scatter-histogram graphs of regulatory family proteins expression and phosphorylation
comparing both HGG tumors to cortex and NTRK-driven HGGs to PDGFRA-driven HGGs. B.H. adjusted
Student T test p values of 0.05 in both pairwise comparisons plus fold change (FC) cutoff of FCinrrk/pocrra)
* FCines/cortex) > 1.52 for proteome and >2 for phosphoproteome are applied for differential expression
analyses. DE genes are shown in red. Magnitude of change is represented by dot size. Top five altered
proteins and phosphoproteins with the largest magnitude of alterations are labeled. The distributions of

pairwise differences are shown by histograms.
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Supplementary Figure 6 | AGC, CAMK and CMGC kinase superfamilies display higher activity in both HGG

tumors compare to cortex

(a) Kinome tree circular map shows kinase activity comparing NTRK-driven HGG to cortex. Pairwise
comparisons of kinase superfamilies with a Chi-square P values < 0.05 are labelled. Magnitude of kinase
activity difference is represented by length of bars located outside of the kinome tree circles. Blue bar
indicates higher activity in NTRK-driven HGG compare to Cortex. Green bar indicates higher activity in

cortex compare to NTRK-driven HGG

(b) Kinome tree circular map shows kinase activity comparing PDGFRA-driven HGG to cortex. Pairwise
comparisons of kinase superfamilies with a Chi-square P values < 0.05 are labelled. Magnitude of kinase
activity difference is represented by length of bars located outside of the kinome tree circles. Red bar
indicates higher activity in PDGFRA-driven HGG compare to Cortex. Green bar indicates higher activity in

cortex compare to PDGFRA-driven HGG
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Supplementary Figure 7| Evaluation of AKT regulated substrates

(a) A high percentage of known AKT substrate sites were identified in the deep phosphoproteome. Bar

graph shows reported substrate sites, quantified phosphosites and differentially phosphorylated sites.

(b) Differentially phosphorylated substrates that are regulated by AKT in HGGs. Scatter plot of log. level
changes compare HGG tumors to cortex and compare NTRK-driven HGG to PDGFRA-driven HGG.
Substrates with the same phosphorylation pattern as the AKT active site (S473, located at upper right)

were accepted as AKT regulated substrates.
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Supplementary Figure 8 | Heatmaps display differentially phosphorylated substrates (with up-regulated
phosphorylation in HGG tumors) of other active kinases derived from kinase-substrate analysis. Color key

presents the Z score of kinase substrates
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Supplementary Figure 9 | Combination of mouse and human HGG data prioritizes putative cancer genes.

(a) Overview of multiomics analysis across species

(b) Cross species integrative analysis reveal cancer driver responsive genes, many of which are well-
reported cancer genes in HGG. The cancer driver responsive genes were classified according to their
functions. Mouse transcripts and proteins/phosphorylations that follow the expression order of NTRK >
PDGFRA > Cortex were accepted to be oncogene responsive. Human transcripts that show NTRK > PDGFRA
were intersected with mouse oncogene responsive genes for prioritization. Gray fills indicate consistent

changes identified, while white boxes indicate no significant change or data not available.

(c, d) Boxplots show Epha2 and CD74 expression in multiomics data in human and mouse. Human mRNA
boxplots compare expression levels of EPHA2 or CD74 in pediatric HGGs with mutated PDGFRA or NTRK
fusion genes. Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x

interquartile range.
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Quality controls and experimental optimization for
transEDIT-dual CRISPR-Cas9 genomic screening
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Supplementary Figure 10 | Quality controls for CRISPR-CAS9 functional genomic screening using
transeEDIT-dual system

(a) Work flow and QC steps for CRISPR-Cas9 functional genomic screening using transeDIT-dual system

(b) Simplified cartoon shows transEDIT-dual CRISPR construct with primer binding sites. Two gRNAs
targeting different regions of the same genes were designed in a signal CRISPR construct. Primer binding

sites for PCR amplification of gRNA 1 were shown. Fwd: forward; rev: Reverse.

(c) Image of primary HGG cells show mCherry fluorescence which co-express with TPM3-NTRK1 cancer

driver gene

(d) Stable expression of Cas9 in HGG cells as validated by immunoblot assay.

(e) gRNA integration was validated by fluorescence detection of ZsG. Image shows the detection of ZsG

fluorescence in the primary HGG cells 3 days of transEDIT-dual gRNA lentivirus transduction.

(f) PCR products show amplicon size and band intensities corresponding to different PCR cycle. Theoretical

amplicon size is 240bp. PCR cycle 29 was used for later analysis.

(g) Close to even distribution of gRNA counts before selection. Bar plot shows the Log2 level counts of
each gRNA collected at 1 day after gRNA transduction. 3 x dual gRNAs were designed for each target gene,

and the CRISPR-Cas9 experiment was repeated 3 times. Error bars indicate the s.e.m of 3 experiments.

(h) CRISPR-CAS9 genomic screening targeting top candidate targets derived through cross-species data
integration. Bar pot shows the log2 level gRNA relative fold changes of top cross-species conserved
regulators after selection for 15 days. Dash line indicates the mean level of all non-targeted gRNA controls.
The gRNA counts of cross-species conserved regulators were compared with non-targeted gRNA controls,
and red bars indicate gRNA changes that show statistical significance with a Student t test P value smaller

than 0.05. Two asterisks: p < 0.01.
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Fold change distribution and Z-value transformed distribution of MS2 and MS3 based peptide quantification
comparing NTRK-driven HGG to Cortex using TMT labeling.

a b

5000 - 4000 ~
$ ks
7 4000 1 B 3000
& &
« 3000 - o
o o 2000
< 2000 - / o
- 1\ -
Z 1000 - / \ = 1000
0
5-4-3-2-1012345 5-4-3-2-1012 345
Fold change Z-value
NTRK / Cortex (Log,) NTRK/Cortex (Log,)

Supplementary Figure 11 | TMT-based quantification using MS2 method has essentially no impact on
protein differential expression analysis after Z-scale normalization

a. Quantitative ratio compression occurred in TMT labeling strategy using MS2 compare to MS3 method.
MS3 strategy can essentially eliminate ratio compression with the cost of more duty cycles and the use of
low resolution MS2 data for identification, which often compromise peptide/protein identification.
Comparison between MS2 and MS3 methods on the same sample using TMT labeling shows smaller
difference/variance measured in MS2 method compare to MS3 method, suggesting quantitative ratio
compression in MS2 analysis of TMT labeling.

b. Z scale normalization essentially eliminates the effect of ratio compression on protein differential
expression analysis. Z scale transformation of the same data shows almost exact same Z value distribution
in MS2 and MS3 method, suggesting similar amount of DE proteins with the same Z value cutoffs for

differential expression analysis comparing MS2 and MS3 methods.
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