

## Supplementary Information for

## Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic

Francesco Tadini-Buoninsegni<sup>1</sup>, Stine A. Mikkelsen<sup>2</sup>, Louise S. Mogensen<sup>2</sup>, Robert S. Molday<sup>3,4</sup>, and Jens Peter Andersen<sup>2</sup>\*

<sup>1</sup>Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy. <sup>2</sup>Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Bldg. 1160, DK-

8000 Aarhus C, Denmark.

<sup>3</sup>Department of Biochemistry and Molecular Biology and <sup>4</sup>Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.

\*To whom correspondence should be addressed: Jens Peter Andersen, Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Building 1160, DK-8000 Aarhus C, Denmark. E-mail: jpa@biomed.au.dk.

## This PDF file includes:

Supplementary Information Figures (Figs. S1 and S2)

**Supplementary Information Figures** 



**Fig. S1.** The electrogenic signal shows saturation with ATP at 50  $\mu$ M. Current transients observed following 50  $\mu$ M (*red lines*) and 100  $\mu$ M (*black lines*) ATP concentration jumps on 90PC:10PS (*A*) and 50PC:50PE (*B*) proteoliposomes containing ATP8A2.



**Fig. S2.** Effects of pH on the ATP8A2-related current transients in the presence of the protonophore 1799. Current transients induced by 100  $\mu$ M ATP concentration jumps on 90PC:10PS (*A*) and 50PC:50PE (*B*) proteoliposomes containing ATP8A2 at pH 7.5 (*black lines*) and 6.7 (*red lines*). The protonophore 1799 (1  $\mu$ M) was present to prevent the formation of a H<sup>+</sup> gradient across the proteoliposome membrane.