SI Appendix

Fig. S1. Representative SPR sensorgrams displaying binding of TIM23, TIM50, TIM17A and TIM17B proteins (sample) to immobilized ligand wild type HTT (GST-HTT-23Q) (*A*) and mutant HTT (GST-HTT-2Q) (*B*).

Fig. S2. The level of mtCO1 protein is equal in equivalent number of mitochondria from ST-Hdh-Q7/Q7 and -Q111/Q111 cells. Representative immunoblot (*A*) and quantification (*B*) of mtCO1 level in FACS sorted mitochondria isolated from mito-eGFP transfected cells. Four million (4 MM) eGFP labeled mitochondria and 5 µg protein samples were immunoblotted for mtCO1, and nuclearly-encoded matrix aconitase 2 (ACO2) and outer membrane (SAM50) proteins. WCL – whole cell lysate, MITO – mitochondria, N.T. – not transfected, OMM – outer mitochondrial membrane. (n=3, data shown as mean+s.e.m. ** *P*<0.001, * *P*<0.05, t-Test).

Α

В

3

Fig. S3. Purity of mitochondria enriched fractions. (*A*) Representative immunoblot of Q7 and Q111 whole cell lysates (WCL), mitochondrial (Mito.) and cytosolic fractions (Cyto.) probed for mitochondrial markers (VDAC1, ATP5A, ACO2 and mtCO1) and typical mitochondrial fraction contaminants and contaminating organelles: cytosol (TUBA), endoplasmic reticulum (CALR), lysosomes (LAMP1), Golgi apparatus (RCAS1) and plasma membrane (CAV2). (*B*) Nonsynaptosomal (NS) and synaptosomal (SM) mitochondrial fractions isolated from fresh post-surgical cortex and frozen specimens of cortex and striatum (tissue blocks listed in Table 1) were tested for enrichment with mitochondrial markers and contamination with markers listed in (*A*) compared to whole brain homogenate (WB) and cytosolic fraction.

Fig. S4. Representative immunoblots of mitochondrial proteins from Q7 and Q111 cells (shown here to supplement Fig. 3*E*). Nuclearly encoded mitochondrial protein levels are reduced in the Q111 striatal cell line. OMM indicates outer mitochondrial membrane protein, MIM indicates mitochondrial inner membrane proteins, (n=4).

Α

В

Fig. S5. Mitochondrial protein levels are dysregulated in the striatum of HD grade 2 patients. Immunoblots of mitochondrial proteins in (*A*) nonsynaptosomal (NS) and (*B*) synaptosomal (SM) mitochondria (shown here to supplement Fig. 4*A*, and 4*C*). OMM indicates outer mitochondrial membrane proteins, MIM indicates mitochondrial inner membrane proteins. Samples prepared from the striatum of non-HD patients were used as a control, and mitochondrial lysates from fresh (F) surgically resected cortex tissue of non-HD patients were included. Each lane represents the mitochondrial fraction from an independent tissue block (n=7).

Α

В

Fig. S6. Protein dysregulation in cortical mitochondria of HD grade 4 patients. Immunoblots of mitochondrial proteins in (*A*) nonsynaptosomal (NS) and (*B*) synaptosomal (SM) mitochondria (shown here to supplement Fig. 5*A* and 5*C*). OMM indicates outer mitochondrial membrane protein. MIM indicates mitochondrial inner membrane proteins. Samples prepared from cortex of non-HD patients were used as a control, and mitochondrial lysates from fresh (F) surgically resected cortex tissue of non-HD patients were included. Each lane represents the mitochondrial fraction from independent tissue block (n=7).

Fig. S7. Synaptic mitochondria loss in striatum of HD grade 2 (HD2) patients and controls. (A) Quantification of relative protein amount in mitochondrial fraction isolated from striatal tissues. The total protein amount (μ g) in nonsynaptosomal samples was taken as 100% and used to recalculate relative protein amount in synaptosomal samples originating from the same tissue block (listed in

Table 1). (*B*) Immunoblot and (*C*) quantification of protein level of striatal neuronal marker GAD1 in whole brain (WB) lysates.

Table S1. Binding affinity constants of TIM23 complex subunits with HTT exon1 fragments.

Ligand	Sample	Curve	Temp (°C)	Fit	k _a	k _d	KD
GST-HTTex1-23Q	TIM23	Fc=2-1	25	1:1 Binding	1.22E+04	4.18E-05	3.43E-09
GST-HTTex1-23Q	TIM50	Fc=2-1	25	1:1 Binding	3.87E+05	0.2054	5.31E-07
GST-HTTex1-23Q	TIM17A	Fc=2-1	25	1:1 Binding	2540	0.03182	1.25E-05
GST-HTTex1-23Q	TIM17B	Fc=2-1	25	1:1 Binding	5.38E+05	0.0539	1.00E-07
GST-HTTex1-97Q	TIM23	Fc=4-3	25	1:1 Binding	1.58E+05	7.96E-08	5.05E-13
GST-HTTex1-97Q	TIM50	Fc=4-3	25	1:1 Binding	1.43E+04	6.61E-04	4.62E-08
GST-HTTex1-97Q	TIM17A	Fc=4-3	25	1:1 Binding	2.75E+04	8.44E-05	3.07E-09
GST-HTTex1-97Q	TIM17B	Fc=4-3	25	1:1 Binding	4637	6.84E-04	1.48E-07

note:

 k_a – association constant

 $\vec{k_d}$ - dissociation constant KD - equilibrium dissociation constant

Table S2. Human brain tissue information.

Туре	Grade	Specimen	Age	Gender	CAG	Standard brain	Postmortem
					repeats	block (SBB) ¹	interval before
							frozen
	-			Cort	ex		
Control	n.a.	T-145	57	F	N.E.	SBB4.1	9:14
Control	n.a.	T-159	54	F	N.E.	SBB2.1	15:40
Control	n.a.	T-169	67	М	N.E.	SBB4.2	49:20
Control	n.a.	T-171	89	М	N.E.	SBB1	6:05
Control	n.a.	T-172	89	М	N.E.	SBB4.1	8:45
Control	n.a.	T-206	49	М	N.E.	SBB2.2	15:05
Control	n.a.	T-551	77	F	N.E.	SBB3.1	13:34
Control	n.a.	T-4931	66	М	N.E.	SBB3.2	26:55
HD4	4	T-4522	42	М	52/17	SBB1.3	10:58
HD4	4	T-4584	41	М	49/17	SBB4.2	38:20
HD4	4	T-4638	39	F	52/18	SBB3.1	28:46
HD4	4	T-4929	50	М	49/16	SBB1.4	43:08
HD4	4	T-5017	66	F	44/17	SBB3.3	5:30
HD4	4	T-5301	64	F	46/19	SBB3.1	18:52
HD4	4	T-5321	50	М	N.E.	SBB3.1	31:38
				Striat	tum		
Control	n.a.	T-110	62	М	N.E.	SBB7.1	N.E.
Control	n.a.	T-133	33	F	N.E.	SBB7.1	11:25
Control	n.a.	T-169	69	М	N.E.	SBB6.2	49:20
Control	n.a.	T-180	52	F	N.E.	SBB7.2	6:07
Control	n.a.	T-638	78	М	N.E.	SBB7.1	8:00
Control	n.a.	T-3925	79	F	N.E.	SBB6.1	18:50
Control	n.a.	T-5404	54	F	N.E.	SBB7.1	16:36
HD2	2	T-461	77	М	41/15	SBB7.2	19:28
HD2	2	T-3221	58	М	42/15	SBB7.2	85:11
HD2	2	T-4394	75	F	41/17	SBB7.2	22:50
HD2	2	T-4498	59	М	43/17	SBB6.2	32:45
HD2	2	T-4964	89	М	40/17	SBB6.0	10:35
HD2	2	T-4989	75	F	42/15	SBB6.1	37:35
HD2	2	T-5263	55	F	54/30	SBB6.2	30:50

note:

Grade - diagnosed HD grade, Specimen - frozen tissue samples, Age - years at death, F - female, M – male, N.E. - not estimated, n.a. - not applicable, CAG repeats - number of CAG repeats of both alleles.

1 Vonsattel, J. P., Del Amaya, M. P. & Keller, C. E. Twenty-first century brain banking. Processing brains for research: the Columbia University methods. *Acta Neuropathol* **115**, 509-532, doi:10.1007/s00401-007-0311-9 (2008). Table S3. DIGE map spot identifier.

Spot	Identified protein			
#	UniProt ID	Gene	Protein name	Localization
1	Q64521	GPD2	Glycerol-3-phosphate	Inner mitochondrial
			dehydrogenase, mitochondrial	membrane
	P48678	LMNA		NM
2	Q8BH04	PCK2	Phosphoenolpyruvate	Mitochondrial matrix
			carboxykinase [GTP],	
			mitochondrial	
	Q8K2B3	SDHA	Succinate dehydrogenase	Inner mitochondrial
			[ubiquinone] flavoprotein subunit,	membrane
			mitochondrial	
3	Q8BH04	PCK2	See spot 2	
	Q8K2B3	SDHA	See spot 2	
4	P80318	CCT3	·	NM
5	Q99KE1	ME2	NAD-dependent malic enzyme,	Mitochondrial matrix
			mitochondrial	
	O08749	DLD (LAD)	Dihydrolipoyl dehydrogenase,	Mitochondrial matrix
			mitochondrial	
6	Q61753	PHGDH		NM
7	P80314	CCT2		NM
8	P47738	ALDH2	Aldehyde dehydrogenase,	Mitochondrial matrix
			mitochondrial	
9	P50544	ACADVL	Very long-chain specific acyl-CoA	Inner mitochondrial
			dehydrogenase, mitochondrial	membrane
10	Q5SX75	P4HA2		NM
	P63038	HSP60	60 kDa heat shock protein,	Mitochondrial matrix *
			mitochondrial	
11	Q5SX75	P4HA2		NM
	P27773	PDIA3		NM
	Q60715	P4HA1		NM
12	P27773	PDIA3		NM
13	P11983	TCP1		NM
14	Q99JY	ACTR3		NM
	P56480	ATP5B	ATP synthase subunit beta,	Inner mitochondrial
			mitochondrial	membrane
15	P29758	OAT	Ornithine aminotransferase,	Mitochondrial matrix
			mitochondrial	
16	P29758	OAT	See spot 15	
17	P17182	ENO1		NM
	Q9D8N0	EEF1g		NM
18	Q8BFR5	TUFM	Elongation factor Tu, mitochondrial	Mitochondrial matrix
19	Q8BMD8	SLC25A24	Calcium-binding mitochondrial	Inner mitochondrial
			carrier protein SCaMC-1	membrane
	P35486	PDHA1	Pyruvate dehydrogenase E1	Mitochondrial matrix
			component subunit alpha, somatic	
			form, mitochondrial	

	Q9QYR9	ACOT2	Acyl-coenzyme A thioesterase 2, mitochondrial	Mitochondrial matrix
20	Q9JHI5	IVD	Isovaleryl-CoA dehydrogenase, mitochondrial	Mitochondrial matrix
	Q8K248	HPDL		NM
	O88986	GCAT	2-amino-3-ketobutyrate coenzyme A ligase, mitochondrial	Mitochondrial matrix *
	Q8BMD8	SLC25A24	See spot 19	
21	P10107	ANXA1		NM
22	O88544	COPS4		NM
23	Q9D6R2	IDH3A	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	Mitochondrial matrix
24	P47754	CAPZA2		NM
28	P67778	PHB	Prohibitin	Inner mitochondrial membrane
29	O88696	CLPP	ATP-dependent Clp protease proteolytic subunit, mitochondrial	Mitochondrial matrix
32	P20108	PRDX3	Thioredoxin-dependent peroxide reductase, mitochondrial	Mitochondrial matrix *

note:

NM - non mitochondrial, * - multiple intracellular localization.

Spots 25, 26, 27, 30, 31 were not confirmed due to low level of protein.

Table S4. List of all identified mitochondrial proteins.

Identified protein	UniProt ID	MW
A2AJP9 MOUSE MCG54027, isoform CRA a OS=Mus musculus	A2AJP9 (+3)	64 kDa
GN=Pdp1 PE=3 SV=2		
A2AQR0_MOUSE Glycerol-3-phosphate dehydrogenase, mitochondrial	A2AQR0 (+1)	83 kDa
OS=Mus musculus GN=Gpd2 PE=2 SV=1		
XPP3_MOUSE Probable Xaa-Pro aminopeptidase 3 OS=Mus	B7ZMP1	57 kDa
musculus GN=Xpnpep3 PE=2 SV=1		
D3YXX5_MOUSE NADH dehydrogenase [ubiquinone] flavoprotein 1,	D3YXX5 (+2)	13 kDa
mitochondrial (Fragment) OS=Mus musculus GN=Ndufv1 PE=2 SV=1		
D3Z0L4_MOUSE Coiled-coil-helix-coiled-coil-helix domain-containing	D3Z0L4 (+3)	22 kDa
protein 3, mitochondrial (Fragment) OS=Mus musculus GN=Chchd3		
PE=2 SV=1		
GLSK_MOUSE Glutaminase kidney isoform, mitochondrial OS=Mus	D3Z7P3	74 kDa
musculus GN=GIs PE=1 SV=1	D077D0 0	
GLSK_MOUSE Isoform 2 of Glutaminase kidney isoform, mitochondrial	D3Z7P3-2	66 kDa
OS=Mus musculus GN=GIS		
E9PUB7_MOUSE Protein misato nomolog 1 US=Mus musculus	E9PUB7 (+2)	61 KDa
GN=IVISTO1 PE=2 SV=1		
F2Z471_WOUSE Voltage-dependent anion-selective channel protein 1	F2Z471 (+2)	28 KDa
COSEIVIUS IIIUSCUIUS GINEVUACI PEEZ SVEI		
F8WIT2_MOUSE Annexin OS=Mus musculus GN=Anxa6 PE=2 SV=1	$\frac{1}{10000000000000000000000000000000000$	75 KDa
G3UX26_IVIOUSE Voltage-dependent anion-selective channel protein 2	G3UX26	30 kDa
(Flagment) OS=IVIUS IIIUSCUIUS GN=VUAC2 PE=4 SV=1	009740	
DLDH_MOUSE Dinydrolipoyr denydrogenase, mitochondhar OS=Mus	000749	54 KDa
PRDVA MOUSE Perovired ovin $4 OS-Mus musculus GN-PrdvA PE-1$	008807	31 kDa
	000007	STRDa
PHB2_MOUSE Prohibitin-2 OS=Mus musculus GN=Phb2 PE=1 SV=1	035129	33 kDa
TIM44_MOUSE Mitochondrial import inner membrane translocase	035857	51 kDa
subunit TIM44 OS=Mus musculus GN=Timm44 PE=2 SV=2	000007	UT KDU
PTRF_MOUSE Polymerase I and transcript release factor OS=Mus	O54724	44 kDa
musculus GN=Ptrf PE=1 SV=1		
1433S MOUSE 14-3-3 protein sigma OS=Mus musculus GN=Sfn	O70456	28 kDa
PE=1 SV=2		
CLPP_MOUSE Putative ATP-dependent Clp protease proteolytic	O88696	30 kDa
subunit, mitochondrial OS=Mus musculus GN=Clpp PE=1 SV=1		
KBL_MOUSE 2-amino-3-ketobutyrate coenzyme A ligase,	O88986	45 kDa
mitochondrial OS=Mus musculus GN=Gcat PE=1 SV=2		
AATM_MOUSE Aspartate aminotransferase, mitochondrial OS=Mus	P05202	47 kDa
musculus GN=Got2 PE=1 SV=1		
ANXA1_MOUSE Annexin A1 OS=Mus musculus GN=Anxa1 PE=1	P10107	39 kDa
SV=2		
PRDX3_MOUSE Thioredoxin-dependent peroxide reductase,	P20108	28 kDa
mitochondrial OS=Mus musculus GN=Prdx3 PE=1 SV=1		
VIME_MOUSE Vimentin OS=Mus musculus GN=Vim PE=1 SV=3	P20152	54 kDa
CATA_MOUSE Catalase OS=Mus musculus GN=Cat PE=1 SV=4	P24270	60 kDa
DHE3_MOUSE Glutamate dehydrogenase 1, mitochondrial OS=Mus	P26443	61 kDa

musculus GN=Glud1 PE=1 SV=1		
OAT_MOUSE Ornithine aminotransferase, mitochondrial OS=Mus musculus GN=Oat PE=1 SV=1	P29758	48 kDa
MP2K1_MOUSE Dual specificity mitogen-activated protein kinase kinase 1 OS=Mus musculus GN=Map2k1 PE=1 SV=2	P31938	43 kDa
NLTP_MOUSE Non-specific lipid-transfer protein OS=Mus musculus GN=Scp2 PE=1 SV=3	P32020	59 kDa
ODPA_MOUSE Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial OS=Mus musculus GN=Pdha1 PE=1 SV=1	P35486	43 kDa
GRP75_MOUSE Stress-70 protein, mitochondrial OS=Mus musculus GN=Hspa9 PE=1 SV=3	P38647	73 kDa
ACADM_MOUSE Medium-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus GN=Acadm PE=1 SV=1	P45952	46 kDa
ALDH2_MOUSE Aldehyde dehydrogenase, mitochondrial OS=Mus musculus GN=Aldh2 PE=1 SV=1	P47738	57 kDa
GSHR_MOUSE Glutathione reductase, mitochondrial OS=Mus musculus GN=Gsr PE=1 SV=3	P47791 (+1)	54 kDa
LMNA_MOUSE Prelamin-A/C OS=Mus musculus GN=Lmna PE=1 SV=2	P48678	74 kDa
LMNA_MOUSE Prelamin-A/C OS=Mus musculus GN=Lmna PE=1 SV=2	P48678 (+1)	74 kDa
LMNA_MOUSE Isoform C of Prelamin-A/C OS=Mus musculus GN=Lmna	P48678-2	65 kDa
ODBA_MOUSE 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial OS=Mus musculus GN=Bckdha PE=1 SV=1	P50136 (+1)	50 kDa
VATA_MOUSE V-type proton ATPase catalytic subunit A OS=Mus musculus GN=Atp6v1a PE=1 SV=2	P50516	68 kDa
ACADV_MOUSE Very long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus GN=Acadvl PE=1 SV=3	P50544	71 kDa
ACADL_MOUSE Long-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus GN=Acadl PE=1 SV=2	P51174	48 kDa
KPYM_MOUSE Pyruvate kinase PKM OS=Mus musculus GN=Pkm PE=1 SV=4	P52480	58 kDa
IDHP_MOUSE Isocitrate dehydrogenase [NADP], mitochondrial OS=Mus musculus GN=Idh2 PE=1 SV=3	P54071	51 kDa
ATPB_MOUSE ATP synthase subunit beta, mitochondrial OS=Mus musculus GN=Atp5b PE=1 SV=2	P56480	56 kDa
RUVB1_MOUSE RuvB-like 1 OS=Mus musculus GN=Ruvbl1 PE=1 SV=1	P60122	50 kDa
1433G_MOUSE 14-3-3 protein gamma OS=Mus musculus GN=Ywhag PE=1 SV=2	P61982	28 kDa
CH60_MOUSE 60 kDa heat shock protein, mitochondrial OS=Mus musculus GN=Hspd1 PE=1 SV=1	P63038	61 kDa
PP1G_MOUSE Serine/threonine-protein phosphatase PP1-gamma catalytic subunit OS=Mus musculus GN=Ppp1cc PF=1 SV=1	P63087 (+1)	37 kDa
PHB_MOUSE Prohibitin OS=Mus musculus GN=Phb PE=1 SV=1	P67778	30 kDa
TCPH_MOUSE T-complex protein 1 subunit eta OS=Mus musculus GN=Cct7 PE=1 SV=1	P80313	60 kDa

FUMH_MOUSE Fumarate hydratase, mitochondrial OS=Mus musculus GN=Fh PE=1 SV=3	P97807 (+1)	54 kDa
ATPA_MOUSE ATP synthase subunit alpha, mitochondrial OS=Mus musculus GN=Atp5a1 PE=1 SV=1	Q03265	60 kDa
ACADS_MOUSE Short-chain specific acyl-CoA dehydrogenase, mitochondrial OS=Mus musculus GN=Acads PE=1 SV=2	Q07417	45 kDa
P4K2A_MOUSE Phosphatidylinositol 4-kinase type 2-alpha OS=Mus musculus GN=Pi4k2a PE=1 SV=1	Q2TBE6	54 kDa
HSDL2_MOUSE Hydroxysteroid dehydrogenase-like protein 2 OS=Mus musculus GN=Hsdl2 PE=1 SV=1	Q2TPA8	54 kDa
FXRD1_MOUSE FAD-dependent oxidoreductase domain-containing protein 1 OS=Mus musculus GN=Foxred1 PE=2 SV=1	Q3TQB2 (+1)	54 kDa
Q3U3J1_MOUSE 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial OS=Mus musculus GN=Bckdha PE=2 SV=1	Q3U3J1	51 kDa
C1TM_MOUSE Monofunctional C1-tetrahydrofolate synthase, mitochondrial OS=Mus musculus GN=Mthfd1l PE=1 SV=2	Q3V3R1	106 kDa
P4HA1_MOUSE Prolyl 4-hydroxylase subunit alpha-1 OS=Mus musculus GN=P4ha1 PE=2 SV=2	Q60715	61 kDa
VDAC2_MOUSE Voltage-dependent anion-selective channel protein 2 OS=Mus musculus GN=Vdac2 PE=1 SV=2	Q60930	32 kDa
MP2K2_MOUSE Dual specificity mitogen-activated protein kinase kinase 2 OS=Mus musculus GN=Map2k2 PE=1 SV=2	Q63932 (+1)	44 kDa
GPDM_MOUSE Glycerol-3-phosphate dehydrogenase, mitochondrial OS=Mus musculus GN=Gpd2 PE=1 SV=2	Q64521	81 kDa
Q6P8N8_MOUSE ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial OS=Mus musculus GN=Clpx PE=2 SV=1	Q6P8N8 (+1)	67 kDa
LPPRC_MOUSE Leucine-rich PPR motif-containing protein, mitochondrial OS=Mus musculus GN=Lrpprc PE=1 SV=2	Q6PB66	157 kDa
Q6PF96_MOUSE Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial OS=Mus musculus GN=Etfdh PE=2 SV=1	Q6PF96 (+1)	61 kDa
EFTU_MOUSE Elongation factor Tu, mitochondrial OS=Mus musculus GN=Tufm PE=1 SV=1	Q8BFR5	50 kDa
SAM50_MOUSE Sorting and assembly machinery component 50 homolog OS=Mus musculus GN=Samm50 PE=1 SV=1	Q8BGH2	52 kDa
ALAT2_MOUSE Alanine aminotransferase 2 OS=Mus musculus GN=Gpt2 PE=1 SV=1	Q8BGT5	58 kDa
PCKGM_MOUSE Phosphoenolpyruvate carboxykinase [GTP], mitochondrial OS=Mus musculus GN=Pck2 PE=2 SV=1	Q8BH04	71 kDa
ODPX_MOUSE Pyruvate dehydrogenase protein X component, mitochondrial OS=Mus musculus GN=Pdhx PE=2 SV=1	Q8BKZ9	54 kDa
SCMC1_MOUSE Calcium-binding mitochondrial carrier protein SCaMC-1 OS=Mus musculus GN=Slc25a24 PE=2 SV=1	Q8BMD8	53 kDa
ODP2_MOUSE Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitochondrial OS=Mus musculus GN=Dlat PE=1 SV=2	Q8BMF4	68 kDa
CPSM_MOUSE Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Mus musculus GN=Cps1 PE=1 SV=2	Q8C196	165 kDa
NAKD2_MOUSE NAD kinase 2, mitochondrial OS=Mus musculus	Q8C5H8	51 kDa

GN=Nadk2 PE=1 SV=2		
NAKD2_MOUSE Isoform 2 of NAD kinase 2, mitochondrial OS=Mus	Q8C5H8-2 (+1)	43 kDa
musculus GN=Nadk2		
IMMT_MOUSE Isoform 2 of Mitochondrial inner membrane protein	Q8CAQ8-2	83 kDa
OS=Mus musculus GN=Immt		
LONM_MOUSE Lon protease homolog, mitochondrial OS=Mus	Q8CGK3	106 kDa
musculus GN=Lonp1 PE=1 SV=2		
DHSA_MOUSE Succinate dehydrogenase [ubiquinone] flavoprotein	Q8K2B3	73 kDa
subunit, mitochondrial OS=Mus musculus GN=Sdha PE=1 SV=1		
PREP_MOUSE Presequence protease, mitochondrial OS=Mus	Q8K411 (+1)	117 kDa
musculus GN=Pitrm1 PE=1 SV=1		
THIL_MOUSE Acetyl-CoA acetyltransferase, mitochondrial OS=Mus	Q8QZT1	45 kDa
musculus GN=Acat1 PE=1 SV=1		
SUOX_MOUSE Sulfite oxidase, mitochondrial OS=Mus musculus	Q8R086	61 kDa
GN=Suox PE=2 SV=2		
COQ6_MOUSE Ubiquinone biosynthesis monooxygenase COQ6	Q8R1S0	51 kDa
OS=Mus musculus GN=Coq6 PE=2 SV=3		
AT2A1_MOUSE Sarcoplasmic/endoplasmic reticulum calcium ATPase	Q8R429	109 kDa
1 OS=Mus musculus GN=Atp2a1 PE=2 SV=1		
ACSF2 MOUSE Acyl-CoA synthetase family member 2, mitochondrial	Q8VCW8	68 kDa
OS=Mus musculus GN=Acsf2 PE=1 SV=1		
NDUS2 MOUSE NADH dehydrogenase [ubiquinone] iron-sulfur protein	Q91WD5	53 kDa
2, mitochondrial OS=Mus musculus GN=Ndufs2 PE=1 SV=1		
ETFD MOUSE Electron transfer flavoprotein-ubiquinone	Q921G7	68 kDa
oxidoreductase, mitochondrial OS=Mus musculus GN=Etfdh PE=1		
SV=1		
SELR1_MOUSE Sel1 repeat-containing protein 1 OS=Mus musculus	Q921H9	26 kDa
GN=Selrc1 PE=2 SV=1		
STML2_MOUSE Stomatin-like protein 2, mitochondrial OS=Mus	Q99JB2	38 kDa
musculus GN=Stoml2 PE=1 SV=1		
MAOM_MOUSE NAD-dependent malic enzyme, mitochondrial	Q99KE1	66 kDa
OS=Mus musculus GN=Me2 PE=2 SV=1		
ACON_MOUSE Aconitate hydratase, mitochondrial OS=Mus musculus	Q99KI0	85 kDa
GN=Aco2 PE=1 SV=1		
NDUAA_MOUSE NADH dehydrogenase [ubiquinone] 1 alpha	Q99LC3	41 kDa
subcomplex subunit 10, mitochondrial OS=Mus musculus GN=Ndufa10		
PE=1 SV=1		
GRPE1_MOUSE GrpE protein homolog 1, mitochondrial OS=Mus	Q99LP6	24 kDa
musculus GN=Grpel1 PE=1 SV=1		
TRAP1_MOUSE Heat shock protein 75 kDa, mitochondrial OS=Mus	Q9CQN1	80 kDa
musculus GN=Trap1 PE=1 SV=1		
PUR9_MOUSE Bifunctional purine biosynthesis protein PURH	Q9CWJ9	64 kDa
OS=Mus musculus GN=Atic PE=1 SV=2		
COQ5_MOUSE 2-methoxy-6-polyprenyl-1,4-benzoquinol methylase,	Q9CXI0	37 kDa
mitochondrial OS=Mus musculus GN=Coq5 PE=2 SV=2		
MPPB_MOUSE Mitochondrial-processing peptidase subunit beta	Q9CXT8	55 kDa
OS=Mus musculus GN=Pmpcb PE=2 SV=1		
QCR1_MOUSE Cytochrome b-c1 complex subunit 1, mitochondrial	Q9CZ13	53 kDa

OS=Mus musculus GN=Uqcrc1 PE=1 SV=2		
Q9CZN7 MOUSE Serine hydroxymethyltransferase OS=Mus musculus	Q9CZN7	56 kDa
GN=Shmt2 PE=2 SV=1		
GATA MOUSE Glutamyl-tRNA(Gln) amidotransferase subunit A.	Q9CZN8	57 kDa
mitochondrial OS=Mus musculus GN=Qrsl1 PE=2 SV=1		
EFTS MOUSE Elongation factor Ts. mitochondrial OS=Mus musculus	Q9CZR8	35 kDa
GN=Tsfm PE=2 SV=1		
CISY MOUSE Citrate synthase, mitochondrial OS=Mus musculus	Q9CZU6	52 kDa
GN=Cs PE=1 SV=1		
TOM70 MOUSE Mitochondrial import receptor subunit TOM70	Q9CZW5	68 kDa
OS=Mus musculus GN=Tomm70a PE=1 SV=2		
ODPB MOUSE Pyruvate dehydrogenase E1 component subunit beta,	Q9D051	39 kDa
mitochondrial OS=Mus musculus GN=Pdhb PE=1 SV=1		
TRM5 MOUSE tRNA (guanine(37)-N1)-methyltransferase OS=Mus	Q9D0C4 (+1)	57 kDa
musculus GN=Trmt5 $\overrightarrow{PE}=2$ SV=1		
SCOT1 MOUSE Succinyl-CoA:3-ketoacid coenzyme A transferase 1,	Q9D0K2	56 kDa
mitochondrial OS=Mus musculus GN=Oxct1 PE=1 SV=1		
ODO2 MOUSE Dihydrolipoyllysine-residue succinyltransferase	Q9D2G2	49 kDa
component of 2-oxoglutarate dehydrogenase complex, mitochondrial		
OS=Mus musculus GN=Dlst PE=1 SV=1		
IDH3A MOUSE Isocitrate dehydrogenase [NAD] subunit alpha,	Q9D6R2	40 kDa
mitochondrial OS=Mus musculus GN=Idh3a PE=1 SV=1		
TIM50 MOUSE Mitochondrial import inner membrane translocase	Q9D880	40 kDa
subunit TIM50 OS=Mus musculus GN=Timm50 PE=1 SV=1		
QCR2_MOUSE Cytochrome b-c1 complex subunit 2, mitochondrial	Q9DB77	48 kDa
OS=Mus musculus GN=Uqcrc2 PE=1 SV=1		
AL7A1_MOUSE Alpha-aminoadipic semialdehyde dehydrogenase	Q9DBF1 (+1)	59 kDa
OS=Mus musculus GN=Aldh7a1 PE=1 SV=4		
MPPA_MOUSE Mitochondrial-processing peptidase subunit alpha	Q9DC61	58 kDa
OS=Mus musculus GN=Pmpca PE=1 SV=1		
NDUS3_MOUSE NADH dehydrogenase [ubiquinone] iron-sulfur protein	Q9DCT2	30 kDa
3, mitochondrial OS=Mus musculus GN=Ndufs3 PE=1 SV=2		
ETFB_MOUSE Electron transfer flavoprotein subunit beta OS=Mus	Q9DCW4	28 kDa
musculus GN=Etfb PE=1 SV=3		
MMSA_MOUSE Methylmalonate-semialdehyde dehydrogenase	Q9EQ20	58 kDa
[acylating], mitochondrial OS=Mus musculus GN=Aldh6a1 PE=1 SV=1		
RM46_MOUSE 39S ribosomal protein L46, mitochondrial OS=Mus	Q9EQI8	32 kDa
musculus GN=Mrpl46 PE=2 SV=1		
GSDMA_MOUSE Gasdermin-A OS=Mus musculus GN=Gsdma PE=2	Q9EST1	50 kDa
SV=1		
IVD_MOUSE IsovaleryI-CoA dehydrogenase, mitochondrial OS=Mus	Q9JHI5	46 kDa
musculus GN=Ivd PE=1 SV=1		
SYSM_MOUSE SerinetRNA ligase, mitochondrial OS=Mus musculus	Q9JJL8	58 kDa
GN=Sars2 PE=1 SV=2		
AL9A1_MOUSE 4-trimethylaminobutyraldehyde dehydrogenase	Q9JLJ2	54 kDa
OS=Mus musculus GN=Aldh9a1 PE=1 SV=1		
ACOT2_MOUSE Acyl-coenzyme A thioesterase 2, mitochondrial	Q9QYR9	50 kDa
OS=Mus musculus GN=Acot2 PE=1 SV=2		

CAH5B_MOUSE Carbonic anhydrase 5B, mitochondrial OS=Mus	Q9QZA0	37 kDa
musculus GN=Ca5b PE=2 SV=2		
AIFM1_MOUSE Apoptosis-inducing factor 1, mitochondrial OS=Mus	Q9Z0X1	67 kDa
musculus GN=Aifm1 PE=1 SV=1		
NFS1_MOUSE Cysteine desulfurase, mitochondrial OS=Mus musculus	Q9Z1J3	51 kDa
GN=Nfs1 PE=2 SV=3		
SUCB2_MOUSE Succinyl-CoA ligase [GDP-forming] subunit beta,	Q9Z2l8	47 kDa
mitochondrial OS=Mus musculus GN=Suclg2 PE=1 SV=3		
SUCB2_MOUSE Succinyl-CoA ligase [GDP-forming] subunit beta,	Q9Z2l8 (+1)	47 kDa
mitochondrial OS=Mus musculus GN=Suclg2 PE=1 SV=3		
SUCB1_MOUSE Succinyl-CoA ligase [ADP-forming] subunit beta,	Q9Z2I9	50 kDa
mitochondrial OS=Mus musculus GN=Sucla2 PE=1 SV=2		

Table S5. Source Extractor protein counts of the Q7 and Q111 proteome changes in Figure 2.

	Guide star spots						
	Cy3-Flux	Cy5-Flux	Cy3/Cy5	C3/Cy5			
				Normalizeu			
*1	4663.9	11935.8	0.39	0.977			
*2	1491.9	3621.6	0.41	1.030			
*3	13976.7	36562.2	0.38	0.956			
*4	240047.0	518705.1	0.46	1.157			
*5	168505.5	438975.3	0.38	0.960			
*6	36092.9	92785.3	0.39	0.972			
*7	27635.7	67814.5	0.41	1.019			
*8	41361.2	110093.2	0.38	0.939			
*9	8832.0	21893.6	0.40	1.009			
		Average	0.40	1.002			
		%					
		Standard					
		deviation	2.63%	6.57%			

	Difference protein spots						
				C3/Cy5	Fold		
	Cy3-Flux	Cy5-Flux	Cy3/Cy5	Normalized	change		
1 [†]	27529.5	34460.7	0.80	1.997	2.00		
2	1906.4	72904.4	0.03	0.065	-15.30		
3	41395.1	38849.4	1.07	2.664	2.66		
4	100417.3	156390.9	0.64	1.605	1.61		
5	59180.5	211718.0	0.28	0.699	-1.43		
6	110601.5	50169.4	2.20	5.511	5.51		
7	139736.9	118210.5	1.18	2.955	2.96		
8	64777.6	345285.2	0.19	0.469	-2.13		
9	15608.6	2283.7	6.83	17.087	17.09		

note:

† This spot was not detected by Source Extractor. These values were obtained manually using ImageJ.

Table S6. Mitochondrial proteins grouped by import pathway based on primary structure as indicated in UniProt database or stated in references.

Pathway	Gene	Protein structure and mitochondrial localization
Mim1, TOM40+SAM50	TOM70A	Outer membrane single-pass protein. Contains: no MTS, 1
		helical transmembrane stretch, and domains protruding into
		mitochondrial intermembrane space and cytoplasmic side.
	SAM50	Outer membrane multi-pass protein. Contains: no MTS, C-
		terminal 16 transmembrane β -barrel structures.
	TOM40	Outer membrane multi-pass protein. Contains: no MTS, 19
		membrane-spanning β-barrel strands.
	TOM22	Outer membrane single-pass protein. Contains: no MTS, 1
		helical transmembrane stretch, and domains protruding into
		mitochondrial intermembrane space and cytoplasmic side.
	VDAC2	Outer membrane multi-pass protein. Contains: no MTS, 19
		membrane-spanning β-barrel strands.
	VDAC1	Outer membrane multi-pass protein. Contains: no MTS, 19
		membrane-spanning β-barrel strands.
TOM40+TIM22	SLC25A24	Inner membrane multi-pass protein. Contains: no MTS, 6
		transmembrane helical strands.
	SLC25A23	Inner membrane multi-pass protein. Contains: no MTS, 6
		transmembrane helical strands.
	SLC25A12	Inner membrane multi-pass protein. Contains: no MTS, 6
		transmembrane helical strands.
	TIM22	Inner membrane multi-pass protein. Contains: no MTS, 3
		transmembrane helical strands.
	TIM23	Inner membrane multi-pass protein. Contains: no MTS, 3
		transmembrane helical strands.
TOM40+TIM23	TIM44	Peripheral inner membrane protein associated with the
Membrane bound		matrix side of the membrane ^{1,2} .
	TIM50	Single-pass inner membrane protein. Contains: MTS, 1
		helical transmembrane stretch, and domains protruding into
	0000	mitochondrial intermembrane space and matrix.
	GPD2	Integral protein of inner membrane. Contains: MTS, 3
		transmembrane stretcnes, big intermembrane space
		domain and N-terminus facing matrix.
	ACADVL	Inner membrane anchored protein. Contains: MIS and C-
		Inner membrane anchored protein.
	ГПО	Inner membrane anchored protein. Contains. N-terminal
		stratches. Lises TIM23 for insertion into inner membrane ⁴
TOM40+TIM23 Matrix	OTC	Matrix protein Contains MTS
soluble		Matrix protein. Contains MTS.
		Matrix protein. Contains MTS
		Matrix protein. Contains MTS
		Matrix protein. Contains MTS
	ME2	Matrix protein. Contains MTS.

note:

MTS – N-terminal mitochondrial targeting sequence.

- 1 Berthold, J. *et al.* The MIM complex mediates preprotein translocation across the mitochondrial inner membrane and couples it to the mt-Hsp70/ATP driving system. *Cell* **81**, 1085-1093, doi:S0092-8674(05)80013-3 [pii] (1995).
- 2 Rassow, J. *et al.* Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. *J Cell Biol* **127**, 1547-1556 (1994).
- 3 MacDonald, M. J. & Brown, L. J. Calcium activation of mitochondrial glycerol phosphate dehydrogenase restudied. *Arch Biochem Biophys* **326**, 79-84, doi:S0003-9861(96)90049-1 [pii] 10.1006/abbi.1996.0049 (1996).
- 4 Tatsuta, T., Model, K. & Langer, T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. *Mol Biol Cell* **16**, 248-259, doi:E04-09-0807 [pii] 10.1091/mbc.E04-09-0807 (2005).

			Q111 mito	chondria	Average	MANO	VA
	Pathway	Protoin	% of	P value,	per	Dependent	Q111 vs
гашмау		FIOLEIII	control	t-test	group,	variables,	Q7, P
					%	proteins	value
	Mim1,	VDAC1	51.0	0.0024			
g	TOM40+	VDAC2	38.0	0.0146			
rte	SAM50	SAM50	63.6	0.0040			
bd		TOM70A	61.5	0.0435		VDAC1	
<u>=</u> .		TOM40	52.6	0.0627		TOM40	
Non-TIM23		TOM22	40.7	0.1116	58	TIM22	0.025
	TOM40+	SLC25A24	67.2	0.1028		SLC25A23	
	TIM22	SLC25A23	101.9	0.9668		SLC25A24	
		SLC25A12	74.4	0.4100			
		TIM22	33.3	0.0491			
		TIM23	55.5	0.0788			
	TOM40+	PHB	72.5	0.0023			
	TIM23	TIM50	57.2	0.0131			
σ	Membrane	TIM44	37.9	0.0080			
rte	bound	GPD2	49.1	0.0004			
bo		ACADVL	81.3	0.5157			
<u>.</u>	TOM40+	OTC	22.0	0.0165	40		0.008
23	TIM23	TUFM	38.4	0.0004	49	ME2	
M	Matrix	IDH3A	46.1	0.0001			
F	soluble	CLPP	32.8	0.00001			
		OAT	49.3	0.0021			
		ME2	53.8	0.1107			

Table S7. Comparison of mitochondrial protein levels between Q7 and Q111 mitochondria.

note:

MANOVA *P*-value was for Q7 vs. Q111 and when considering the listed proteins together. One of the assumptions of MANOVA analysis is that there should be no collinearity among the dependent variables; thus, highly correlated dependent variables (correlation coefficient > 0.8) were removed from the comparison. Average per group – average value for group of TIM23-imported and non-TIM23 imported proteins.

Table S8. Comparison of mitochondrial protein levels between Control and HD grade 2 striatum.

	Pathway	Protein	HD2 S	Striatum	AVRG	MANOVA		HD2 Striatum SM		AVRG	MANOVA	
			1	<u>NS</u>	per					per		
			% of	Р	group,	Dependent	NS HD2	% of	P value,	group,	Dependent	SM HD2
			contr	value,	%	variables,	VS	control	t-test	%	variables,	VS
			ol	t-test		proteins	Control,				proteins	Control,
							P value					P value
	Mim1,	VDAC1	95.9	0.6328		VDAC2		104.3	0.7960		VDAC2	
	10M40+	VDAC2	80.7	0.1295		SAM50		120.2	0.4474		SAM50	
p	SAM50	SAM50	118.6	0.1317		TOM70A		122.5	0.0198		TOM70A	
Inte		TOM70A	47.3	0.0180		TOM40		55.7	0.0353		TOM40	
bc		TOM40	117.8	0.1102		SLC25A23		100.6	0.9591		SLC25A23	
iπ		10M22	82.4	0.3616	92	SLC25A12	0.019	76.5	0.1052	97	SLC25A24	0.005
IM23	10M40+	SLC25A24	123.1	0.1616		TIM22 TIM23	121.4	0.0997		SLC25A12		
	TIM22	SLC25A23	87.9	0.1171				86.3 0.0	0.0014		TIM23	
Т-		SLC25A12	95.6	0.5754				103.4	0.7437			
lor		TIM23	73.9	0.5945				75.8	0.5774			
2		TIM22	94.2	0.0218				95.0	0.0196			
	TOM40+	PHB	86.5	0.0632		PHB		106.1	0.2888		PHB	
	TIM23	TIM50	55.8	0.0474		TIM44		61.1	0.0110		TIM50	
	Membran	TIM44	62.6	0.0278		GPD2		77.5	0.1529		TIM44	
	e bound	GPD2	97.6	0.7661		ACADVL		83.4	0.0177		GPD2	
σ		ACADVL	137.8	0.1339		CLPP		155.5	0.0540		OTC	
rte	TOM40+	OTC	66.1	0.0080	82	OAT	0.003	81.6	0.1736	93		0.035
bo	TIM23	TUFM	70.5	0.0082		ME2		80.1	0.2142			
.ш	Matrix	IDH3A	62.5	0.0235				91.8	0.6529			
23	soluble	CLPP	56.8	0.1188				97.7	0.9063			
W		OAT	80.2	0.5163				76.2	0.3597			
F		ME2	122.4	0.3387				107.0	0.7542			

note:

MANOVA P-value was for control vs. HD when considering the listed proteins together. NS – nonsynaptosomal mitochondria, SM – synaptosomal mitochondria additionally purified with MACS kit. One of the assumptions of MANOVA analysis is that there should be no collinearity among the dependent variables; thus, highly correlated dependent variables (correlation coefficient > 0.8) were removed from the comparison. Average (AVRG) per group – average value for group of TIM23-imported and non-TIM23 imported proteins.

Table S9. Comparison of mitochondrial protein levels between Control and HD grade 4 cortex.

	Pathway	Protein	HD4	Cortex	AVRG	MANOVA		HD4 Cortex SM		AVRG	MANOVA	
			1	NS	per					per		
			% of	Р	group,	Dependent	NS HD4	% of	P value,	group,	Dependent	SM HD4
			contr	value,	%	variables,	VS	control	t-test	%	variables,	VS
			ol	t-test		proteins	Control,				proteins	Control,
							<i>P</i> value					<i>P</i> value
	Mim1,	VDAC1	98.2	0.9278		VDAC1		89.8	0.5986		VDAC2	
	TOM40+	VDAC2	95.9	0.6962		VDAC2		85.8	0.4531		SAM50	
σ	SAM50	SAM50	76.2	0.0113		SAM50		57.6	0.0077		TOM70A	
rte		TOM70A	73.6	0.1768		TOM70A		53.2	0.0597		TOM40	
od		TOM40	123.6	0.0769		TOM22		113.9	0.5481		SLC25A23	
<u>.</u>		TOM22	183.0	0.0003	118	SLC25A23	0.002	91.1	0.6780	88	SLC25A24	0.326
M23	TOM40+	SLC25A24	143.2	0.1057		SLC25A24		100.7	0.9765		SLC25A12	
	TIM22	SLC25A23	77.4	0.3464		SLC25A12		71.7	0.0854		TIM23	
н Ч		SLC25A12	119.5	0.2396				110.3	0.4861			
lor		TIM23	161.7	0.0360				105.1	0.4433			
2		TIM22	147.8	0.0052				90.4	0.7160			
	TOM40+	PHB	97.1	0.8751		TIM50		104.2	0.6806		PHB	
	TIM23	TIM50	76.3	0.4604		TIM44		48.7	0.0516		TIM44	
	Membran	TIM44	41.9	0.1271		GPD2		66.9	0.0435		ACADVL	
	e bound	GPD2	90.8	0.4114		ACADVL		101.2	0.9299		OTC	
σ		ACADVL	73.1	0.1678		OTC		73.6	0.3016		CLPP	
rte	TOM40+	OTC	96.2	0.8486	95	TUFM	0.309	35.8	0.0068	76	ME2	0.003
od	TIM23	TUFM	93.1	0.5670		CLPP		89.0	0.5790			
.ш	Matrix	IDH3A	130.4	0.1821		ME2		97.0	0.8878			
23	soluble	CLPP	219.2	0.0070				84.7	0.5665			
Ň		OAT	65.1	0.3642				64.2	0.1102			
L		ME2	60.9	0.1013				65.8	0.1423			

note:

MANOVA P-value was for control vs. HD when considering the listed proteins together. NS – nonsynaptosomal mitochondria, SM – synaptosomal mitochondria additionally purified with MACS kit. One of the assumptions of MANOVA analysis is that there should be no collinearity among the dependent variables; thus, highly correlated dependent variables (correlation coefficient > 0.8) were removed from the comparison. Average (AVRG) per group – average value for group of TIM23-imported and non-TIM23 imported proteins.

Table S10. List of antibodies.

Antibody	Vendor	Catalog #	Description	Dilution	Notes				
Primary:									
Anti-polyglutamine	Millipore	MAB1574	Mouse monoclonal	1:5000					
Anti-ACADVL	AbCam	ab54698	Mouse monoclonal	1:1000	Hm samples				
Anti-ACADVL	AbCam	ab155138	Rabbit polyclonal	1:500	Ms samples				
Anti-ACO2	AbCam	Ab110321	Mouse monoclonal	1:2000					
Anti-ATP5A	AbCam	ab14748	Mouse monoclonal	1:5000					
Anti-CALR	Millipore	MABT145	Rabbit monoclonal	1:10.000					
Anti-CAV2	AbCam	ab133484	Rabbit monoclonal	1:5000					
Anti-CLPP	AbCam	ab124822	Rabbit monoclonal	1:5000					
Anti-DIABLO	AbCam	ab32023	Rabbit monoclonal	1:1000					
Anti-FLAG	Sigma	F1804	Mouse monoclonal	1:1000					
Anti-GAD1	Sigma	SAB4501074	Rabbit polyclonal	1:1000					
Anti-GPD2	AbCam	ab188585	Rabbit monoclonal	1:5000					
Anti-HTT	AbCam	ab109115	Rabbit monoclonal	1:5000					
Anti-HTT	Millipore	MAB2166	Mouse monoclonal	1:1000					
Anti-IHD3A	Proteintech	15909-1-AP	Rabbit polyclonal	1:1000					
Anti-LAMP1	AbCam	ab13523	Mouse monoclonal	1:1000	Ms samples				
Anti-LAMP1	AbCam	ab108597	Rabbit monoclonal	1:1000	Hm samples				
Anti-ME2	AbCam	ab139686	Rabbit monoclonal	1:5000					
Anti-MIA40	Proteintech	21090-1-AP	Rabbit polyclonal	1:1000					
Anti-mtCO1	AbCam	ab14705	Mouse monoclonal	1:2000					
Anti-OAT	AbCam	ab100845	Mouse monoclonal	1:500					
Anti-OTC	AbCam	ab228646	Rabbit polyclonal	1:1000	Hm samples				
Anti-OTC	Sigma	HPA000243	Rabbit polyclonal	1:500	Ms samples				
Anti-polyQ	Millipore	MAB1574	Mouse monoclonal	1:1000					
Anti-RCAS1	Cell Signaling	#12290	Rabbit monoclonal	1:1000					
Anti-SAMM50	AbCam	ab133709	Rabbit monoclonal	1:1000					
Anti-SLC25A23	Santa Cruz	sc-377109	Mouse monoclonal	1:200					
	Biotechnology								
Anti-SLC25A24	AbCam	ab68796	Mouse polyclonal	1:1000	Hm samples				
Anti-SLC25A12	AbCam	Ab200201	Rabbit monoclonal	1:1000					
Anti-SLC25A10	Millipore	MABN457	Mouse monoclonal	1:1000					
Anti-TIMM22	AbCam	Ab167423	Rabbit monoclonal	1:1000					
Anti-TIMM23	BD Bioscience	611222	Mouse monoclonal	1:2000					
Anti-TIMM44	AbCam	ab194829	Rabbit monoclonal	1:1000	Hm samples				
Anti-TIMM44	Proteintech	66149-1-lg	Mouse monoclonal	1:1000	Ms samples				
Anti-TIMM50	AbCam	ab109436	Rabbit monoclonal	1:2000					
Anti-TOMM20	Santa Cruz	sc-11415	Rabbit polyclonal	1:2000					
	Biotechnology								
Anti-TOMM22	Proteintech	11278-1-AP	Rabbit polyclonal	1:1000					
Anti-TOMM40	Santa Cruz	D-2	Mouse monoclonal	1:1000	Hm samples				
	Biotechnology	40400 4 45	Dahlatinat	4.4000					
	Proteintech	18409-1-AP	Rabbit polyclonal	1:1000	ivis samples				
Anti-TOMM/0A	AbCam	ab83841	Rabbit polyclonal	1:1000					

Anti-TUBA	Sigma	T5168	Mouse monoclonal	1:10.000
Anti-VDAC1	Millipore	AB10527	Rabbit polyclonal	1:2500
Anti-VDAC2	AbCam	ab155803	Rabbit polyclonal	1:1000
Secondary:				
IRDye 800CW	Li-Cor	926-32211	Goat	1:15.000
Goat anti-Rabbit				
IRDye 800CW	Li-Cor	926-32210	Goat	1:15.000
Goat anti-Mouse				
IRDye 680LT Goat	Li-Cor	926-68021	Goat	1:15.000
anti-Rabbit				
IRDye 680LT Goat	Li-Cor	926-68020	Goat	1:15.000
anti-Mouse				

Materials and methods

Plasmids and recombinant proteins preparation. Plasmid constructs pGEX-4T3-HTTexon1-23Q and -HTTexon1-97Q for bacterial expression of GST-fused HTT fragments were generated as described (1). Recombinant mouse subunits of TIM23 complex (TIM23, TIM50, TIM17A, TIM17B) were generated by cDNA subcloning into pGEX-4T3 vector (GE Healthcare). GST-fused HTT exon 1 proteins (GST-HTT exon1-23Q, -97Q) and subunits of TIM23 complex (GST-TIM23, -TIM50, - TIM17A, -TIM17B), and GST control were purified from transformed One Shot[™] BL21 Star[™] (DE3) cells (Life Technologies) as described (1). GST-TIM23, GST-TIM50, GST-TIM17A, GST-TIM17B proteins bound to Glutathione Sepharose 4B beads (GE Healthcare) were digested with Thrombin protease (GE Healthcare) overnight at 25°C and eluted with PBS to remove GST proteins and concentrated using Amicon®Ultra-10K (Millipore) filter.

The wtHTT (HTT171-Q17) and mHTT (HTT171-Q68) fragments were overexpressed in HEK293t cells using pcDNA3.1+ vectors for eukaryotic expression encoding 171 amino acids long N-terminal sequence of human HTT labeled with flag-tag (DYKDDDDK) at the C-terminus.

Mitochondria fractionation from cell lines. Immediately prior to each experiment, cells were collected by trypsinization, washed twice in ice-cold low-salt buffer (138 mM NaCl, 2.7 mM KCl, 10 mM HEPES, pH 8 adjusted with NaOH) and subjected to mitochondria fractionation using Mitochondria Isolation MACS Kit (Miltenyi Biotec) according to the manufacturer's protocol. Briefly, cells were ruptured with 27G-needled syringe in ice-cold cell-lysis buffer provided with the kit (1 mL cell-lysis buffer per 10x10⁷ cells) and incubated with iron nano-beads conjugated with anti-TOM22 antibody in provided buffer for 1 h at 4°C. The suspension was applied to a column placed in magnetic field of the MACS Separator, which retains magnetically labeled mitochondria. Mitochondria then were eluted with isolation buffer (225 mM Sucrose, 75 mM Mannitol, 10 mM HEPES, pH 8 adjusted with NaOH) upon column removal from the magnetic field and pelleted at 13,000 g for 4 min. **Immunoblotting.** Mitochondrial lysates were used to prepare samples with Laemmli buffer (BioRad) augmented with 10% β-Mercaptoethanol (BioRad). Before loading into BoltTM 4-12% Bis-Tris Plus gels (Invitrogen), samples were heated at 55°C for 10 min. Proteins were separated at 155 V in MES SDS Running buffer (Life Technologies) and transferred to Immobilon®-FL PVDF membrane (EMD Millipore) overnight at 35 V in 1X TG buffer (BioRad) supplemented with 10% methanol at 45 V and 4°C. PVDF membranes were blocked in SEA Blocking buffer (Thermo Scientific) for 1 h at ambient temperature. Primary antibodies were reconstituted in SEA Blocking buffer and incubated at 4°C overnight. The full list of primary antibodies and dilutions used in this study is indicated in SI Appendix Table S10. IRDye infrared fluorescent dye-labeled secondary antibodies (LI-COR Biosciences)

28

detectable at 700 or 800 nm were reconstituted (1:15.000) in SEA Blocking buffer and applied for 1 h at ambient temperature. All secondary antibodies are listed in *SI Appendix* Table S10. Both primary and secondary antibodies were washed 3 times with 1X PBST for 15 min per wash. Final PVFD-FL membranes were scanned on Odyssey CLx near-infrared fluorescence imager (LI-COR Biosciences) to visualize protein bands. The signal intensity of protein bands was analyzed in Image Studio Version 2.1 software. Images were converted to monochrome for presentation.

1. Yano H, et al. (2014) Inhibition of mitochondrial protein import by mutant huntingtin. Nature neuroscience 17(6):822-831.