
Reviewers' comments:  
 
Reviewer #1 (HGG and mouse model expert) (Remarks to the Author):  
 
This manuscript provides a general bioinformatics pipeline for identifying core signaling and master 
regulators in cancer proteomics. The authors take a few huge datasets from normal mouse brain, 
as well as from mouse models for two different high grade gliomas, dissecting whole proteome, 
phosphoproteome and transcriptomes, then describe systems biology appraoches to identify 
functional modules master regulators, as well as using the resulting data, in comparison with 
human HGG transcriptome data to identify shared regulators. The methodology development here 
is impressive, and would be useful to researchers trying to work through similar large datasets. 
While no ground-breaking insights were made, the conclusions done through bioinformatic 
analyses were validated in biological systems.  
 
The take home points, that NTRK mutation was a stronger activator of PDGFRA and of AKT than 
PDGFRA mutation, is certainly interesting, and unexpected. Can this result (7 b and c) be validated 
by immunoblotting of mouse HGG tumors, and by transfection of NTRK and PDGFRA mutation into 
indicator cells? Can the mechanism in Fig 7e be further delineated in cell-based systems as well?  
 
Westerns in Fig 7 not displayed for me.  
 
The authors validate the importance of EPHA2 and CD74 by citing papers in which these are 
already known to play roles in brain tumors, somewhat undermining the utility of their 
methodology to identify new insights. Can the authors analyze any of the more novel drivers 
identified to validate roles for these, and for CD74 in pediatric HGG?  
 
 
Reviewer #2 (HGG expert) (Remarks to the Author):  
 
The manuscript entitled: “Deep Multi-omics of Brain Tumors Identifies Signaling networks 
downstream of cancer driver genes” Wang and colleagues have modified murine cells representing 
two major mutation classes represented by high grade gliomas (HGGs). Major modifications (which 
the authors induced) include PDGFRA (D842V) and TPM3-NTRK1. Induced cells are then 
orthotopically injected into mice brain to create allograft models of HGGs. Tumor specimen are 
procured and analyzed deep-omics as the authors refer to their method. The strength of the 
manuscript is the bioinformatics analysis and correlation of data across platforms (RNA, protein, 
phosphor protein, pathway analysis). However, the impact of the presented work is reduced based 
on the following critiques:  
Major comments:  
1. The manuscript is mainly based on murine models generated by inducing murine astrocytes to 
express mutations in genes encoding PDGFRa and NTRKs. The authors reasons for not using 
human specimen is the presence of tumor heterogeneity and thus variation in data analysis. I find 
it difficult to follow this rational for two reasons: a) clinically, if we are to treat cancers, we will 
need to understand their true nature (heterogeneous in this case). Artificially simplifying cancer 
biology will not help developing effective treatments. b)if ‘contamination’ by heterogeneous cells is 
an issue, how are the authors accounting for contamination for healthy normal mouse brain cells 
that are being analyzed.  
2. Since the majority of the data depends on the mouse model, a thorough characterization of the 
mouse model (histologically at least) is warranted. Is tumor a uniform mass? Is it infiltrating etc?  
3. The cells that are intracranially injected are induced to express mutant genes! How many copies 
of each mutant expressing plasmid is induced? Is this taken into account as far as protein 
expression and true representation of human tumors?  
4. The major distinction is that mutation in these genes do not constitute the major driver 
mutations for HGGs. The claim that this data represent true HGG biology should be toned down.  
5. The manuscript would truly benefit of a more thorough validation across human specimen either 



histologically, or by western etc.  
6. Figure 3b, c, d, and e, are too general and not informative. What is the significant of these 
generic heatmaps?  
7. Figure legends are not clear and do not reflect the generated data. For example, what are some 
of the elements indicated in Figure 3f? What is log10FDR representing? False discovery rate? And if 
so, why is the higher FDR the better (as it seems to be the case according to the heatmap).  
 
Minor comments:  
1. Sentence “…and some well known…” line 93 is vague  
2. Statement “Deep proteomocs…” line 109 is vague and confusing  
3. Summary sentence (line 117) should be adjusted to reflect the findings of this manuscript… is it 
truly the deepest analysis?  
4. Claim “collectively, our comprehensive kinase…” is too strong. I believe this manuscript may 
represent a subtype of HGGs that have the two studied mutations and NOT all HGG tumors.  
 
 
 
 
Reviewer #3 ((phosphoproteomics, proteomics, genomics and cancer expert) (Remarks to the 
Author):  
 
The authors of this manuscript have used system biology approaches to study the proteome, 
phosphoproteome and transcriptome of HGG mouse models driven by mutant PDGFRA (D842V) or 
TPM3-NTRK1 fusion proteins. The mass spectrometry methods and data analysis pipelines used by 
the authors have generated deep HGG proteomics datasets and identified activation of multiple 
oncogenic pathways including PI3K-AKT signaling pathway. The manuscript is well-written and 
brings new insights to understanding the mechanisms of HGG development and progression. 
However, there are a few concerns that should be addressed before the manuscript is acceptable 
for publication:  
 
Major:  
1. In this study, authors used p53-/- astrocytes with overexpression of oncogenic PDFGRA 
(D842V) or TPM-NTRK1. Interestingly, TPM-NTRK1 overexpression can dramatically elevate 
PDFGRA expression which is even higher than cells with overexpression of PDGFRA (D842V) 
(figure 7a-b). However, in figure 1d, the authors showed that PDGFRA expression level is much 
higher in PDGFRA cells than in TPM-NTRK1 cells. The authors should address this discrepancy and 
provide peptide sequences used for the differential quantification.  
2. In addition to PDGFRA, the authors have demonstrated that several other RTKs were also 
upregulated in TPM-NTRK1 cells. This claim would be much more reinforced if the authors could 
show that HGG cell lines or clinical samples with endogenous TPM-NTRK1 mutations also have 
higher RTK expression than normal or tumors/cell lines with PDGFRA (D842V) mutation. Moreover, 
PDGFRA upregulation is one the key discoveries in this study. The authors should include the 
PDGFRA results in figure 8b and 8c-d panels.  
3. The authors have shown that mice xenografted with TPM-NTRK1 cells had significantly shorter 
survival times than mice with PDGFRA cells. Is this the same in human HGG? If yes, this should be 
included in the discussion.  
4. Activation of PI3K-AKT signaling pathway is a major discovery of the study. The authors could 
provide western blot evidence to confirm that AKT and downstream signaling molecules are indeed 
activated.  
5. The authors should provide information on whether the protein FDR and report ion 
interference/isolation interference were used for data analysis.  
 
Minor:  
1. Figure 3d-e: The authors should provide the color keys and more detailed description for sizes 
of the circles/nodes, as well as the edges.  



2. The resolution for figure 4b-c and figure S5a-b are too low. It is hard to tell some of the protein 
names. This should be fixed.  
3. In lines 108 and 110, the authors should provide more information to define what 84% is 
referring to?  
4. It is not clear what the three clusters represent (in Figure 4a and line 165).  
 
 
 
 
Reviewer #4 (cancer systems biology and machine learning expert) (Remarks to the Author):  
 
Overall Evaluation  
 
The authors provide a very interesting data set regarding mouse models of high-grade glioma 
(HGG) driven by two different transgenic receptor tyrosine kinase oncogenes. They present a high-
quality, high-coverage proteomic, phosphoproteomic, and transcriptomic data set together with 
standard analyses such as pathway-, kinase-, and transcription factor activity scoring and try to 
link the results of these. Their analyses point to AKT1 activity and an associated feedback loop to 
other RTKs as main determinant for oncogenic potency of HGG. AKT1 seems to be more active 
after NTRK1-induced oncogenesis than after PDGFRA, supported by the phenotypic response.  
 
However, the manuscripts more or less stop at the point where they could potentially uncover very 
interesting biological insights, in particular on what exactly determines the observed differences in 
the phosphoproteomic responses to the oncogenes NTRK1 and PDGFRA, since the general patterns 
of proteomic/phosphoproteomic/transcriptomic responses seem to be more or less similar, albeit 
not in strength.  
 
 
Major Comments  
 
1 The bioinformatics analysis. What the authors call “a novel bioinformatics pipeline,” feels a mixed 
set of arbitrarily chosen standard analyses. Different approaches come throughout the manuscript, 
and different choices are made, without explanation, and information is often lacking. Just a few 
examples:  
 
1.1. In line 195: “TF activities were derived from target gene expression in either transcriptome or 
clustered proteome (WP-Cs), resulting in two lists of 47 and 46 TFs”  
Why using proteome for TF activities, if TF what they do is to generate transcripts? proteome is 
generated from transcript, and therefore is affected also by pos-translational (and post-
transcriptional) processes.  
 
Furthermore, in line 262: “The TF activities were estimated by phosphorylation of active sites (Fig. 
7e) and the target gene expression (Fig. 5)” Why now is phosphorylation used, and not proteomics 
as in line 195?  
 
Also on TF scores, why ENCODE was used and not other resources?  
 
- Lines 209 et seq. describe the reconstruction of a kinase-TF network for HGG. This step is 
insufficiently explained, also taking into account the methods part. Specifically how do the authors 
integrate 'consistent co-activation patterns' with the prior knowledge? Why do they get a 
comparably small network?  
 
1.2. Kinase activities. Why using IKAP from multiple methods to compute kinase activities?  
And the kinase-substrate information from PhosphoSitePlus was used. Did the authors use only the 
mouse-specific interactions for computation of the kinase activities or did they also map human 



interactions to mouse proteins?  
Overall, how big was the overlap between prior knowledge and the data, i.e. how big were the 
different substrate sets? See also Supplemental Figure 6, lines 62/63: Also done for other 
kinases?  
 
1.3. The explanation of the pathway scoring method is not sufficient and should be expanded for 
better understanding. Additionally, how did they authors handle conflicts concerning Ci (the 
functional annotation of phosphosites)? How does their adapted method compare to other pathway 
scoring methods?  
 
1.4. Authors should provide the code of their analysis for transparency and reproducibility  
 
2. Differentially expressed phosphosites should be computed after correcting the phosphorylation 
data for the proteomic information since otherwise variations in the proteome will dominate the 
phosphosite information. If it was done, the text should be expanded to include this information, 
since neither from the main text nor the methods description, it becomes clear if the correction 
was performed.  
 
3. As mentioned above, the finding that AKT1 is differentially activated after NTRK1 compared to 
PDGFRA feels underwhelming as the main result of the paper but should rather be the starting 
point to uncover what drives and determines this difference, e.g. by diving into the details of the 
phosphoprofiles of the proteins transmitting the signal from the oncogene to AKT1.  
 
3.1. related to this, the authors found higher expression of RTKs after NTRK1-induced oncogenesis 
compared to PDGFRA. However, they did not comment on their signaling activity or their 
phosphorylation status, which could be considered more meaningful biologically and which should 
be already in the data they obtained.  
 
4. the reference back to human data at the end of the manuscript feels unconnected to the rest 
and does not add essential results. Also the rationale behind the multi-species analysis and how it 
was exactly done is not clear.  
 
 
 
Minor Comments  
 
- In line 65 et seq., the authors point out that the analysis of patient samples is complicated by 
the "paradigmatic inter- and intratumoral heterogeneity" of human surgical HGG specimens. While 
they address the issue of intertumoral heterogeneity by using the same cell lines for the later 
experiments, this must not necessarily be true for the subject of intratumoral heterogeneity, which 
is not further addressed in the manuscript.  
 
- Line 83: The authors should indicate already here that they used TMT labeling, not only in the 
methods part.  
 
- Figure 1b is not discussed in the main text  
 
- The information provided in lines 84 et seq. is a bit too technical for the main text and should be 
transferred into the methods part.  
 
- Details about the PCA analysis are missing in the methods part (did they use all 
proteins/phosphosites or how did they handle NA values).  
 
- Supplemental Figures 2 and 3 are mixed up. Furthermore, it should be indicated which 
correlation measure (Pearson, Spearman) was used.  



- Figure 4b,c and Supplemental Figure 5 are of very low resolution.

- In all panels of Figure 5, the "Cortex" column in the heat-maps is useless and superfluous, since
they show fold changes compared to the cortex condition. They should be removed.

- Figure 6d is more or less unnecessary, since the same is shown with Figure 6c and the numbers
are mentioned in the text.

- Line 253: the results are phrased confusedly, comparing to Figure 1d. Maybe better: "showed
higher PDGFRA wild type protein expression"

- Supplemental Figure 8 should show the data as fold changes or at least after log transformation

- What data does Figure 7c show? Gene expression or proteomic data?

- Figure 7d: why only EphA2? Did the authors did not try other RTKs or did it not work?

- Figures 7e and f can be condensed into one Figure for better visualization of the data.
Furthermore, the discussion of these in the main text (lines 260 et seq.) should be expanded in
order to better explain the approach. Why did the authors use MSigDB interactions and not -as
previously- Encode? Why did they compute the TF activities again if they had them computed
already in the previous section?

- Line 316: rate-limiting step?

- Line 321: mTOR was never mentioned in the manuscript before. The authors focused instead on
AKT1.

- Line 424: What was the number of permutations? Did the authors check the p-values for
convergence with the used number of permutations?



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This manuscript provides a general bioinformatics pipeline for identifying core signaling and 

master regulators in cancer proteomics. The authors take a few huge datasets from normal 

mouse brain, as well as from mouse models for two different high grade gliomas, dissecting 

whole proteome, phosphoproteome and transcriptomes, then describe systems biology 

approaches to identify functional modules master regulators, as well as using the resulting data, 

in comparison with human HGG transcriptome data to identify shared regulators. The 

methodology development here is impressive, and would be useful to researchers trying to work 

through similar large datasets. While no ground-breaking insights were made, the conclusions 

done through bioinformatic analyses were validated in biological systems.  

1. “The take home points, that NTRK mutation was a stronger activator of PDGFRA and of

AKT than PDGFRA mutation, is certainly interesting, and unexpected. a). Can this result (7

a and c) be validated by immunoblotting of mouse HGG tumors?

As the reviewer pointed out, we validated the PDGFRA expression using immunoblotting of 

mouse HGG tumors (Fig. 7b). Moreover, the expression of selected Epha2 and its 

phosphorylation were validated by western blotting as well (Fig. 7d). 

b) And by transfection of NTRK and PDGFRA mutation into indicator cells?

The cell-based system may be simpler than mouse models to dissect disease mechanisms. 

Our mouse models are not generated by regular transgenic methods, but with intracranially 

transplanted astrocytes expressing NTRK or PDGFRA mutants, the mouse models are 
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essentially an extension of a cell-based system. So we did not transfect NTRK and PDGFRA 

mutation into another indicator cells. 

c) Can the mechanism in Fig 7e be further delineated in cell-based systems as well?”

We performed a CRISPR-Cas9 screen with candidate mater regulator transcription factors

and showed that depleting Jun and Myc decreased growth of NTRK HGG cells. 

2. “The authors validate the importance of EPHA2 and CD74 by citing papers in which these are

already known to play roles in brain tumors, somewhat undermining the utility of their 

methodology to identify new insights. Can the authors analyze any of the more novel drivers 

identified to validate roles for these, and for CD74 in pediatric HGG?” 

We agree with the reviewer’s opinion. To validate the roles of novel master regulators identified 

through our multi-Omics integrative analysis, we spent about 1 year to establish cultures for 

primary NTRK1 mutation-driven HGG cells and to perform a functional genetic CRISPR-Cas9 

screening with a mini-gRNA library targeting for 9 master TFs and kinases, of which 5 master 

regulators are shown to be essential for the HGG viability, including master TFs (i.e. MYC and 

JUN) and key novel metabolic kinases (i.e. AMPK kinase subunits PRKAA1 and PRKAA2, and 

EEF2K), confirming the validity of the multi-Omics integrative approaches, and providing novel 

tumor vulnerabilities. 

We added one full section for these new data in the text: 

“CRISPR-Cas9 functional screening confirms the validity of the multi-Omics integrative 

approaches and identifies novel biological insights 

To examine if master regulators prioritized by the multi-Omics approaches are required 

for tumor survival, we first established the in vitro culture of HGG primary cells collected from 

NTRK-driven HGG mouse tumor tissues, and then designed a pooled mini-gRNA library for 

targeting these master regulators in a CRISPR-Cas9 analysis (Fig. 8a). We used a TransEDIT-

dual CRISPR-Cas9 system59, in which recombinant lentiviruses expressed dual gRNAs designed 

by a machine-learning approach to promote the functional ablation of genes (Fig. 8b). 6 non-

targeting gRNAs were included as negative controls (Supplementary data 4j). Systematic 

experimental optimizations were performed (Supplementary Fig. 9), for example, stable 

expression of Cas9 in the HGG cells was confirmed by immunoblotting (Fig. 8c); gRNA 

integration was validated by fluorescence detection of ZsG (Fig. 8d); relatively even distribution 

of each gRNA in the pooled library was confirmed by deep-sequencing before screening (Fig. 8e), 

and screening was performed in triplicate for reproducibility. 

We targeted two types of master regulators (kinases and TFs) during the CRISPR-Cas9 

screening, including 9 genes derived from transcriptome and proteome data (Fig. 8f), and we 

also targeted 6 genes identified by cross-species comparisons with mouse and human tumors, 

each with 6 different gRNAs (i.e. 3 different dual-gRNA constructs). Dropout analysis was 

conducted to identify the essential regulators responsible for tumor survival. If 2 out the 3 dual-
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gRNA counts were significantly decreased after selection for 15 days compared to those in 

starting populations, the targeted gene was regarded to be important for tumor viability. Under 

this cutoff, none of the negative control gRNAs were enriched. On the other hand, 56% (5 out of 

9) of the prioritized master regulators were shown to be critical for the HGG tumor growth.

Strikingly, all three kinases (i.e. PRKAA1, PRKAA2, and EEF2K) regulating cell metabolism were

found to contribute to HGG cell viability, providing a novel tumor vulnerability. Moreover, two TFs

(Jun and Myc) were demonstrated to be positive hits in the screening. Given that RTK-PI3K-AKT

induces a broad spectrum of downstream changes, pinpointing out Jun and Myc leads to valuable

insights on how RTK fusions induce HGG tumorigenesis. Thus, this CRISPR-Cas9 validation

screening unveils a novel tumor vulnerability of energy metabolism, and the involvement of Jun

and Myc in NTRK fusion induced tumorigenesis, together confirming the validity of the multi-

Omics integrative approach to discover master regulators.”
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Supp. Fig. 9
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In addition, we also performed CRISPR-Cas9 screening to target on 6 genes derived from 

mouse-human cross-species omics integration, of which CD93 was found to be critical for the 

growth of NTRK-driven HGG primary cells. One of the reasons regarding the rest of candidates 

that failed to be enriched from the screening would be the low cutting efficiency of all gRNAs 

against the same gene. We also discussed these results and current limitations of our cross-

species omics integration as follows: 

“CRISPR-Cas9 screening was also designed to target 6 genes (Cd93, Cd74, Epha2, Spry1, 

Arhgap18, and Dab2) prioritized through the cross-species omics data integration, and showed 

that Cd93 was critical for the growth of NTRK-driven HGG primary cells (Supplementary Fig. 

9d). Other candidates may have failed to be enriched from the screening because of low cutting 

efficiency of all gRNAs against the same gene. However, there were several limitations for our 

cross-species integration: (i) highly limited patient sample availability (i.e. only 8 patients with 

PDGFRA mutations and 3 patients with NTRK1 fusions) restricted the statistical power; (ii) large 

variations in the patients (e.g. tumor cells of origin, tumor growth environment, patient age and 

tumor grade) also confounded the data integration. Nevertheless, this approach would be useful 

for omics studies with large numbers of human samples.” 

Reviewer #2 (Remarks to the Author): 

“The manuscript entitled: “Deep Multi-omics of Brain Tumors Identifies Signaling networks 

downstream of cancer driver genes” Wang and colleagues have modified murine cells 

representing two major mutation classes represented by high grade gliomas (HGGs). Major 

modifications (which the authors induced) include PDGFRA (D842V) and TPM3-NTRK1. 

Induced cells are then orthotopically injected into mice brain to create allograft models of HGGs. 

Tumor specimen are procured and analyzed deep-omics as the authors refer to their method. 

The strength of the manuscript is the bioinformatics analysis and correlation of data across 

platforms (RNA, protein, phosphor protein, pathway analysis). However, the impact of the 

presented work is reduced based on the following critiques: “ 

Major comments: 

1. “The manuscript is mainly based on murine models generated by inducing murine

astrocytes to express mutations in genes encoding PDGFRa and NTRKs. The authors reasons

for not using human specimen is the presence of tumor heterogeneity and thus variation in

data analysis. I find it difficult to follow this rational for two reasons: a) clinically, if we are to

treat cancers, we will need to understand their true nature (heterogeneous in this case).

Artificially simplifying cancer biology will not help developing effective treatments.

We completely agree with the reviewer that understanding the heterogeneity of human HGGs is 

very important. Our study investigates the potential for an integrated proteomic and 
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phosphoproteomic approach to enhance our understanding of signaling within individual tumors. 

This is an important proof of principle for the use of such approaches for primary tumors. 

We clarified the rationale for the use of these models in the revised discussion on page 15-16: 

 “Recurrent mutations in the RTK/RAS/PI3K signaling axis occur frequently in virtually all adult 

glioblastomas, more than half of pediatric glioblastomas, and diverse other tumor types. While 

this implies that the PI3K pathway is an important therapeutic target, the response to small 

molecule inhibitors of the pathway is highly variable and often difficult to predict, likely due to 

varied consequences of specific mutations within the pathway, combinatorial effects with co-

occurring mutations, complex feedback regulation within the pathway and cross-talk with other 

signaling pathways. Using model systems can help to clarify the contributions of specific 

mutations by eliminating some of the intertumoral heterogeneity caused by differing 

combinations of other mutations. In the present study, we investigated the sensitivity of 

integrated analysis of multiple-omics datasets to identify shared downstream pathways and 

differences in signaling in HGGs driven by two different glioma-associated RTK mutations in the 

same p53-null primary astrocyte population.”  

Furthermore, use of the model system allowed us to use a CRISPR-Cas9 validation screening 

for 9 selected master TFs and kinases. 5 of these master regulators are shown to be crucial for 

the HGG viability, including master TFs (i.e. MYC and JUN) and key novel metabolic kinases 

(i.e. AMPK kinase subunits PRKAA1 and PRKAA2, and EEF2K), confirming the validity of the 

multi-Omics integrative approaches, and providing novel tumor vulnerabilities (see more details 

in the pages 2-5 above). 

b) if ‘contamination’ by heterogeneous cells is an issue, how are the authors accounting for

contamination for healthy normal mouse brain cells that are being analyzed.

We minimized the contribution of contaminating normal mouse cells by GFP-guided regional 

dissection as described in the methods on the revised manuscript page 19:  

“Dissection of the focal regions of GFP-labeled HGG tumors was aided by visualizing with a 

fluorescence dissecting microscope to maximize tumor purity and minimize contaminating 

normal mouse cells. Dissected tumor tissue was snap frozen for proteome and transcriptome 

analyses.” 

2. “Since the majority of the data depends on the mouse model, a thorough characterization of

the mouse model (histologically at least) is warranted. Is tumor a uniform mass? Is it infiltrating

etc?”

We added the following histological description on page 5 of the revised manuscript: 
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 “Both models generated HGGs with highly mitotic pleomorphic tumor cells, many with features 

of astrocytic differentiation. The HGGs grew as focal masses with clear areas of invasion into 

the surrounding parenchyma at the boundaries of the tumor17, 21." 

 

 

 

3. “The cells that are intracranially injected are induced to express mutant genes! How many 

copies of each mutant expressing plasmid is induced? Is this taken into account as far as 

protein expression and true representation of human tumors?” 

 

We added a new Supplementary Fig. 3c and 3d (Inserted below) to investigate this question. 

Normalized RNAseq data was used to compare the expression of the human NTRK1 (3c) 

or PDGFRA (3d) expression in mouse HGGs, control mouse cortex, or human HGGs from Wu 

et al, Nat Genet, 2014, categorized as HGGs carrying amplified wild-type PDGFRA, 

mutated PDGFRA, amplified and mutated PDGFRA, TPM3-TRK1 fusion gene, fusion genes 

involving NTRK2 or 3, or HGGs without mutation in PDGFRA or NTRK genes.  Expression of 

mouse orthologs for NTRK1 (3c) or PDGFRA (3d) are shown in red. Analysis of variant allele 

frequency from whole genome sequencing data showed that human tumors with TPM3-

NTRK1 fusion gene carried the fusion gene as a subclonal population comprising only 9-20% of 

the tumor cells.  Therefore, expression of the TPM3-NTRK1 from bulk tumor RNA is a 

significant underestimate of expression of the TPM3-NTRK1 fusion in human tumor cells.  

Mutant PDGFRA and TPM3-NTRK1 in the mouse HGGs are expressed at levels that are 

relevant to the expression of these mutated genes in human HGGs.  
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4. “The major distinction is that mutation in these genes do not constitute the major driver 

mutations for HGGs. The claim that this data represent true HGG biology should be toned 

down.” 

 

We apologize for the lack of clarity in our previous version. Activation of the RTK/Ras/PI3K 

pathway is a major driver, found in virtually all adult glioblastomas and the majority of pediatric 

HGGs. Many different mutations can activate this pathway in these tumors.  As now stated in 

the revised results on pages 10: 

 

 “Collectively, our comprehensive kinase activity analysis enables the identification of master 

kinases and the downstream outcomes of kinase activation in two HGG tumor models in which 

PI3K pathway activation is driven by different receptor tyrosine kinase mutations that are found 

in human HGG.” 

 

 

5. “The manuscript would truly benefit of a more thorough validation across human specimen 

either histologically, or by western etc.” 

 

We agree with the review’s comments. But human HGGs with PDGFRA mutations or NTRK 

fusions were not available for biochemical analysis. Instead, we performed a CRISPR-Cas9 

screening targeting on 6 genes derived from mouse-human cross-species omics integration. 

One gene (Cd93) was found to be critical for the growth of NTRK-driven HGG primary cells. We 

also discussed these results and current limitations of our cross-species omics integration (also 

see details in page 5-6 above). 

 

6. “Figure 3b, c, d, and e, are too general and not informative. What is the significant of these 

generic heatmaps?” 

 

We understand the concern of the reviewer that the heatmaps do not provide enough 

information on specific or individual proteins/phosphorylation. However, in the proteomics field, 

heatmaps are generally used to show the overall classification by global protein expression, 

representing a major step for quality control of proteomics datasets. For instance, the heatmaps 

were published in numerous high profile papers (Zhang H. et al, Cell. 2016; Mertins P. et al, 

Nature. 2016; Zhang B. et al, Nature. 2014, Tan H. et al. Immunity. 2017; Stewart E. et al. 

Cancer Cell. 2018). 

 

7. “Figure legends are not clear and do not reflect the generated data. For example, what are 

some of the elements indicated in Figure 3f? What is log10FDR representing? False discovery 

rate? And if so, why is the higher FDR the better (as it seems to be the case according to the 

heatmap).” 

 

We re-wrote the figure legends with more detailed explanation to clarify our analysis. 
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FDR represents false discovery rate in the panel f. However, “-log10 (FDR)” was the log 

transformation of the FDR, multiplied by “-1” to convert into a positive value. The higher the 

value of “-log10 (FDR)”, the lower the FDR. Similar figures have been published in other recent 

studies (e.g. Stewart E. et al., Cancer Cell. 2018; Tan H. et al., Immunity. 2017). 

 

Minor comments:  

 

1. “Sentence “…and some well known…” line 93 is vague”  

 

We re-wrote the sentence as “...  phosphorylation events by Western blotting as reported in our 

previous study31” 

 

2. “Statement “Deep proteomocs…” line 109 is vague and confusing”  

 

We removed the statement to avoid confusion. 

 

3. “Summary sentence (line 117) should be adjusted to reflect the findings of this manuscript… 

is it truly the deepest analysis?”  

 

It is the deepest analysis in a single-batch proteomics study in HGG to our knowledge, as we 

performed extensive fractionation and used long MS hours. To be conservative, we re-wrote the 

sentence as: “one of the deepest HGG proteomic datasets”.  

 

 

4. “Claim “collectively, our comprehensive kinase…” is too strong. I believe this manuscript may 

represent a subtype of HGGs that have the two studied mutations and NOT all HGG tumors.”  

 

We rewrote the sentence to specify the findings to the HGG subtypes we analyzed:  

“Collectively, our comprehensive kinase activity analysis enables the identification of master 

kinases and the downstream outcomes of kinase activation in two HGG tumor models in which 

PI3K pathway activation is driven by different receptor tyrosine kinase mutations that are found 

in human HGG.” (Revised manuscript Page 10). 

 

Reviewer #3 (Remarks to the Author):  

 

“The authors of this manuscript have used system biology approaches to study the proteome, 

phosphoproteome and transcriptome of HGG mouse models driven by mutant PDGFRA 

(D842V) or TPM3-NTRK1 fusion proteins. The mass spectrometry methods and data analysis 

pipelines used by the authors have generated deep HGG proteomics datasets and identified 

activation of multiple oncogenic pathways including PI3K-AKT signaling pathway. The 

manuscript is well-written and brings new insights to understanding the mechanisms of HGG 
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development and progression. However, there are a few concerns that should be addressed 

before the manuscript is acceptable for publication:” 

We appreciate this reviewer’s positive feedback. 

Major: 

1. “In this study, authors used p53-/- astrocytes with overexpression of oncogenic PDFGRA

(D842V) or TPM-NTRK1. Interestingly, TPM-NTRK1 overexpression can dramatically elevate

PDFGRA expression which is even higher than cells with overexpression of PDGFRA (D842V)

(figure 7a-b). However, in figure 1d, the authors showed that PDGFRA expression level is much

higher in PDGFRA cells than in TPM-NTRK1 cells. The authors should address this discrepancy

and provide peptide sequences used for the differential quantification.”

In the HGG models, we introduced a human version of the oncogenic PDGFRA (D842V) gene 

into mouse cells to generate HGG tumor. So we were able to quantify distinct peptides between 

human oncogenic PDGFRA and mouse wild type PDGFRA by MS. Figure 1d specifically 

quantified the mutated PDGFRA D842V, which we quantified by human-specific PDGFRA 

peptides, whereas Figure 7a was quantified by mouse-specific PDGFRA peptides to show that 

human NTRK fusion induced overexpression of mouse PDGFRA.  

We re-wrote the sentences and figure legends to specify that quantifications were done 

differently based on human and mouse unique amino acid sequences by MS for clarification. 

Unique peptides used for these quantifications were highlighted below: 
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PDGFRA human 

MGTSHPAFLVLGCLLTGLSLILCQLSLPSILPNENEKVVQLNSSFSLRCFGESEVSWQYP 60 

MSEEESSDVEIRNEENNSGLFVTVLEVSSASAAHTGLYTCYYNHTQTEENELEGRHIYIY 120 

VPDPDVAFVPLGMTDYLVIVEDDDSAIIPCRTTDPETPVTLHNSEGVVPASYDSRQGFNG 180 

TFTVGPYICEATVKGKKFQTIPFNVYALKATSELDLEMEALKTVYKSGETIVVTCAVFNN 240  197-223 

EVVDLQWTYPGEVKGKGITMLEEIKVPSIKLVYTLTVPEATVKDSGDYECAARQATREVK 300  270-284 

EMKKVTISVHEKGFIEIKPTFSQLEAVNLHEVKHFVVEVRAYPPPRISWLKNNLTLIENL 360  303-334 

TEITTDVEKIQEIRYRSKLKLIRAKEEDSGHYTIVAQNEDAVKSYTFELLTQVPSSILDL 420  385-435 

VDDHHGSTGGQTVRCTAEGTPLPDIEWMICKDIKKCNNETSWTILANNVSNIITEIHSRD 480 

RSTVEGRVTFAKVEETIAVRCLAKNLLGAENRELKLVAPTLRSELTVAAAVLVLLVIVII 540  492-501, 504-513, 515-524

SLIVLVVIWKQKPRYEIRWRVIESISPDGHEYIYVDPMQLPYDSRWEFPRDGLVLGRVLG 600  560-586 

SGAFGKVVEGTAYGLSRSQPVMKVAVKMLKPTARSSEKQALMSELKIMTHLGPHLNIVNL 660  606-618, 627-635, 638-646

LGACTKSGPIYIITEYCFYGDLVNYLHKNRDSFLSHHPEKPKKELDIFGLNPADESTRSY 720  703-720 

VILSFENNGDYMDMKQADTTQYVPMLERKEVSKYSDIQRSLYDRPASYKKKSMLDSEVKN 780  735-754, 759-780 

LLSDDNSEGLTLLDLLSFTYQVARGMEFLASKNCVHRDLAARNVLLAQGKIVKICDFGLA 840  804-813, 822-831 

RVIMHDSNYVSKGSTFLPVKWMAPESIFDNLYTTLSDVWSYGILLWEIFSLGGTPYPGMM 900  852-861 

VDSTFYNKIKSGYRMAKPDHATSEVYEIMVKCWNSEPEKRPSFYHLSEIVENLLPGQYKK 960  914-932, 939-960 

SYEKIHLDFLKSDHPAVARMRVDSDNAYIGVTYKNEEDKLKDWEGGLDEQRLSADSGYII 1020 964-972, 979-995 

PLPDIDPVPEEEDLGKRNRHSSQTSEESAIETGSSSSTFIKREDETIEDIDMMDDIGIDS 1080 
SDLVEDSFL 1089 (34%) 

PDGFRA mouse 

MGTSHQVFLVLSCLLTGPGLISCQLLLPSILPNENEKIVQLNSSFSLRCVGESEVSWQHP 60 

MSEEDDPNVEIRSEENNSGLFVTVLEVVNASAAHTGWYTCYYNHTQTDESEIEGRHIYIY 120 

VPDPDMAFVPLGMTDSLVIVEEDDSAIIPCRTTDPETQVTLHNNGRLVPASYDSRQGFNG 180  151-167 

TFSVGPYICEATVKGRTFKTSEFNVYALKATSELNLEMDARQTVYKAGETIVVTCAVFNN 240  199-222 

EVVDLQWTYPGEVRNKGITMLEEIKLPSIKLVYTLTVPKATVKDSGEYECAARQATKEVK 300  256-266, 270-280 

EMKRVTISVHEKGFVEIEPTFGQLEAVNLHEVREFVVEVQAYPTPRISWLKDNLTLIENL 360  304-347 

TEITTDVQKSQETRYQSKLKLIRAKEEDSGHYTIIVQNEDDVKSYTFELSTLVPASILDL 420  383-420 

VDDHHGSGGGQTVRCTAEGTPLPEIDWMICKHIKKCNNDTSWTVLASNVSNIITELPRRG 480  421-435 

RSTVEGRVSFAKVEETIAVRCLAKNNLSVVARELKLVAPTLRSELTVAAAVLVLLVIVIV 540  492-501, 515-523 

SLIVLVVIWKQKPRYEIRWRVIESISPDGHEYIYVDPMQLPYDSRWEFPRDGLVLGRILG 600  560-586, 590-600 

SGAFGKVVEGTAYGLSRSQPVMKVAVKMLKPTARSSEKQALMSELKIMTHLGPHLNIVNL 660  601-618, 627-635,638-647

LGACTKSGPIYIITEYCFYGDLVNYLHKNRDSFMSQHPEKPKKDLDIFGLNPADESTRSY 720  702-718 

VILSFENNGDYMDMKQADTTQYVPMLERKEVSKYSDIQRSLYDRPASYKKKSMLDSEVKN 780  735-754, 759-780 

LLSDDDSEGLTLLDLLSFTYQVARGMEFLASKNCVHRDLAARNVLLAQGKIVKICDFGLA 840  781-813, 822-831 

RDIMHDSNYVSKGSTFLPVKWMAPESIFDNLYTTLSDVWSYGILLWEIFSLGGTPYPGMM 900  852-861 

VDSTFYNKIKSGYRMAKPDHATSEVYEIMVQCWNSEPEKRPSFYHLSEIVENLLPGQYKK 960  939-960 

SYEKIHLDFLKSDHPAVARMRVDSDNAYIGVTYKNEEDKLKDWEGGLDEQRLSADSGYII 1020 964-972, 979-995 

PLPDIDPVPEEEDLGKRNRHSSQTSEESAIETGSSSSTFIKREDETIEDIDMMDDIGIDS 1080 

SDLVEDSFL 1089 (38%) 

Identified human PDGFRA sequence specific peptides: NNNNNNNN 

Identified mouse PDGFRA sequence specific peptides: NNNNNNNN 

Identified mouse and human PDGFRA shared sequence peptides: NNNNNNNN 
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2.1 “In addition to PDGFRA, the authors have demonstrated that several other RTKs were also 

upregulated in TPM-NTRK1 cells. This claim would be much more reinforced if the authors 

could show that HGG cell lines or clinical samples with endogenous TPM-NTRK1 mutations 

also have higher RTK expression than normal or tumors/cell lines with PDGFRA (D842V) 

mutation.” 

We agree with the reviewer’s comment, and we actually did RNAseq 

analysis on the human specimen and analyzed the RTK expression in 

human specimen at transcripts level. Out of these 5 RTKs in figure 7, we 

only observed significant overexpression of Epha2 in patients with NTRK 

fusions compare to PDGFRA mutations (Inserted figure). The human 

sample analysis is complicated by intertumoral variation in the other 

mutations that are present in the tumor in addition to PDGFRA or NTRK 

mutation, and also by potential differences in the tumor cells of origin or 

tumor growth environment, both of which could be influenced by patient 

age and tumor location. 

2.2 “Moreover, PDGFRA upregulation is one the key discoveries in this study. The authors 

should include the PDGFRA results in figure 8b and 8c-d panels.” 

Due to the limitations of human tumor specimens (described above), we did not observe 

statistically significant upregulation of PDGFRA in these human samples. 

3. “The authors have shown that mice xenografted with TPM-NTRK1 cells had significantly

shorter survival times than mice with PDGFRA cells. Is this the same in human HGG? If yes,

this should be included in the discussion.”

We examined the survival time of patient samples but did not identify statistical significance 

comparing HGGs with TPM-NTRK1 to HGGs without TPM-NTRK1. These fusion genes are 

enriched in HGGs from infants who have very low mutation burdens and longer survival 

compared to HGGs in older children. The relative contribution to survival time conferred by the 

NTRK fusion compared with the biological differences associated with tumor age and likely 

different cell of origin, as well as contributions of other mutations is not possible to assess with 

the small number of patient samples.   

4. “Activation of PI3K-AKT signaling pathway is a major discovery of the study. The authors

could provide western blot evidence to confirm that AKT and downstream signaling molecules

are indeed activated.”
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 The activation of PI3K-AKT signaling pathway has already been examined in our previous 

publications, shown here: 

Moreover, we spent substantial effort to validate other novel discoveries besides the PI3K-AKT 

pathway experimentally by establishing HGG primary cell cultures and CRISPR-Cas9 validation 

screening, confirming 5 master regulators to be crucial for the HGG viability, including master 

TFs (i.e. MYC and JUN) and key novel metabolic kinases (i.e. AMPK kinase subunits PRKAA1 

and PRKAA2, and EEF2K) (see more details in the pages 2-5 above). 

AKT pathway is active in PDGFRA D842V and other oncogenic PDGFRA mutations driven HGG tumors

a. western blot analysis of whole
cell lysates from tissues of wild-
type and mutant PDGFRα-driven
brain tumors. Lysates from normal
adult cortex (lanes N #1 and #2)
were included as controls. Signaling
pathway activation in PDGFRα-
driven murine HGGs was assayed
using the indicated antibodies.
PDGFRA D842V tumor is
highlighted with red arrow, Figure
adapted from Paugh B. Cancer Res.
2013

a.

AKT pathway is active in NTRK fusions driven HGG tumors

b.

b. Immunohistochemical analysis
showed expression of FLAG-tagged
NTRK fusion proteins, and elevated
phospho-Akt in TPM3-NTRK1 and
BTBD1-NTRK3 fusions driven tumor
relative to surrounding normal tissue.
Scale bar=50μm.
Figure adpted from Wu G. Nat.
Genet. 2014

Editorial Note: Panel b. (below) reprinted by permission from Springer Nature, Nature Genetics, The genomic 
landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma, Wu et al., Copyright 
2014 (doi: 10.1038/ng.2938)
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5. “The authors should provide information on whether the protein FDR and report ion 

interference/isolation interference were used for data analysis.” 

 

We did use stringent FDR calculation method for proteins and the description of it has now been 

added in main text as well as the method section. 

 

We understand that a caveat of the TMT method is that selected peptides are often 

contaminated by other co-eluting ions, leading to high noise signals to suppress quantitative 

ratios. The MS3 strategy has been developed to essentially eliminate this measurement 

inaccuracy, but requires more duty cycles with specific instruments with low resolution MS2 data 

for identification, which could influence peptide/protein identification. We recognized that the 

ratio suppression also affects experimental variations, and we did comparison of our MS2 based 

methods with MS3 based TMT methods analyzing the same sample, and demonstrated that 

quantitative ratio suppression has only a minor impact on statistical analysis (Supplementary 

Figure 10, inserted below). Moreover, the ratio suppression can be largely reduced by 

extensive sample fractionation, appropriate MS setting (e.g. narrow isolation window), and 

computer-assisted correction. To address the report ion interference issue in this study, we 

developed extensive fractionation by long gradient high resolution LC/LC-MS/MS to achieve 

deep proteome coverage and decrease ion suppression during quantification. In addition, we 

implemented y1-ion based noise detection and ratio correction to reduce ratio suppression (Niu 

M. et al, Analytical Chemistry. 2017). 

 

  

 

MS2

MS3

Fold change distribution and Z-value transformed distribution of MS2 and MS3 based peptide quantification 
comparing NTRK-driven HGG to Cortex using TMT labeling.
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Minor: 

1. “Figure 3d-e: The authors should provide the color keys and more detailed description for

sizes of the circles/nodes, as well as the edges.”

We appreciate the reviewer’s comments and added more detailed description for the color, 

nodes and edges in the figure legend.  

2. “The resolution for figure 4b-c and figure S5a-b are too low. It is hard to tell some of the

protein names. This should be fixed.”

We provide high resolution images now. 

3. “In lines 108 and 110, the authors should provide more information to define what 84% is

referring to?”

We added more explanation for the 84% in line 108 for clarification and removed line 110 to 

avoid confusion. The sentence is now re-written as: 

“We firstly applied a cutoff of FPKM >1 for the transcriptome to filter out low quality data. In 

12,842 accepted transcripts, 10,838 (84%) corresponding proteins were mapped by MS.” 

4. “It is not clear what the three clusters represent (in Figure 4a and line 165).”

More detailed description on what the three clusters represent has been specified: 

“Hierarchical clustering analysis classified these kinase activities into multiple major clusters 

(Fig. 4a), resembling 3 major differential regulation patterns among cortex, PDGFRA, and NTRK 

HGGs in Figure 3c (i.e. PP-C1, PP-C2, PP-C5).” 

Reviewer #4 (Remarks to the Author): 

Overall Evaluation 

“The authors provide a very interesting data set regarding mouse models of high-grade glioma 

(HGG) driven by two different transgenic receptor tyrosine kinase oncogenes. They present a 

high-quality, high-coverage proteomic, phosphoproteomic, and transcriptomic data set together 

with standard analyses such as pathway-, kinase-, and transcription factor activity scoring and 

try to link the results of these. Their analyses point to AKT1 activity and an associated feedback 

loop to other RTKs as main determinant for oncogenic potency of HGG. AKT1 seems to be 

more active after NTRK1-induced oncogenesis than after PDGFRA, supported by the 

phenotypic response. 
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However, the manuscripts more or less stop at the point where they could potentially uncover 

very interesting biological insights, in particular on what exactly determines the observed 

differences in the phosphoproteomic responses to the oncogenes NTRK1 and PDGFRA, since 

the general patterns of proteomic/phosphoproteomic/transcriptomic responses seem to be more 

or less similar, albeit not in strength.” 

 

Major Comments  

 

1 “The bioinformatics analysis. What the authors call “a novel bioinformatics pipeline,” feels a 

mixed set of arbitrarily chosen standard analyses. Different approaches come throughout the 

manuscript, and different choices are made, without explanation, and information is often 

lacking. Just a few examples:”  

 

We agree that individual computational programs may not be novel, but it is the first time to 

integrate these programs for identifying potential cancer master regulators, using deep omics 

datasets. We now change “novel bioinformatics pipeline” into “integrated bioinformatics 

pipeline”. 

 

1.1.1 “In line 195: “TF activities were derived from target gene expression in either 

transcriptome or clustered proteome (WP-Cs), resulting in two lists of 47 and 46 TFs” 

Why using proteome for TF activities, if TF what they do is to generate transcripts? proteome is 

generated from transcript, and therefore is affected also by pos-translational (and post-

transcriptional) processes.”  

 

We agree with the reviewer’s opinion on the biological gap between transcriptional regulation 

and protein level, thus we removed proteome data from TF activity analysis and re-analyzed the 

data. A new Figure 5 and corresponding main text and method were also re-written in the 

revised manuscript.  

 

1.1.2 “Furthermore, in line 262: “The TF activities were estimated by phosphorylation of active 

sites (Fig. 7e) and the target gene expression (Fig. 5)” Why now is phosphorylation used, and 

not proteomics as in line 195?” 

 

 

DE 
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derived TF activity
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23 activity-
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Kinase-TF 
network

Integration with
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We now re-visit the analysis using both whole proteome and phosphoproteome datasets for the 

TF analysis. The pipeline (in Fig. 7) is similar to that used in Fig. 5. Now Fig. 7 is revised (see 

page 1 above). 

1.1.3 “Also on TF scores, why ENCODE was used and not other resources?” 

ENCODE database contains only experimentally validated results, and is therefore the most 

stringent database to our knowledge. We then used the ENCODE for TF scores. 

1.1.4 “- Lines 209 et seq. describe the reconstruction of a kinase-TF network for HGG. This step 

is insufficiently explained, also taking into account the methods part. Specifically how do the 

authors integrate 'consistent co-activation patterns' with the prior knowledge? Why do they get a 

comparably small network?” 

We added more details on the method section on how the analysis was performed: 

“Finally, to construct a putative kinase-TF network in HGG, we incorporated the relationships of 

kinase-substrate and TF-target from PhosphoSitePlus and Encode databases, respectively, and 

manually accepted kinase-TF networks with consistent co-activation patterns across different 

samples. For instance, AKT1 kinase showed different activity levels in three samples in an order 

of NTRK > PDGFRA > Cortex. The AKT1 is known to phosphorylate Brca1 at S686 residue. 

The phosphorylated level of S686 also followed 

an order of NTRK > PDGFRA > Cortex. 

Furthermore, Brca1-depenent transcripts were 

also elevated in an order of NTRK > PDGFRA > 

Cortex. Thus, we accepted the AKT1-Brca1 

network.” 

We appreciate that the reviewer recognized the 

change of network size. We simply reduced the 

size by avoiding repetition with the previous 

figure, but it is not accurate. Now we re-organize 

the figure and explain in the figure legend 

“Kinases that do not have direct connections 

with downstream TFs were not shown to avoid 

redundancy with the previous figure” (see left). 

1.2. “Kinase activities. Why using IKAP from multiple methods to compute kinase activities? 

And the kinase-substrate information from PhosphoSitePlus was used. Did the authors use only 

the mouse-specific interactions for computation of the kinase activities or did they also map 

human interactions to mouse proteins?” 

RTK cancer drivers: 
TPM3-NTRK1 or PDGFRA (D842V)
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1.2.1 “Why IKAP?” 

IKAP can model the relationship of multiple kinase acting on a single substrate, while other 

available methods (e.g. KSEA) only assume a one-to-one kinase-substrate relationship. Thus 

we selected IKAP for our kinase activity modeling, as it mimics the complex kinase-substrate 

relationship in biology. 

1.2.2 “Why PhosphoSitePlus database?” 

To our knowledge, PhosphoSitePlus is currently the most comprehensive, freely available 

phosphoproteome database with the highest coverage of kinase-to-substrate information. 

1.2.3 “only the mouse-specific interactions for computation of the kinase activities or did they 

also map human interactions to mouse proteins?” 

Yes, we aligned the conserved phosphosites in rat, mouse and human proteomes, and used all 

possible information for the analysis.  

1.2.4 “Overall, how big was the overlap between prior knowledge and the data, i.e. how big 

were the different substrate sets? See also Supplemental Figure 6, lines 62/63: Also done for 

other kinases?” 

We performed the same analysis in Supp. Fig. 6 for other kinases in lines 62/63 (Supp. Fig. 7) 

now. Results are summarized in below table, overall, the overlap between prior knowledge and 

the data ranges from 52.6% to 83.3%, with a mean value of 67.8%. 

1.3. “The explanation of the pathway scoring method is not sufficient and should be expanded 

for better understanding. Additionally, how did they authors handle conflicts concerning Ci (the 

Kinase % Overlap % different 
AKT1 69.4 30.6 

PRKAA1 72.7 27.3 

CDK5 55.0 45.0 

MAPK3 62.5 37.5 

ATR 75.0 25.0 

ATM 71.4 28.6 

PAK1 52.6 47.4 

FYN 83.3 16.7 
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functional annotation of phosphosites)? How does their adapted method compare to other 

pathway scoring methods?” 

1. We added more detailed explanation of the pathway in the method section now as below.

“ a(P) = ∑ 𝐶𝑖 ∗ 𝐹𝑖/√𝑘𝑘
𝑖=1

In which K is the number of proteins with different activity relative to normal cortex samples, only 

PI3K-AKT pathway proteins with annotated functional phosphosites changes were accepted; 𝐹𝑖 

is the averaged log2 fold change of DE phosphosites in protein𝑖; 𝐶𝑖 is the functional annotation 

of the phosphorylation events from PhosphoSitePlus database. If the phosphorylation at a 

specific residue is reported to play a positive role in tumorigenesis, 𝐶𝑖 is +1; if a negative role, 

𝐶𝑖 is -1, phosphosites with conflict functional annotations in the database were not considered in 

the analysis. Bootstrap was performed with 10,000 replications to determine statistical 

significance: 22 PI3K-AKT pathway 𝐹𝑖 values were simulated by drawing from the 𝐹𝑖 values of 

all quantified phosphoryaltion events, Ci annotations were feeded to each of these simulated 

data points to calculate a (P). This process was repeated 10,000 times. Finally P value were 

calculated as the sum(a(P) > 1.45) /10,000.” 

2. We manually examined the annotations of Ci first and simply discard the Cis with conflicts of

functions.

3. There is no available method designed for pathway scoring using only phosphorylation

events with known functional annotations before our method, not to say, considering the

directionality of phosphorylation (Ci). Most of other tools use protein or transcript level to

analysis pathway activity, which fail to capture real cell biology because signaling transductions

are mainly accomplished through protein phosphorylation rather than protein/transcript level

change. Our method is clearly superior to these methods in this case because the

protein/transcript level of the PI3K-AKT pathway components barely changed in our data set.

Nevertheless, the power of our method may be limited in cases where the pathways are

regulated by protein/transcript changes or in cases with low known phosphorylation events

identified.

1.4. “Authors should provide the code of their analysis for transparency and reproducibility.” 

The codes for proteomics and other analyses that we adapted from others are listed below: 

https://www.stjuderesearch.org/site/lab/peng 

https://bioconductor.org/packages/release/bioc/html/limma.html 

https://cran.r-project.org/web/packages/WGCNA/index.html 

https://ieeexplore.ieee.org/document/1565762 

https://omictools.com/ikap-tool 
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2. “Differentially expressed phosphosites should be computed after correcting the 

phosphorylation data for the proteomic information since otherwise variations in the proteome 

will dominate the phosphosite information. If it was done, the text should be expanded to include 

this information, since neither from the main text nor the methods description, it becomes clear if 

the correction was performed.” 

 

Yes, we performed the whole proteome data normalization for kinase activity analysis because 

the kinase activity should be a direct measure of the signal contributed by the phosphorylation 

status. 

However, for the pathway enrichment, we did not normalize it to whole proteome because the 

protein quantity is also an integral part of the measured pathway activity.  

 

Regardless, we did not find significant differences between the normalized vs un-normalized 

phosphorylation results as the correlation shown below: 

 

We further added both normalized data and data without normalization in the Supplementary 

data 2a, 2b in the revised version for reference. 

 

  

3.1 “As mentioned above, the finding that AKT1 is differentially activated after NTRK1 compared 

to PDGFRA feels underwhelming as the main result of the paper but should rather be the 

starting point to uncover what drives and determines this difference, e.g. by diving into the 

details of the phosphoprofiles of the proteins transmitting the signal from the oncogene to 

AKT1.” 
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We agree with the reviewer that we should go steps further to find new biological insights 

beyond RTK oncogene activating AKT, and we decided to explore the role of other novel master 

identified upon the induction of RTK oncogene through our multi-Omics integrative analysis. 

We spent about 1 year to establish cultures for primary NTRK1 mutation-driven HGG cells and 

to perform a mini gRNA library CRISPR-Cas9 functional genetic screening for 9 master TFs and 

kinases (Fig. 8, Supp. Fig. 9, see page 2-5 above). 5 of these master regulators are shown to 

be crucial for the HGG tumor cell viability, including master TFs (i.e. MYC and JUN) and key 

novel metabolic kinases (i.e. AMPK kinase subunits PRKAA1 and PRKAA2, and EEF2K), 

confirming the validity of the multi-Omics integrative approaches, and providing novel tumor 

vulnerabilities. 

We added one full section for these new data in the text: 

“CRISPR-Cas9 functional screening confirms the validity of the multi-Omics integrative 

approaches and identifies novel biological insights 

To examine if master regulators prioritized by the multi-Omics approaches are required 

for tumor survival, we first established the in vitro culture of HGG primary cells collected from 

NTRK-driven HGG mouse tumor tissues, and then designed a pooled mini-gRNA library for 

targeting these master regulators in a CRISPR-Cas9 analysis (Fig. 8a). We used a TransEDIT-

dual CRISPR-Cas9 system59, in which recombinant lentiviruses expressed dual gRNAs designed 

by a machine-learning approach to promote the functional ablation of genes (Fig. 8b). 6 non-

targeting gRNAs were included as negative controls (Supplementary data 4j). Systematic 

experimental optimizations were performed (Supplementary Fig. 9), for example, stable 

expression of Cas9 in the HGG cells was confirmed by immunoblotting (Fig. 8c); gRNA 

integration was validated by fluorescence detection of ZsG (Fig. 8d); relatively even distribution 

of each gRNA in the pooled library was confirmed by deep-sequencing before screening (Fig. 8e), 

and screening was performed in triplicate for reproducibility. 

We targeted two types of master regulators (kinases and TFs) during the CRISPR-Cas9 

screening, including 9 genes derived from transcriptome and proteome data (Fig. 8f), and we 

also targeted 6 genes identified by cross-species comparisons with mouse and human tumors, 

each with 6 different gRNAs (i.e. 3 different dual-gRNA constructs). Dropout analysis was 

conducted to identify the essential regulators responsible for tumor survival. If 2 out the 3 dual-

gRNA counts were significantly decreased after selection for 15 days compared to those in 

starting populations, the targeted gene was regarded to be important for tumor viability. Under 

this cutoff, none of the negative control gRNAs were enriched. On the other hand, 56% (5 out of 

9) of the prioritized master regulators were shown to be critical for the HGG tumor growth.

Strikingly, all three kinases (i.e. PRKAA1, PRKAA2, and EEF2K) regulating cell metabolism were

found to contribute to HGG cell viability, providing a novel tumor vulnerability. Moreover, two TFs

(Jun and Myc) were demonstrated to be positive hits in the screening. Given that RTK-PI3K-AKT

induces a broad spectrum of downstream changes, pinpointing out Jun and Myc leads to valuable

insights on how RTK fusions induce HGG tumorigenesis. Thus, this CRISPR-Cas9 screening

unveils a novel tumor vulnerability of energy metabolism, and the involvement of Jun and Myc in
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NTRK fusion induced tumorigenesis, together confirming the validity of the multi-Omics integrative 

approach to discover master regulators.” 

3.2 “related to this, the authors found higher expression of RTKs after NTRK1-induced 

oncogenesis compared to PDGFRA. However, they did not comment on their signaling activity 

or their phosphorylation status, which could be considered more meaningful biologically and 

which should be already in the data they obtained.” 

We evaluated the signaling activity of NTRK1-induced oncogenesis compared to PDGFRA. It is 

clear that NTRK1 induced higher signaling activity compare to PDGFRA. Result is shown in Fig. 

6b (See below):  

We also evaluated the phosphorylation levels of RTKs, NTRK fusion induced higher 

phosphorylation of RTKs compare to PDGFRA mutation (See below: Differential 

phosphorylation of RTKs comparing NTRK to PDGFRA HGGs) 

4. “the reference back to human data at the end of the manuscript feels unconnected to the rest

and does not add essential results. Also the rationale behind the multi-species analysis and how

it was exactly done is not clear.”
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We agree with the reviewer that there is a disconnection at the end of the manuscript, thus 

decided to remove it from the end of the manuscript, instead we added it under the section 

“multiple-omics integration identifies master regulators (kinases and TFs)” as a sub-section. The 

corresponding main figure is also moved to the supplementary.  We further discussed the 

rationales and limitations of it in the discussion section and added more details in the method 

section to clarify how it was done. 

Minor Comments 

1. “- In line 65 et seq., the authors point out that the analysis of patient samples is complicated

by the "paradigmatic inter- and intratumoral heterogeneity" of human surgical HGG specimens.

While they address the issue of intertumoral heterogeneity by using the same cell lines for the

later experiments, this must not necessarily be true for the subject of intratumoral heterogeneity,

which is not further addressed in the manuscript.”

We agree with the reviewer and we remove the sentence in the main text. 

2. “- Line 83: The authors should indicate already here that they used TMT labeling, not only in

the methods part.”

As the reviewer suggested, we edited the sentence in Line 83 as: 

 “Tandem Mass Tag (TMT) labelling was used to enable massively parallel proteome and 

phosphoproteome quantification of ten samples (Fig. 1c)”.  

3. “- Figure 1b is not discussed in the main text”

Figure 1b was actually discussed in the main text as “Fig. 1a, b, referred to as PDGFRA HGG 

and NTRK HGG, respectively”. We re-wrote the text as “Fig. 1a, 1b …” for clarification 

4. “- The information provided in lines 84 et seq. is a bit too technical for the main text and

should be transferred into the methods part.”

We removed the technical description in line 84 et seq as the reviewer suggested. 

5. “- Details about the PCA analysis are missing in the methods part (did they use all

proteins/phosphosites or how did they handle NA values).”
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PCA analyses were performed on all quantified proteins/phosphosites, and missing values were 

filtered out during the proteins/phosphosites quantification analyses before PCA analysis, so 

was not used in PCA analysis.  

 

We added more details in the method section for clarification as:  

“All quantified proteins and phosphopeptides were applied for the analyses. Missing values 

were filtered out during protein/phosphopeptide quantification, thus were not considered in PCA 

and hierarchical clustering analyses”. 

 

 

6. “- Supplemental Figures 2 and 3 are mixed up. Furthermore, it should be indicated which 

correlation measure (Pearson, Spearman) was used.”  

 

We appreciate the reviewer’s comments, and supplemental Figures 2 and 3 are in the right 

order now.  

We used Pearson correlation and it is now specified in the supplemental figure legend.  

 

 

7. “- Figure 4b,c and Supplemental Figure 5 are of very low resolution.” 

 

We provided high resolution images now. 

 

8. “- In all panels of Figure 5, the "Cortex" column in the heat-maps is useless and superfluous, 

since they show fold changes compared to the cortex condition. They should be removed.”  

 

We appreciate the reviewer’s comments, and removed the “Cortex” columns in Figure 5 as the 

reviewer suggested. 

 

 

9. “- Figure 6d is more or less unnecessary, since the same is shown with Figure 6c and the 

numbers are mentioned in the text.”  

 

Figure 6d is removed now. 

 

 

10. “- Line 253: the results are phrased confusedly, comparing to Figure 1d. Maybe better: 

"showed higher PDGFRA wild type protein expression"  

 

We appreciate the reviewer’s great suggestion and re-wrote the sentence as "showed higher 

PDGFRA wild type protein expression" 
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11. “- Supplemental Figure 8 should show the data as fold changes or at least after log

transformation”

We agree with the reviewer, since the data is already in supplementary table 3 and in the main 

text, we realized it is redundant to show it in the supplemental figure thus removed it. 

12. “- What data does Figure 7c show? Gene expression or proteomic data?”

Figure 7c shows proteomic data. We re-wrote the sentence to “Many other RTKs (EphA2, 

EGFR, FLT4, PTK7 and ROR2) also showed higher protein expression in NTRK HGG than 

PDGFRA HGG (Fig. 7c).” 

12. “- Figure 7d: why only EphA2? Did the authors did not try other RTKs or did it not work?”

We only tested Epha2 as a representative because the quantitative accuracy of our

proteomics pipeline has already been demonstrated in many figures and well established in 

numerous other publications, thus we are confident the MS quantification of the rest of RTKs 

should be accurate as well. 

 Western blotting has confirmed 5 MS quantifications in supplementary Figure 1, and two 

more quantifications on PDGFRA in Figure 7b, MYC protein expression and phosphorylation on 

Figure 7f in the manuscript. These results all confirm the quantitative accuracy of the proteomics 

data. Moreover, the reliability of our proteomics pipeline has already been proved in numerous 

projects: Yang X. Nat. Neurosci. 2018;  Shi H. Immunity. 2018;  Cheng Y. Nat. Neurosci. 2018; 

Stewart E. Cancer Cell. 2018;  Wang Z. Nature. 2018;  Du X. Nature. 2018;  Tan H. Immunity. 

2018;  Gong J. Cell. 2016;  Lee KH. Cell. 2016. 

13. “- Furthermore, the discussion of these in the main text (lines 260 et seq.) should be

expanded in order to better explain the approach. Why did the authors use MSigDB interactions

and not -as previously- Encode? Why did they compute the TF activities again if they had them

computed already in the previous section?”

We appreciate the reviewer’s comments, and re-performed the TF analysis use both Encode 

and MsigDB for clarification.  

We did not compute the TF activity again here. The sentence was re-written for clarification. 
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“We searched ENCODE and MsigDB databases to identify TFs that regulate the RTK 

transcription and validated TF activities by their protein levels or phosphorylation states (Fig. 

7e).” 

14. “- Line 316: rate-limiting step?”

We removed this description to avoid confusion. 

15. “- Line 321: mTOR was never mentioned in the manuscript before. The authors focused

instead on AKT1.”

Our phosphorylation profiling failed to identify known mTOR active site, but we observed 

activation of other mTORC components and downstream targets (e.g. 4EBP1, PRAS40, S6K), 

suggesting it is active.  

The reason we focus on AKT instead is because:  

a. AKT is the major hub of deregulated PI3K-AKT signaling in our datasets

b. AKT is more often selected to represent the activation of PI3K-AKT pathway in glioma

studies.

16. “- Line 424: What was the number of permutations? Did the authors check the p-values for

convergence with the used number of permutations?”

We permutated the columns of the expression matrix for 1000 times and then used it as null 

distribution to estimate the ANOVA p values for each protein following the Storey’s procedure 

(J.D. Storey et al. PNAS. 2003). 

To check the convergence of the p-values, we repeated the above procedure for 10 times, and 

estimated the standard deviation (SD) of p value estimation for each protein (See Figure 

below). The estimation is very accurate as shown by the SD distribution, with the median of 
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0.0017, and 95% quantile of 0.015, highlighting the accuracy and convergence of the estimation 

process. 

 

 

  

 

We revised our method to better clarify the process: 

 

“The analysis was performed by ANOVA-based comparison of cortex, NTRK HGG, and 

PDGFRA HGG with P values estimated by permutation (1000 times) following Storey’s 

procedure and then adjusted by the Benjamin Hochberg method.” 

Standard deviation (SD) distribution of estimated p values by 
permutation. For each protein, SD is calculated by 10 times of p value 
estimation. 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
Revised manuscript addresses issues raised in prior review  
 
 
Reviewer #2 (Remarks to the Author):  
 
The manuscript by Wang and colleagues provides multi-platform analysis of tumor specimen to 
map the cancer signaling pathways. The authors have incorporated major revisions in response to 
reviewers’ critiques. As a result, the manuscript quality and clarity has enhanced.  
However, there are few remaining issues that will require author’s attention/response.  
1. I am not sure how feasible is to dissect “the focal regions of GFP-labeled HGG tumors was aided 
by visualizing with a fluorescence dissecting microscope.” I agree with reviewer 1 and that the 
authors must take into account the potential for tumor/normal contamination.  
 
2. References are not updated in the revised manuscript  
 
3. Figure 3b, c, and d could be moved to supplemental figures.  
 
4. Please expand the text to include FDR assessments as you described to reviewer #2, comment 
7.  
5. For proteomics analysis, the authors state that: “we were able to quantify distinct peptides 
between human oncogenic PDGFRA and mouse wild type PDGFRA by MS. Figure 1d specifically 
quantified the mutated PDGFRA D842V, which we quantified by human-specific PDGFRA peptides, 
whereas Figure 7a was quantified by mouse-specific PDGFRA peptides to show that human NTRK 
fusion induced overexpression of mouse PDGFRA.”  
Human and mouse protein sequences are 92% homologous and thus It seems very challenging to 
distinguish between the tryptic peptides specific to mouse or human. The homology map 
presented by authors is not accurate. For example, only few peptides seem to be specific to mice 
OR human post tryptic digestion (e.g. RTTDPETQVTLHNNGRL)  
 
However, a simple alignment of two protein sequences shows that some of the highlighted 
peptides (Authors response to reviewer #3) are indeed 100% homologous between the two 
species (e.g. KGITMLEEIK and KVTISVHEK) post tryptic digestion. Thus, it is not clear how many 
of the uniquely human and mouse peptides were identified? Was mas spectral analysis validated 
(e.g. by manual inspection for at least a few of the peptides) to ensure that the assignment of 
peptide to human or mouse (by automatic/software) were valid (for example, how were the 100% 
homologous peptides were assigned? Were these taken into account for quantification?  
 
6. A validation of endogenous RTK over expression in human samples with TPN-NTRK1 mutations 
would be very informative. This point was also raised by reviewer #3, but was not adequately 
addressed.  
 
 
 
 
Reviewer #3 (Remarks to the Author):  
 
The revised version of the manuscript is greatly improved. All of the concerns raised by me have 
been addressed. I believe that the manuscript, in its current form, is a significant contribution to 
the field.  
 
Akhilesh Pandey  



Reviewer #4 (Remarks to the Author):  
 
Overall:  
The authors provided a significantly improved manuscript and adequately addressed many of the 
points raised during the last round of revisions. Especially the experimental validation by their 
gRNA screening adds a new quality to the work.  
 
Some improvements/questions remain:  
 
Major point:  
- The authors end their discussion with “this integrated bioinformatics pipeline provides a general 
platform...”. To follow up on this claim of a “general platform”, the authors should provide all their 
code (for example in a dedicated Github repository or on Bitbucket), not just the identifiers of the 
tools they used, otherwise this claim is not justified.  
Furthermore, even if the authors remove the claim, the code must be provided for transparency 
and reproducibility of their work.  
 
Minor points:  
- Discussion is very much a summary and only in parts a placement of their results in the field. A 
more extensive relationship to existing work will be most welcome.  
 
- The argument to use ENCODE “ENCODE database contains only experimentally validated results, 
and is therefore the most stringent database to our knowledge. We then used the ENCODE for TF 
scores.” is not quite true. There are many resources. For example, ReMAp includes ENCODE and 
many others. There are also curated, such as TTRUST, and integration of resources, such as 
DOROTHEA and CHEA. At this point we would not ask to rerun the analyses, though.  
 
- Generally, throughout the manuscript there remain a few issues the authors should try to 
address. These involve  
reporting exact P values instead of “P value < 0.01”,  
referring to FDR-corrected P values as q-values instead of as “FDR” (for example, the legend in 
Figure 5b reads “-log10(FDR)” but should instead read “-log10(q-value)”, or p 3 l 60 should read 
“...phosphosites at an FDR of 1%...”)  
and lastly providing more verbose and detailed figure legends. (For example, the figure legend for 
Figure 2b lacks the information which clustering methods was used, which distance was used for 
clustering, how the data were normalized or transformed before the analysis, and what message 
the figure should actually show.)  
 
- Some of the figure panels are basic quality control plots (2def, 8b-e) and are not necessarily 
required to be part of the main manuscript. Instead, these plots could go into the supplement, 
followed by some reorganization of the figures; that is, panels e and f in Figure 1 and a and b in 
Figure 2 could be grouped together.  
p 22 l 468 should be that start of a new section, at least of a new paragraph  
p 15 l 311-314, why did the authors include transcriptomic in their study if it is unnecessary? It 
would maybe be good to have another introduction into the discussion.  
p 11 ll 219-230, why did the authors change from 6 TFs to 5 TFs for which they investigated 
targets sites? Did they not find any genes downstream of CEBP? If so, they should at least 
mention that.  
p 9 l 188, the wording of “34 AKT substrates (70% of DE substrates)” is ambiguous. Did the 
authors mean that 70 of AKT substrates were differentially regulated? Or that of these 34 
substrates, 70% were differentially regulated? It somehow cannot be the case that 34 AKT 
substrates are 70% of the more than 6000 DE phosphosites.  
p 22: it remains unclear how exactly the authors performed “whole protein normalization”. The 
authors should provide more methodological details here.  



Reviewers' comments:  

Reviewer #1 (Remarks to the Author): 

Revised manuscript addresses issues raised in prior review. 

We thank the reviewer for the positive comments. 

Reviewer #2 (Remarks to the Author):  

The manuscript by Wang and colleagues provides multi-platform analysis of tumor specimen to 

map the cancer signaling pathways. The authors have incorporated major revisions in response 

to reviewers’ critiques. As a result, the manuscript quality and clarity has enhanced.  

However, there are few remaining issues that will require author’s attention/response. 

1. I am not sure how feasible is to dissect “the focal regions of GFP-labeled HGG tumors was

aided by visualizing with a fluorescence dissecting microscope.” I agree with reviewer 1 and that

the authors must take into account the potential for tumor/normal contamination.

We agree that there will always be some degree of contamination of non-tumor cells in diffuse 

glioma samples from human patients, or from mouse models, because of the diffuse growth 

properties of this disease. We did not mean to imply that dissection with the aid of a 

fluorescence dissecting scope excludes normal cells, it simply helps to identify optimal regions 

of highest tumor cell concentration with greater clarity than by unaided visualization. We 

accounted for noise introduced by variable amounts of contaminating normal tissue between 

samples by analysis of multiple replicates from tumors established from NTRK fusion or 

PDGFRA activation. Using this approach, we were able to focus on reproducible differences 

easily distinguished by possible low-level noise that may be introduced by contaminating normal 

cells. As detailed in lines 100-106: “Principal component analyses and hierarchical clustering 

analyses revealed that the two RTK oncogenes drive distinct proteome, phosphoproteome and 

transcriptome profiles (Figs. 2a-2d). In the MS analysis, the intra-group replicate samples 

showed minimal variations with low standard deviation, whereas the inter-group comparisons 

exhibited differences with a much larger standard deviation (Supplementary Fig.2a, 2b). For 

transcriptome profiling, RNAseq replicates from a second cohort of HGGs displayed high 

reproducibility of these HGG mouse models (R2 > 0.95, Supplementary Fig.3a, 3b, 

Supplementary data 3”.  

To further clarify this point for the reader, we also added “Reproducible intragroup proteome, 

phosphoproteome, and transcriptome signatures showed that noise introduced by low-level 

contamination of normal cells did not mask robust differential signatures.” in lines 417-419. 

2. References are not updated in the revised manuscript

We updated the references. 
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3. Figure 3b, c, and d could be moved to supplemental figures.

We respectfully disagree with the reviewer’s opinion, because panels 3b-d (protein clustering 

and network analysis) show critical information in the bioinformatics pipeline, including the size 

of each cluster (i.e. the number of DE proteins), the DE expression patterns, and the magnitude 

of alterations, as well as the major networks changed in HGG. Thus the clustering and network 

information in panels 3b-d is essentially complementary to the remaining panels showing 

pathway enrichment. For example, WP-C1 clustered proteins have an expression pattern of 

NTRK > PDGFRA > Ctl in panel 3b, which provides important details to the corresponding 

enriched pathways (shown in the first row of panel 3f). The panels 3b-f represent each step 

shown in panel 3a, which would offer a clear step-wise data interpretation for readers to 

understand our data processing. 

However, if the reviewer and editor still recommend the removal of these panels to 

supplemental figures, we will revise the manuscript accordingly. 

4. Please expand the text to include FDR assessments as you described to reviewer #2,

comment 7.

We expanded the FDR assessment as the reviewer suggested, and also incorporated reviewer 

#4’s new comments regard the FDR on line 907-909. 

5. For proteomics analysis, the authors state that: “we were able to quantify distinct peptides

between human oncogenic PDGFRA and mouse wild type PDGFRA by MS. Figure 1d

specifically quantified the mutated PDGFRA D842V, which we quantified by human-specific

PDGFRA peptides, whereas Figure 7a was quantified by mouse-specific PDGFRA peptides to

show that human NTRK fusion induced overexpression of mouse PDGFRA.” Human and

mouse protein sequences are 92% homologous and thus It seems very challenging to

distinguish between the tryptic peptides specific to mouse or human. The homology map

presented by authors is not accurate. For example, only few peptides seem to be specific to

mice OR human post tryptic digestion (e.g. RTTDPETQVTLHNNGRL).

However, a simple alignment of two protein sequences shows that some of the highlighted 

peptides (Authors response to reviewer #3) are indeed 100% homologous between the two 

species (e.g. KGITMLEEIK and KVTISVHEK) post tryptic digestion. Thus, it is not clear how 

many of the uniquely human and mouse peptides were identified? Was mas spectral analysis 

validated (e.g. by manual inspection for at least a few of the peptides) to ensure that the 

assignment of peptide to human or mouse (by automatic/software) were valid (for example, how 

were the 100% homologous peptides were assigned? Were these taken into account for 

quantification?  
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We thank the reviewer for pointing out an error in the previous homology map that was manually 

generated. We re-inspected all identified peptides that matched to human or mouse PDGFRA 

protein. Although the human and mouse PDGFRA are 92% homologous at the single amino 

acid level, the related tryptic peptides are much more diverse in mass. Indeed, among the 42 

identified tryptic peptides, 10 are unique to human sequence, 11 are specific to mouse 

sequence, and 21 are shared by both (see inserted table). These species-specific peptides 

provide reliable quantification for human or mouse PDGFRA protein. 

6. A validation of endogenous RTK over expression in human samples with TPN-NTRK1

mutations would be very informative. This point was also raised by reviewer #3, but was not

adequately addressed.

We agree with the reviewer that validation of RTK over expression in 

human samples would be valuable. We attempted to validate this 

using available data, but due to the very limited sample size of human 

HGG with TPM-NTRK1 fusion genes, we showed statistical 

significance of increased EphA2 (see inserted figure), but did not find 

statistically significant increases in expression of other RTKs.  We 

think that this is not surprising because the human tumors have a 

wide variety of other mutations that will also influence cellular 

signaling and expression patterns.  Also, the developmental origin of 

the tumors will contribute strongly to expression signatures. This may 

be particularly true for the HGGs with NTRK fusions that are enriched 

in infant patients, for which very few datasets are available. 

Human specific Mouse Specific Shared peptide

K.EEDSGHYTIVAQNEDAVK.S R.TTDPETQVTLHNNGR.L K.QADTTQYVPMLER.K

K.GFIEIKPTFSQLEAVNLHEVK.H K.ATSELNLEMDAR.Q K.GITMLEEIK.L

R.MAKPDHATSEVYEIMVK.C K.NLLSDDDSEGLTLLDLLSFTYQVAR.G R.SLYDRPASYK.K

K.ATSELDLEMEALK.T R.ILGSGAFGK.V R.NVLLAQGK.I

K.LVYTLTVPEATVK.D K.DLDIFGLNPADESTR.S R.GMEFLASK.N

K.NLLGAENR.E K.LVYTLTVPK.A R.VDSDNAYIGVTYK.N

K.ELDIFGLNPADESTR.S K.TSEFNVYALK.A R.SLYDRPASYKK.K

K.FQTIPFNVYALK.A K.GFVEIEPTFGQLEAVNLHEVR.E K.QALMSELK.I

K.SYTFELLTQVPSSILDLVDDHHGSTGGQTVR.C R.EFVVEVQAYPTPR.I R.VTISVHEK.G

K.KVTISVHEK.G K.SYTFELSTLVPASILDLVDDHHGSGGGQTVR.C K.VEETIAVR.C

R.AKEEDSGHYTIIVQNEDDVK.S R.DGLVLGR.I

K.MLKPTAR.S

K.GSTFLPVK.W

K.VVEGTAYGLSR.S

K.QADTTQYVPMLERKEVSK.Y

K.SMLDSEVK.N

R.MRVDSDNAYIGVTYK.N

K.RPSFYHLSEIVENLLPGQYK.K

K.LVAPTLR.S

R.VIESISPDGHEYIYVDPMQLPYDSR.W

K.IHLDFLK.S
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Nevertheless, we believe this question will be more effectively addressed in the future as ever-

increasing next-generation sequencing data analysis of patient samples in clinical settings will 

add greater statistical power. Use of the model systems allows us to generate a controlled 

comparison of the contribution of the different RTKs in a much more uniform genetic 

background, and using the same pooled population of cells of origin. 

 

Reviewer #3 (Remarks to the Author): 

 

The revised version of the manuscript is greatly improved. All of the concerns raised by me 

have been addressed. I believe that the manuscript, in its current form, is a significant 

contribution to the field. 

 

We thank the reviewer for the positive comments. 

 

Reviewer #4 (Remarks to the Author) 

Overall: 

The authors provided a significantly improved manuscript and adequately addressed many of 

the points raised during the last round of revisions. Especially the experimental validation by 

their gRNA screening adds a new quality to the work.  

 

We thank the reviewer for the positive comments. 

 

Some improvements/questions remain: 

Major point: 

- The authors end their discussion with “this integrated bioinformatics pipeline provides a 

general platform...”. To follow up on this claim of a “general platform”, the authors should 

provide all their code (for example in a dedicated Github repository or on Bitbucket), not just the 

identifiers of the tools they used, otherwise this claim is not justified.  

Furthermore, even if the authors remove the claim, the code must be provided for transparency 

and reproducibility of their work.  

 

We agree with the reviewer and upload all programs (see figure below) in GitHub repository: 

https://github.com/hongwang198745/HGG_Source_Code 

 

  

https://github.com/hongwang198745/HGG_Source_Code
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Minor points: 

- Discussion is very much a summary and only in parts a placement of their results in the field. A

more extensive relationship to existing work will be most welcome.

We expanded discussion to place downstream targets into a broader biological context. 

- The argument to use ENCODE “ENCODE database contains only experimentally validated

results, and is therefore the most stringent database to our knowledge. We then used the

ENCODE for TF scores.” is not quite true. There are many resources. For example, ReMAp

includes ENCODE and many others. There are also curated, such as TTRUST, and integration

of resources, such as DOROTHEA and CHEA. At this point we would not ask to rerun the

analyses, though.

We thank the reviewer for the clarification, and we added one sentence in lines 538-539: 

“ENCODE database contains only experimentally validated results, and is therefore used in this 

study.” in the revised version for clarification. 

Raw data sets

-s
(database search by JUMP)

-f
(PSM filtering with FDR)

-q
(TMT quantification)

JUMPnk

JUMPps

-l
(PTM localization) 

JUMPpq

-n -clustering
(Co-expression clustering)JUMPnc

-n -pathway
(Pathway enrichment)JUMPnp

-n –kinase
(Kinase-substrate network)

-n –tf
(TF-target network)

-n –activity
(Pathway activity)

JUMPnt

JUMPna

Source code

JUMPp
(originally called JUMP,

proteomics analysis)

JUMPpf

JUMPpl

JUMPn
(network analysis)
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- Generally, throughout the manuscript there remain a few issues the authors should try to 

address. These involve  

reporting exact P values instead of “P value < 0.01”,  

 

Exact P values are now reported in the text or in the supplementary data.  

  

referring to FDR-corrected P values as q-values instead of as “FDR” (for example, the legend in 

Figure 5b reads “-log10(FDR)” but should instead read “-log10(q-value)”, or p 3 l 60 should read 

“...phosphosites at an FDR of 1%...”) 

 

We corrected the description as the reviewer suggested.  

 

and lastly providing more verbose and detailed figure legends. (For example, the figure legend 

for Figure 2b lacks the information which clustering methods was used, which distance was 

used for clustering, how the data were normalized or transformed before the analysis, and what 

message the figure should actually show.)  

 

More detailed information was added in figure legends as the reviewer suggested. 

 

- Some of the figure panels are basic quality control plots (2def, 8b-e) and are not necessarily 

required to be part of the main manuscript. Instead, these plots could go into the supplement, 

followed by some reorganization of the figures; that is, panels e and f in Figure 1 and a and b in 

Figure 2 could be grouped together.  

 

Figures are re-organized as the reviewer suggested 

 

p 22 l 468 should be that start of a new section, at least of a new paragraph 

 

We started a new paragraph at p 22 l 468 

 

p 15 l 311-314, why did the authors include transcriptomic in their study if it is unnecessary? It 

would maybe be good to have another introduction into the discussion. 

 

We did not claim that transcriptome analysis was unnecessary. Our original sentence was “As 

mRNA level is often only moderately correlated with protein level, there is a need to profile both 

the transcriptome and proteome to obtain a full picture of gene expression in cancer biology” in 

p 15 l 311-314. 

 

To avoid confusion, we added more discussion regarding this as the reviewer suggested at line 

312-315 as: 
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“Both transcriptomic and proteomic analyses play indispensable roles for understanding the 

underlying central regulatory mechanisms in cancer biology. As mRNA level is often only 

moderately correlated with protein level, there is a need to profile both transcriptome and 

proteome to obtain a full picture of gene expression in cancer biology”. 

 

p 11 ll 219-230, why did the authors change from 6 TFs to 5 TFs for which they investigated 

targets sites? Did they not find any genes downstream of CEBP? If so, they should at least 

mention that. 

 

We thank the reviewer for pointing it out. We added CEBP target genes in the Figure 5c, and 

revised the main text in line 219-230 

 

p 9 l 188, the wording of “34 AKT substrates (70% of DE substrates)” is ambiguous. Did the 

authors mean that 70 of AKT substrates were differentially regulated? Or that of these 34 

substrates, 70% were differentially regulated? It somehow cannot be the case that 34 AKT 

substrates are 70% of the more than 6000 DE phosphosites. 

 

We removed “(70% of DE substrates)” in the revised version to avoid confusion 

 

p 22: it remains unclear how exactly the authors performed “whole protein normalization”. The 

authors should provide more methodological details here. 

 

Below are the steps for whole protein normalization (see inserted figure) using the following 

terms and a previous reported method (Anal. Chem. 2017, 89 (5), 2956-2963). 

 

“Absolute protein abundance” presented by its corresponding peptide TMT intensities 

“Relative protein abundance” presented by its TMT intensities divided by the mean of control 

samples 

“Absolute phosphoprotein abundance” presented by its corresponding phosphopeptide TMT 

intensities 

“Relative phosphoprotein abundance” presented by its TMT intensities divided by the mean of 

control samples 

 

Step 1: Absolute protein abundance in each sample was first normalized by the average of the 

control samples (i.e. normal cortex) to obtain relative protein abundance. 

Step 2: Relative protein abundance in each sample was log2 transformed. 

Step 3: Step 1 and step 2 were repeated for the phosphoproteome data. 

Step 4: The “whole protein normalization” was performed by subtracting log-scaled relative 

protein abundance from log-scaled relative phosphoprotein abundance. 
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P samples

n
p

ro
tein

s

n x P absolute abundance
matrix (raw-scale)

n x P relative abundance 
matrix (log2-scale)

tij = log2(xij /μi)
μi = mean of  xi1, xi2 and xi3

(xi1, xi2 and xi3 are normal 
Cortex samples)
i = 1 ~ n; j = 1 ~ p

Whole proteome

n
p

h
o

sp
h

o
sites

n x P absolute abundance 
matrix (raw-scale)

n x P relative abundance 
matrix (log2-scale)

pij = log2(yij /μi)
μi = mean of  yi1, yi2 and yi3

(yi1, yi2 and yi3 are normal 
Cortex samples)
i = 1 ~ n; j = 1 ~ p

P samples

Phosphoproteome

p 11 p 12 … p 1p

p 21 p 22

… … … …

p n1 p n2 … p np

y 11 y 12 … y 1p

y 21 y 22 y 2p

… … … …

y n1 y n2 … y np

v 11 v 12 … v 1p

v 21 v 22 v 2p

… … … …

v n1 v n2 … v np

vij = pij - tij

x 11 x 12 … x 1p

x 21 x 22 … x 2p

… … … …

x n1 x n2 … x np

t 11 t 12 … t 1p

t 21 t 22 t 2p

… … … …

t n1 t n2 … t np



REVIEWERS' COMMENTS: 

Reviewer #2 (Remarks to the Author): 

The revised version of the manuscript is greatly improved. All of the concerns raised by me have 
been addressed. I have no further comments. 
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