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[. Materials and Methods

Materials

Glycolic acid was purchased from Sigma-Aldrich (#124737). L-lactic acid was purchased from TCI
America (L0165). L-Arginine monohydrochloride was purchased from Alfa Aesar (#A14730). L-Histidine
monohydrochloride monohydrate (H8125 Sigma), L-Lysine monohydrochloride (L5626 Sigma-Aldrich),
D-Lysine monohydrochloride (L5876 Sigma-Aldrich), L-2-Amino-3-guanidinopropionic acid
hydrochloride (A5402 Sigma-Aldrich) and L-Ornithine monohydrochloride (02375 Sigma) were
purchased from Sigma-Aldrich. L-2,4-diaminobutyric acid dihydrochloride (Dab) was purchased from
BeanTown Chemical (#223705). L-2,3-Diaminopropionic acid monohydrochloride was purchased from
Alfa Aesar (#H62128). Cyclic 2,4-diaminobutyric acid (3-Aminopyrrolidin-2-one) (#EN300-119051) and
H-Dpr(Me),-OH-2HCI (#EN300-365749) were purchased from Enamine. Cyclic Ornithine (3-
Aminopiperidine-2-one) was purchased from TCI America (#A3171). H-Lys(Me),-OH-HCI was purchased
from BACHEM (#E-1810). H-Lys(Me);-OH-HCI was purchased from Chem-Impex International, Inc.

Synthesis of L-Lys-glycolic acid

NHBoc NHBoc N
O~ "CFg
0 (0]
. 9 TFA FsC)kO_ o
BocHN OH BocHN OQJ\OtBu HaN OQJ\OH
0 ACN, K,CO4 o o
Boc-L-Lys(Boc)-OH Boc-L-Lys(Boc)-glyc-OtBu L-Lys-glyc-OH.2TFA

The dicyclohexylammonium salt Boc-L-Lys(Boc)-OH.DCHA (Novabiochem, 0.528 g, 1.0 mmol)
was first converted to the free acid as follows. The compound was suspended in EtOAc (10 mL). Cold
aqueous 5% H3PO4 was added until the pH of the aqueous layer was ~3. The mixture was shaken to dissolve
the solid, and the organic layer was removed. The aqueous layer was extracted twice with 5 mL EtOAc,
and the organic layers were combined, washed twice with 1 % H3PO4 and 3X with water, and dried over
MgSO04. The solvent was removed by evaporation to give the free acid in quantitative yield as a clear oil.
The compound was dissolved in acetonitrile (30 mL). Next, tert-butylbromoacetate (0.205 g, 1.05 mmol)
was added, followed by K,COs (0.746 g, 5.4 mmol). The suspension became a thick slurry that was stirred
vigorously for 13 h at room temperature. TLC (10% MeOH/DCM, KMnOj stain) indicated the reaction
was complete. The suspension was filtered and rotovapped to yield an oil. This material was dissolved in
EtOAc, washed twice with sat NaHCOs, twice with 0.1 N HCI, and once with brine. The organic layer was
dried over MgSO, and rotovapped to give 0.43 g of an oil. Neat TFA (10 mL) was added, and the solution



was allowed to stand for 45 min. After this time, the solvent was evaporated, water (10 mL) was added, and
the material was lyophilized to yield 0.37 g (86% yield).

"H NMR (500 MHz, DMSO-d6): 8 = 8.61 (br's, 3 H), 7.92 (br s, 3 H), 4.79-4.69 (q, 2 H), 4.13 (br
t, 1 H), 2.79-2.73 (m, 2 H), 1.92-1.80 (m, 2 H), 1.61-1.41 (m, 4 H). 13C NMR (126 MHz, DMSO-d6): 6 =
169.73, 168.83, 62.16, 51.93, 38.80, 29.89, 26.78, 21.45. High resolution ESI-TOF MS (m/z): calc'd
205.1183 for CSH17N204, obs'd 205.1188.

Synthesis of tBuO-glyc-L-Lys(Boc)-OtBu

NHBoc NHBoc
@)
.0
N OB By ~on O\)OJ\ OtBu
HoN tBu” N
(o) EDC, HOBt H o
L-Lys(Boc)-OtBu-HCI tBuO-glyc-L-Lys(Boc)-OtBu

Tert-butoxy acetic acid (Combi-Blocks, 0.145 g, 1.1 mmol) was dissolved in DCM (4 mL). Next,
HOBt.H,O (0.168 g, 1.1 mmol) and EDC.HCI (0.211 g, 1.1 mmol) were added. This was followed by the
addition of H-Lys(Boc)-OtBu.HCI (Chem-Impex, 0.339 g, 1.0 mmol) and triethylamine (0.21 mL, 1.5
mmol). The yellowish solution was stirred at room temperature for 14 h. The solution was diluted with
DCM (50 mL), washed twice with sat. NaHCO3, twice with sat. KHSOs, and brine. After drying over
MgSOs, the solvent was evaporated to a clear oil. The compound was purified by preparative HPLC and
lyophilized to give 0.40 g of an oil (96% yield).

"H NMR (500 MHz, DMSO-d6): = 7.48-7.46 (d, 1H), 6.77-6.75 (t, 1H), 4.20-4.16 (m, 1H), 3.82
(s, 2H), 2.91-2.86 (m, 2H), 1.73-1.61 (m, 2H), 1.41 (s, 9H), 1.39-1.33 (m, 11H), 1.26-1.21 (m, 2H), 1.18
(s, 9H). 13C NMR (126 MHz, DMSO-d6): 6 = 171.42, 170.45, 156.04, 81.35, 77.76, 74.54, 62.27, 52.32,
31.39,29.48, 28.73, 28.08, 27.58, 22.90.



Synthesis of glyc-L-Lys-OH.TFA

(0]
+
NHBoc NH3 _O)J\CF3
TFA
(0] 0]
tBu/O\)J\H OtBu HO\)J\H OH
o] (0]
tBuO-glyc-L-Lys(Boc)-OtBu glyc-L-Lys-OH.TFA

tBuO-glyc-L-Lys(Boc)-OtBu (0.40 g) was dissolved in TFA (2 mL) and allowed to stand at room
temperature for 1 h. The solvent was evaporated, and 5 mL water was added to residue. After lyophilization,
307 mg product was obtained (quantitative yield).

"H NMR (500 MHz, DMSO): § = 7.75-7.74 (m, 4H), 4.28-4.24 (m, 1H), 3.85 (s, 2H), 2.80-2.74
(m, 2H), 1.80-1.65 (m, 2H), 1.59-1.48 (m, 2H), 1.37-1.29 (m, 2H). 13C NMR (126 MHz, DMSO): 6 =
173.79, 172.30, 61.67, 51.48, 39.07, 31.07, 27.05, 22.69. High resolution ESI-TOF MS (m/z): calc'd
205.1183 for C8H17N204, obs'd 205.1183

Synthesis of Boc-L-Lys(glyc-OtBu)-OtBu

o]

NH,.HCI HN Aoy
o]
o M
OtBu tBu OH OtBu
BocHN BocHN
o) EDC, HOBt o)

Boc-L-Lys-OtBu.HCI Boc-L-Lys(glyc-OtBu)-OtBu

Tert-butoxy acetic acid (Combi-Blocks, 0.126 g, 0.95 mmol) was dissolved in DMF (4 mL). Next
were added HOBt.H,O (0.145 g, 0.95 mmol), Boc-L-Lys-OtBu.HCI (0.288 g, 0.85 mmol), and
triethylamine (0.18 mL, 1.3 mmol). EDC.HCI (0.182 g, 0.95 mmol) was added, and the clear yellowish
solution was stirred at room temperature for 16 h. The solvent was evaporated and the residue was taken
up in DCM (30 mL). This was washed twice with sat. NaHCO3, twice with sat. KHSO4, and once with
brine. After drying over MgSQs, the solution was filtered and evaporated to a clear oil that was purified by

preparative HPLC. Lyophilization yielded 106 mg pure compound (30% yield).



'H NMR (500 MHz, DMSO): § = 7.50-7.48 (t, 1H), 7.07-7.06 (d, 1H), 3.75-3.68 (m, 3H), 3.12-
3.06 (m, 2H), 1.60-1.52 (m, 2H), 1.39-1.38 (m, 18H), 1.31-1.25 (m, 2H), 1.17 (s, 9H). 13C NMR (126
MHz, DMSO): § = 172.40, 170.32, 156.03, 80.58, 78.42, 74.25, 62.45, 54.82, 38.21, 30.79, 29.28, 28.66,
28.11,27.51, 23.37. ESI-LCMS (m/z): calc'd 439.55 for C21H40N206Na, obs'd 439.0.

Synthesis of L-Lys(glyc)-OH.TFA

O O
NS OtBu NSO
X
TFA FsC o
BocHN™ OB el N O
O O
Boc-L-Lys(glyc-OtBu)-OtBu L-Lys(glyc)-OH.TFA

Boc-L-Lys(glyc-OtBu)-OtBu (106 mg) was dissolved in TFA (2 mL) and allowed to stand at room
temperature for 1 h. The solvent was evaporated, and 5 mL water was added to residue. After lyophilization,
71 mg product (88% yield) was obtained.

"H NMR (500 MHz, DMSO): § = 8.26 (br s, 3H), 7.74-7.72 (t, 1H), 3.78 (br s, 1H), 3.74 (s, 2H),
3.11-3.07 (q, 2H), 1.83-1.71 (m, 2H), 1.47-1.26 (m, 4H). 13C NMR (126 MHz, DMSO): 6=172.13, 171.54,
61.88, 52.37, 38.07, 30.15, 29.21, 22.16. High resolution ESI-TOF MS (m/z): calc'd 205.1183 for
C8H17N204, obs'd 205.1185.

Synthesis of glyc-L-Orn lactam

(0]
o 0 0
H2N NH tBu/O\)LN/Q\IH _ \)J\H
H 0
(0] 0

EDC, HOBt

Tert-butoxy acetic acid (Combi-Blocks, 0.145 g, 1.1 mmol) was dissolved in DCM (4 mL). Next,
HOBt.H,0O (0.168 g, 1.1 mmol) and EDC.HCI (0.211 g, 1.1 mmol) were added. This was followed by the
addition of H-L-Orn lactam (TCI-America #A3171, 0.114 g, 1.0 mmol) and triethylamine (0.21 mL, 1.5
mmol). The solution was stirred at room temperature for 14 h. The solution was diluted with DCM (50 mL),
washed twice with sat. NaHCO3, twice with sat. KHSOy4, and brine. After drying over MgSOs, the solvent

was evaporated to yield a clear oil. The crude product was purified by preparative HPLC and concentrated



to a clear oil. The residue was dissolved in neat TFA and allowed to stand at RT for 1 h. After evaporation
of the solvent, the desired compound was purified by preparative HPLC. Lyophilization yielded 0.090 g of
a white solid (53% yield over two steps).

"H NMR (500 MHz, DMSO) 6 7.81-7.79 (d, 1H), 7.63 (br s, 1H), 4.17-4.12 (m, 1H), 3.82 (s, 2H),
3.15-3.12 (m, 2H), 2.10-2.04 (m, 1H), 1.82-1.70 (m, 2H), 1.67-1.59 (m, 1H). *C NMR (126 MHz, DMSO)
3 171.99, 170.38, 61.82, 49.19, 41.23, 27.76, 21.49. High resolution ESI-TOF MS (m/z): calc'd 173.0926
for C;H12N,O3 [M+H], obs'd 173.0925.

Synthesis of glyc-L-Dab lactam
@)

NH tBu/O\)kOH o) NH 0 NH
OV\LN TFA HO\/U\N
H,N Y EDC, HOBt tBu” H 5 H o

Tert-butoxy acetic acid (Combi-Blocks, 0.145 g, 1.1 mmol) was dissolved in DCM (4 mL). Next,
HOBt.H20 (0.168 g, 1.1 mmol) and EDC.HCI (0.211 g, 1.1 mmol) were added. This was followed by the
addition of H-L-Dab lactam (Enamine, 0.100 g, 1.0 mmol) and triethylamine (0.21 mL, 1.5 mmol). The

solution was stirred at room temperature for 12 h. The solution was diluted with DCM (50 mL), washed
twice with sat. NaHCOs, twice with sat. KHSOs, and brine. After drying over MgSQs, the solvent was
evaporated to yield a clear oil. The crude product was purified by preparative HPLC and concentrated to a
clear oil. The residue was dissolved in neat TFA and allowed to stand at RT for 1 h. After evaporation of
the TFA, toluene was added to the residue and then evaporated to azeotropically remove residual TFA. The
residue was then dissolved in water and lyophilized to yield 0.104 g of a white solid (66% yield over two
steps).

"H NMR (500 MHz, DMSO) & 7.87-7.85 (d, 1H), 7.80 (br s, 1H), 4.35-4.29 (m, 1H), 3.83 (s, 2H),
3.19-3.15 (m, 2H), 2.31-2.26 (m, 1H), 1.96-1.88 (m, 1H). *C NMR (126 MHz, DMSO) & 174.84, 172.41,
61.84, 49.60, 38.51, 28.63. High resolution ESI-TOF MS (m/z): calc'd 159.0770 for CsHioN2O3 [M+H]
obs'd 159.0766.

Synthesis of tBuO-glyc-L-Dab(Boc)-OMe

NHBoc o NHBoc
/O\)k (0]
tBu OH \)J\
OMe 0 OMe

10



Tert-butoxy acetic acid (Combi-Blocks, 0.145 g, 1.1 mmol) was dissolved in DCM (4 mL). Next,
HOBt.H20 (0.168 g, 1.1 mmol) and EDC.HCI (0.211 g, 1.1 mmol) were added. This was followed by the
addition of H-L-Dab(Boc)-OMe (Chem-Impex, 0.269 g, 1.0 mmol) and triethylamine (0.21 mL, 1.5 mmol).
The solution was stirred at room temperature for 12 h. The solution was diluted with DCM (50 mL), washed
twice with sat. NaHCOs, twice with sat. KHSOs, and brine. After drying over MgSQs, the solvent was
evaporated to yield a clear oil. The crude product was purified by preparative HPLC and lyophilized to
yield 0.33 g of a white foamy solid (95% yield).

"H NMR (500 MHz, DMSO) & 7.81-7.80 (d, 1H), 6.80-6.78 (t, 1H), 4.37-4.33 (m, 1H), 3.82 (s,
2H), 3.63 (s, 3H), 3.03-2.96 (m, 1H), 2.93-2.86 (m, 1H), 1.93-1.78 (m, 2H), 1.37 (s, 9H), 1.19 (s, 9H). 13C
NMR (126 MHz, DMSO) 6 172.54, 170.83, 156.02, 78.09, 74.57, 62.27, 52.43,49.64, 37.08, 31.33, 28.69,
27.52. ESI-TOF MS (m/z): calc'd 369.2 for C1sH30N,OsNa [M+Na], obs'd 369.2.

Synthesis of glyc-L-Dab-OH.TFA

0
FgcJ\o-
NHBoc *NHg
1. LIOH,
0 H,O/MeOH 0
tBu/o\)LN oMe — — HO\)J\N OH
H o H o

tBuO-glyc-L-Dab(Boc)-OMe (0.3 g, 0.87 mmol) was dissolved in MeOH (5 mL). Separately,
LiOH monohydrate (0.33 g, 7.9 mmol) was dissolved in water (5 mL). These solutions were combined and
the cloudy suspension was stirred at RT for 16 h, after which the solvent was removed by rotary evaporation.
To the residue, EtOAc and 1 N HCI were added. The organic layer was removed, and the aqueous layer
was extracted again with EtOAc. The organic layers were combined, dried over MgSQOs, and evaporated to
yield an oil. This oil was dissolved in TFA (5 mL) and allowed to stand at RT for 1 h. After this time, the
TFA was removed by rotary evaporation, water was added to the residue, and the solution was lyophilized
to yield 0.21 g (83 % yield for two steps) of a pale yellow oil.

"H NMR (500 MHz, DMSO) 6 8.02-8.01 (d, 1H), 7.82 (br s, 3H), 4.40-4.34 (m, 1H), 3.87 (s, 2H),
2.85-2.78 (m, 2H), 2.13-2.05 (m, 1H), 1.98-1.89 (m, 1H). *C NMR (126 MHz, DMSO) & 172.90, 172.72,
61.70, 49.46, 36.75, 29.57. High resolution ESI-TOF MS (m/z): calc'd 177.0875 for C¢H1oN2O3; [M+H],
obs'd 177.0879.
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Synthesis of tBuO-glyc-L-Orn(Cbz)-OtBu

NHCbz NHCbz
(0]
/O\)k (0]
tBu OH \)J\
OtBu _0 OtBu

Tert-butoxy acetic acid (Combi-Blocks, 0.145 g, 1.1 mmol) was dissolved in DCM (4 mL). Next,
HOBt.H,O (0.168 g, 1.1 mmol) and EDC.HCI (0.211 g, 1.1 mmol) were added. This was followed by the
addition of H-L-Orn(Cbz)-OtBu (Combi-Blocks, 0.359 g, 1.0 mmol) and triethylamine (0.21 mL, 1.5
mmol). The solution was stirred at room temperature for 12 h. The solution was diluted with DCM (50 mL),
washed twice with sat. NaHCO3, twice with sat. KHSOy4, and brine. After drying over MgSOs, the solvent
was evaporated to yield a clear oil. The crude product was purified by preparative HPLC and lyophilized
to yield 0.42 g of a white solid (96% yield).

"H NMR (500 MHz, DMSO) § 7.50-7.49 (d, 1H), 7.38-7.27 (m, 6H), 5.01 (s, 2H), 4.22-4.18 (m,
1H), 3.82 (s, 2H), 3.01-2.97 (m, 2H), 1.77-1.62 (m, 2H), 1.41 (m, 11H), 1.18 (s, 9H). '*C NMR (126 MHz,
DMSO0) 6 171.30, 170.47, 156.55, 137.73, 128.80, 128.21, 128.18, 81.40, 74.54, 65.58, 62.27, 52.18, 29.05,
28.07,27.57, 26.15. ESI-TOF MS (m/z): calc'd 437.5 for C23H37N206 [M+H], obs'd 437.2.

Synthesis of glyc-L-Orn-OH. TFA

+

NHCbz NH; 0

O 1. Ho, PA/C O FSCJ\O_
. Mo,
By O~ OB Ho L A _oH
H o

2. TFA
H oo

tBuO-glyc-L-Orn(Cbz)-OtBu (0.42 g, 0.96 mmol) was dissolved in 200 proof EtOH (10 mL). This
solution was added to a flask containing Pd/C (0.1 g, 5 wt%, wet support, Degussa E101 NOW).
(CAUTION: Hydrogenation reactions pose a significant fire hazard due to the use of flammable reagents,
solvents, and catalysts. Such reactions should only be carried out by trained personnel.) Hydrogen gas was
introduced at atmospheric pressure, and the reaction was stirred at room temperature for 20 minutes, after
which time HPLC indicated complete removal of the Cbz group. The mixture was filtered through Celite
and the solvent was evaporated to yield a clear oil. The desired product was purified by preparative HPLC,
concentrated to an oil, and dissolved in TFA (5 mL). After 1 h at room temperature, the TFA was removed
by evaporation and the residue was lyophilized to yield 0.256 g of the desired compound as an oil (88%
yield for 2 steps).
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'H NMR (500 MHz, DMSO) & 7.81-7.76 (m, 4H), 4.31-4.27 (m, 1H), 3.86 (s, 2H), 2.83-2.76 (m,
2H), 1.88-1.81 (m, 1H), 1.75-1.67 (m, 1H), 1.59-1.53 (m, 2H). *C NMR (126 MHz, DMSO) & 173.53,
172.32, 61.67, 51.21, 38.96, 28.57, 24.09. High resolution ESI-TOF MS (m/z): calc'd 191.1032 for
C7H,sN>04 [M+H], obs'd 191.1031.

Synthesis of glyc-L-Lys-glyc.TFA

hiy
NH(Boc) 5 NH(Boc) 5 FC™ 0,
1) tBu/O\)J\OH o 1) Br\)J\OtBu o o
EDC, HOBt ACN, K,CO
HCIH,N OMe 5\ "liom, tBu’O\)J\N OH 2) TFA — HO\)J\N O\)J\OH
o H,0/MeOH H o H o

Tert-butoxy acetic acid (Combi-Blocks, 0.436 g, 3.13mmol) was dissolved in DCM (12 mL). Next,
HOBt.H,0O (0.505 g, 3.3 mmol) and EDC.HCI (0.633 g, 3.3 mmol) were added. This was followed by the
addition of H-L-Lys(Boc)-OMe.HCI (Combi-Blocks, 0.890 g, 3.0 mmol) and triethylamine (0.62 mL, 4.5
mmol). The solution was stirred at room temperature for 16 h. The solution was diluted with DCM (150
mL), washed 4X with sat. NaHCO3, 3X with 1N HCl, and brine. After drying over MgSQs, the solvent was
evaporated to yield 1.1 g (98%) of tBuO-glyc-L-Lys(Boc)-OMe as a pale yellow oil, which was used
directly in the next step. The obtained compound was dissolved in MeOH (8 mL). To this solution was
added LiOH.H,O (0.42 g, 10 mmol) dissolved in water (8 mL). The suspension was stirred at room
temperature for 1 h, after which time HPLC indicated complete removal of the methyl ester. The solvent
was evaporated, and the residue was taken up in 1 N HCI and EtOAc. The organic layer was removed, and
the aqueous layer was extracted once more with EtOAc. The organic layers were combined, washed with
brine, and dried over MgSQO4. Removal of the solvent yielded 1.08 g of an oil (quant. yield). This oil was
dissolved in acetonitrile (60 mL), to which was added tert-butyl bromoacetate (0.614 g, 3.15 mmol) and
K>COs (2.24 g, 16.2 mmol). The suspension was stirred vigorously for 14 h at room temperature. The
mixture was filtered and the supernatant was removed by evaporation. The residue was taken up in EtOAc,
washed twice with sat. NaHCOs, twice with 0.1 N HCI, and brine. After drying over MgSQs, the solvent
was evaporated to yield 1.228 g of tBuO-glyc-L-Lys(Boc)-glyc-OtBu as an oil (86%). A portion of the
product (0.13 g, 0.27 mmol) was dissolved in TFA (3 mL) and allowed to stand at room temperature for 1
h. After this time, the solvent was removed by evaporation and the residue was purified by preparative
HPLC. After evaporation of the solvent, the compound was lyophilized to yield 0.083 g (81% yield, 68%
over 4 steps) of glyc-L-Lys-glyc. TFA as an oil.
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"HNMR (500 MHz, DMSO) 8 7.97-7.96 (d, 1H), 7.76 (br s, 3H), 4.66-4.56 (q, 2H), 4.43-4.39 (m,
1H), 3.87 (s, 2H), 2.80-2.74 (m, 2H), 1.86-1.72 (m, 2H), 1.60-1.49 (m, 2H), 1.45-1.33 (m, 2H). '*C NMR
(126 MHz, DMSO) & 172.56, 171.96, 169.26, 61.64, 61.42, 51.38, 39.05, 30.76, 26.98, 22.58. High
resolution ESI-TOF MS (m/z): calc'd 263.1243 for C10Hi9N2Os [M+H], obs'd 263.1246.

Dry-down reactions and NMR spectroscopy
A description of the dry-down reactions and NMR spectroscopy is presented in the Materials and

Methods section in the main text.

IR spectroscopy

IR data was obtained on a Thermo Nicolet 4700 FTIR Spectrometer. Prior to analysis, samples (5
ul, 100 mM) were placed on hydrophilic PVDF Membranes with a pore size of 0.2pum (Pall Laboratory,
#66477) and allowed to dry. Dried samples were analyzed in an Attenuated Total Reflectance (ATR)
sample chamber. Spectra were background-subtracted from 400 to 4000 cm™ and signal-averaged (16 scans

per spectrum). Data processing was performed using Excel software.

Degradation assays using hydrolytic enzymes

To confirm the existence of both esters and amides within the product mixtures, glycolic acid and
Lysine were dried at 85°C for seven days and the resulting depsipeptides were subjected to incubation with
the trypsin peptidase (T1763 Sigma, Sigma-Aldrich) or an esterase from porcine liver (E3019 sigma,
Sigma-Aldrich) for 19 hr at 37°C. Samples were analyzed before and after treatment with the enzymes by
C18-HPLC column.

HPLC analysis

HPLC analyses were conducted on an Agilent 1260 Infinity HPLC system. Products of dry-down
reactions were separated using either a Kinetex XB-C18 column (150 x 2.1 mm, 2.6 um particle size) or
SeQuant ZIC-HILIC column (150 x 2.1 mm, 3.5 pm particle size). For the C18 column, the flow rate was
0.3 mL min! and the column temperature was held at 25 °C. The mobile phase was water (0.1% formic
acid) /acetonitrile. The gradient method started with 100% water for the first 5 minutes and ramped to 55%
acetonitrile in 25 minutes. The acetonitrile concentration ramped to 100% immediately and was held as
such for 10 minutes before set back to 100% water for column equilibration for 15 min. For the SeQuant
ZIC-HILIC column, the flow rate was 0.2 mL min! and the column temperature was held at 40 °C. The
mobile phase was water (0.5% formic acid) /acetonitrile. The gradient method started with 5% water and

ramped to 50% water over 25 min. The mobile phase composition was held at 50% water for 5 min before
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returned to 5% water for column equilibration for 15 min. Samples (10 ul for C18 and 5 ul for HILIC) were
injected and peptides/depsipeptides were detected at 210 nm. For separation using the HILIC column, the
aqueous sample solutions were diluted 2-fold with acetonitrile to 50% v/v acetonitrile/water.

Preparative reverse-phase (RP)-HPLC for purification of NMR standards involved a Thermo
BioBasic-18 C18 column connected to a Hitachi D-7000 HPLC system. Binary gradients of solvent A (99%
H>0, 0.9% acetonitrile, 0.1% TFA) and solvent B (90% acetonitrile, 9.9% H>0, 0.07% TFA) were
employed for preparative HPLC.

Processing of HPLC spectra was carried out using Igor Pro 6.3. Species identity was verified using
LCMS on a 6130 Single Quadrupole Mass Spectrometer attached to an Agilent 1200 HPLC system using
the Kinetex XB-C18 column or the SeQuant ZIC-HILIC column.

Ninhydrin assay

An aliquot of 50 ul of the dry-down reaction that contained glycolic acid and Lysine (100 mM referring to
original Lysine monomer concentration) was diluted with water to 10 mM and dialyzed using a Micro
Float-A-Lyzer with a cutoff of 0.5-1.0 kD (Spectrum Laboratories, #F235063) at RT four times against 4
L of water. As a negative control, similar protocol was followed for equimolar solution of Lysine monomer,
to ensure that monomeric Lysine is dialyzed away. Following dialysis, samples were lyophilized and
resuspended in 50 pl water, vortexed and sonicated in ice. For ninhydrin assay, dialyzed samples as well as
negative controls (water, fresh or dried glycolic acid) and positive controls (Lysine dilutions) were tested
in triplicates. Samples (15 ul) were placed in a 96-well plate and diluted with water (25 pl) prior to addition
of the ninhydrin reagent (5% m/v) to each well (10 pl). The plate was covered with a sealing tape and boiled
in water for three minutes. Prior to analysis, samples were diluted 2-fold with water and the absorbance

was measured 480 nm using a BioTek Synergy H4 Hybrid plate reader.
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II. Supplemental Figures Referenced in Main Text
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Figure S1. ESI-MS of a dry-down reaction of glc and Lys supports the formation of depsipeptides.
glc and Lys were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-

mode ESI-MS, indicating a variety of depsipeptides. glc is labeled in red, Lys is labeled in green. All labeled

species correspond to [M-H]" ions.
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Figure S2. ESI-MS of a dry-down reaction of glc and Dpr supports the formation of depsipeptides.
glc and Dpr were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. glc is labeled in red,
Dpr is labeled in green. Labeled species correspond to [M—H]  ions (a) or [M+H]" ions (b).
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Figure S3. ESI-MS of a dry-down reaction of glc and Dab supports the formation of depsipeptides.
glc and Dab were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. glc is labeled in red,
Dab is labeled in green. Labeled species correspond to [M—H]  ions (a) or [M+H]" ions (b).
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Figure S4. ESI-MS of a dry-down reaction of glc and Orn supports the formation of depsipeptides.

glc and Orn were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-

mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. glc is labeled in red,

Orn is labeled in green. Labeled species correspond to [M—H]- ions (a) or [M+H]+ ions (b).
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Figure S5. ESI-MS of a dry-down reaction of glc and Arg supports the formation of depsipeptides.
glc and Arg were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. glc is labeled in red,
Arg is labeled in green. Labeled species correspond to [M—H] ions (a) or [M+H]" ions (b).
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Figure S6. ESI-MS of a dry-down reaction of glc and His supports the formation of depsipeptides.
glc and His were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-

mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. glc is labeled in red,
His is labeled in green. Labeled species correspond to [M—H] ions (a) or [M+H]" ions (b).
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Figure S7. ESI-MS of a dry-down reaction of lac and Dpr supports the formation of depsipeptides.
lac and Dpr were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. lac is labeled in red,
Dpr is labeled in green. Labeled species correspond to [M—H]  ions (a) or [M+H]" ions (b).
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Figure S8. ESI-MS of a dry-down reaction of lac and Dab supports the formation of depsipeptides.

lac and Dab were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-

mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. lac is labeled in red,

Dab is labeled in green. Labeled species correspond to [M—H] ions (a) or [M+H]" ions (b).
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Figure S9. ESI-MS of a dry-down reaction of lac and Orn supports the formation of depsipeptides.
lac and Orn were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. lac is labeled in red,
Orn is labeled in green. Labeled species correspond to [M—H]  ions (a) or [M+H]" ions (b).
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Figure S10. ESI-MS of a dry-down reaction of lac and Lys supports the formation of depsipeptides.
lac and Lys were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. lac is labeled in red,
Lys is labeled in green. Labeled species correspond to [M—H] ions (a) or [M+H]" ions (b).
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Figure S11. ESI-MS of a dry-down reaction of lac and Arg supports the formation of depsipeptides.
lac and Arg were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. lac is labeled in red,
Arg is labeled in green. Labeled species correspond to [M—H]  ions (a) or [M+H]" ions (b).
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Figure S12. ESI-MS of a dry-down reaction of lac and His supports the formation of depsipeptides.
lac and His were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by negative-
mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of depsipeptides. lac is labeled in red,
His is labeled in green. Labeled species correspond to [M—H] ions (a) or [M+H]" ions (b).
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Figure S13. C18-HPLC analysis verifies the formation of depsipeptides following dry-down reactions
of glc and cationic amino acids. A mixture of glc and various amino acids were dried at 85 °C for seven
days and the resulting depsipeptides were analyzed by hydrophobicity-based separation using C18-HPLC.
The presence of various peaks verifies the complexity and the abundance of many different products

following the dry-down reactions.
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Figure S14. C18-HPLC analysis verifies the formation of depsipeptides following dry-down reactions
of lac cationic amino acids. A mixture of lac and various amino acids were dried at 85 °C for seven days
and the resulting depsipeptides were analyzed by hydrophobicity-based separation using C18-HPLC. The
presence of various peaks verifies the complexity and the abundance of many different products following

the dry-down reactions.
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Figure S15. Fourier Transform Infrared Spectroscopy (FTIR) shows shifts in the C=0 band and in
the amide regions upon dry-down of glc and Lys, thus supportive of depsipeptide formation. glc and
Lys were dried at 85 °C for seven days and the resulting depsipeptides were analyzed by FTIR (a-b). The
C=0 band shifts from a free acid (1724 cm™) to an ester (1743 cm™) upon drying.! Shifts are also evident

in the amide regions (Amide I and Amide II) upon dry-down of the starting mixture.
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Figure S16. FTIR spectra changes upon dry-down of glc and Dpr support the formation of

depsipeptides. glc and Dpr were dried at 85 °C for seven days and the resulting depsipeptides were analyzed
by FTIR.
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Figure S17. FTIR spectra changes upon dry-down of glc and Dab support the formation of
depsipeptides. glc and Dab were dried at 85 °C for seven days and the resulting depsipeptides were
analyzed by FTIR.
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Figure S18. FTIR spectra changes upon dry-down of glc and Orn support the formation of
depsipeptides. glc and Orn were dried at 85 °C for seven days and the resulting depsipeptides were analyzed

by FTIR.
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Figure S19. FTIR spectra changes upon dry-down of glc and Arg support the formation of
depsipeptides. glc and Arg were dried at 85 °C for seven days and the resulting depsipeptides were analyzed
by FTIR.
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Figure S20. FTIR spectra changes upon dry-down of glc and His support the formation of
depsipeptides. glc and His were dried at 85 °C for seven days and the resulting depsipeptides were analyzed

by FTIR.
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Figure S21. FTIR spectra changes upon dry-down of lac and Dpr support the formation of
depsipeptides. lac and Dpr were dried at 85 °C for seven days and the resulting depsipeptides were analyzed
by FTIR.
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Figure S22. FTIR spectra changes upon dry-down of lac and Dab support the formation of
depsipeptides. lac and Dab were dried at 85 °C for seven days and the resulting depsipeptides were
analyzed by FTIR.
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Figure S23. FTIR spectra changes upon dry-down of lac and Orn support the formation of
depsipeptides. lac and Orn were dried at 85 °C for seven days and the resulting depsipeptides were analyzed

by FTIR.
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Figure S24. FTIR spectra changes upon dry-down of lac and Lys support the formation of
depsipeptides. lac and Lys were dried at 85 °C for seven days and the resulting depsipeptides were analyzed
by FTIR.
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Figure S25. FTIR spectra changes upon dry-down of lac and Arg support the formation of

depsipeptides. lac and Arg were dried at 85 °C for seven days and the resulting depsipeptides were analyzed

by FTIR.
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Figure S26. FTIR spectra changes upon dry-down of lac and His support the formation of
depsipeptides. lac and His were dried at 85 °C for seven days and the resulting depsipeptides were analyzed

by FTIR.
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Figure S27. Degradation via hydrolytic enzymes confirms the presence of amide and ester bonds
following a dry-down of a mixture of glc acid and Lys. glc and Lys were dried at 85 °C for seven days
and the resulting depsipeptides were subjected to incubation with the trypsin peptidase (a) or with an

esterase from porcine liver (b) for 19 hr at 37°C. Samples were analyzed by C18-HPLC column.
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Figure S28. ESI-MS and C18-HPLC analysis of control dry-down reactions of the amino acids in the
absence of hydroxy acids confirm the absence of peptides. Dpr (a), Dab (b), O (c), Lys (d), Arg (e) or
His (f) were dried at 85°C for seven days and analyzed by positive-mode ESI-MS. Labeled species
correspond to [M+H]" ions. (g) C18-HPLC analysis verifies that no peptides formed upon dry-down
reactions of the amino acids in the absence of hydroxy acids, and only the amino acid monomer peaks are

present.
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Figure S29. Ninhydrin assay verifies the cationic properties of depsipeptides in dry-down reactions
of glc acid and Lys. glc and Lys were dried at 85 °C for seven days and the resulting depsipeptides were
dialyzed using a cutoff of 0.5-1.0 kDa. As a negative control, similar protocol was followed for a solution
of Lys monomer. For ninhydrin assay, dialyzed samples as well as negative controls (water, fresh or dried
glc) and positive controls (Lys dilutions) were tested in triplicates. Free amines were detected measuring
the absorbance at 480 nm. Standard errors are indicated, and the p-value was calculated using a student t-

test.
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Figure S30. Hydrophilic interaction chromatography (HILIC) LC-MS verifies the cationic
properties of depsipeptides in dry-down reactions involving glc and Lys. A mixture of glc and Lys and
their control reactions (glc or Lys) were dried at 85 °C for seven days and the resulting depsipeptides were
analyzed by hydrophilic interaction chromatography (HILIC) using LCMS. As indicated by the retained
depsipeptides peaks and the negative-mode ESI-MS, dry-down of glc with Lys results in a variety of
hydrophilic depsipeptides.
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Figure S31. Hydrophilic interaction chromatography (HILIC) LC-MS verifies the cationic
properties of depsipeptides in dry-down reactions involving glc and cationic amino acids. A mixture
of glc and various amino acids were dried at 85 °C for seven days and the resulting depsipeptides were
analyzed by hydrophilic interaction chromatography (HILIC) using LCMS. The depsipeptides that retained
on the column exhibit hydrophilic properties.
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Figure S32. Hydrophilic interaction chromatography (HILIC) LC-MS verifies the cationic
properties of depsipeptides in dry-down reactions involving lac and cationic amino acids. A mixture
of lac and various amino acids were dried at 85 °C for seven days and the resulting depsipeptides were
analyzed by hydrophilic interaction chromatography (HILIC) using LCMS. The depsipeptides that retained
on the column exhibit hydrophilic properties.
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Figure S33. '"H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Lys. glc and Lys were dried at 85 °C for seven days and the resulting depsipeptides were
resuspended in DMSO-Ds and analyzed by '"H NMR. The 'H NMR spectrum of the mixture is shown (a)

before and (b) after the dry-down, indicating changes in the amide region upon dry-down.
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Figure S35. "TH NMR of the glc-Lys(-a)-glc standard in D20. 'H NMR spectra of a depsipeptide

standard, in which Lys is both a-amidated with glc and esterified with another glc.
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Figure S36. "TH NMR of the esterified Lys standard Lys-glc in D20. 'H NMR spectra of a depsipeptide
standard, in which Lys is esterified with glc. This product is not seen in the '"H NMR spectrum upon dry-

down of glc and Lys.
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Figure S37. 'H-'H COSY NMR spectra of dry-down reactions of glc and Lys. glc and Lys were dried
at 85 °C for seven days and the resulting depsipeptides were resuspended in D>O and analyzed by 'H-'H
COSY for peak assignments. The a-proton correlates to the 3 protons and in free Lys has a chemical shift
of 3.86 ppm. The chemical shift of the a-proton shifts down-field upon a-amidation with glc to 4.43 ppm
or to ~4.62 upon both a-amidation and esterification on its carboxylic side. The two € protons correlate with
the up-field 6 protons and have a chemical shift of 3.01 ppm when not amidated (free). The € protons shift
down-field to 3.27 ppm upon e-amidation. Cross peaks of interest are circled: black - correlation between
the a-proton and B protons of Lys that is not a-amidated; green - correlation between a-amidated protons
and their corresponding [ protons; turquoise - correlation between e-protons and o protons of Lys that are

not ¢ -amidated; red - correlation between g-amidated protons and their corresponding & protons.
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Figure S38. "H NMR spectrum supports the formation of cationic depsipeptides upon dry-down
reactions of lac and Lys. 'H NMR spectrum of a mixture of lac and Lys in D,O (a) before and (b) after
dry-down at 85 °C for seven days.
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Figure S39. '"H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Dpr. '"H NMR spectrum of a mixture of glc and Dpr in D,O (a) before and (b) after dry-down at
85 °C for seven days.
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Figure S40. "H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Dpr. glc and Dpr were dried at 85 °C for seven days and the resulting depsipeptides were
resuspended in DMSO-Ds and analyzed by '"H NMR. The 'H NMR spectrum of the mixture is shown (a)

before and (b) after the dry-down, indicating changes in the amide region upon dry-down.

55



O

-
£
" o
P ‘ prz &
. . —I
T K o »
' a S0, 4
i e b * e .
o &7 Lo
A - X
= . . ‘
s e -'7"#.- b ot B
. - e p 2 0
a5 ] P an et <
B e o By
o 4
> lat PR
A
E B

"as a8 asa a2z a0 o8 o8 o4 F2pem
Figure S41. 'H-'H COSY NMR spectra of dry-down reactions of glc and Dpr. glc and Dpr were dried
at 85 °C for seven days and the resulting depsipeptides were resuspended in DO and analyzed by 'H-'H
COSY for peak assignments. Cross peaks of interest are circled: black - correlation between the a-proton
and B protons in free Dpr; red- correlation between presumably -amidated protons and their corresponding

o protons.
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Figure S42. '"H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Dab. 'H NMR spectrum of a mixture of glc and Dab in D,O (a) before and (b) after dry-down at
85 °C for seven days.

57



Intensity

W o

T T T T T T T T T T T T T T
85 8.0 75 70 6.5 6.0 55 5.0 45 4.0 35 3.0 25 20

Chemical Shift (ppm)

100
90
Amide
protons % >
=
{_X_\ o '®
c
+60 3
£

Chemical Shift (ppm)
Figure S43. "H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
gle and Dab. glc and Dab were dried at 85 °C for seven days and the resulting depsipeptides were
resuspended in DMSO-Ds and analyzed by 'H NMR. The 'H NMR spectrum of the mixture is shown (a)

before and (b) after the dry-down, indicating changes in the amide region upon dry-down.
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Figure S44. "H-'H COSY NMR spectra of dry-down reactions of glc and Dab. glc and Dab were dried
at 85 °C for seven days and the resulting depsipeptides were resuspended in D>O and analyzed by 'H-'H
COSY for peak assignments. Cross peaks of interest are circled: black - correlation between the a-proton
and B protons of Dab that is not a-amidated; green/brown - correlations between a-amidated protons and
their corresponding [ protons; turquoise - correlation between y-protons and 3 protons of Dab that are not
y-amidated; red - correlation between the a-protons of Dab lactam monomer and their corresponding 3

protons; yellow - correlation between y-amidated protons and their corresponding 3 protons.
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Figure S45. "H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Orn. 'H NMR spectrum of a mixture of glc and Orn in D,O (a) before and (b) after dry-down at
85 °C for seven days.
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Figure S46. "H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Orn. glc and Orn were dried at 85 °C for seven days and the resulting depsipeptides were
resuspended in DMSO-Ds and analyzed by '"H NMR. The 'H NMR spectrum of the mixture is shown (a)

before and (b) after the dry-down, indicating changes in the amide region upon dry-down.
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Figure S47. "TH-'H COSY NMR spectra of dry-down reactions of glc and Orn. glc and Orn were dried
at 85 °C for seven days and the resulting depsipeptides were resuspended in D>O and analyzed by 'H-'H
COSY for peak assignments. Cross peaks of interest are circled: black — correlation between the a-proton
and B protons of Orn that is not a-amidated; green/brown - correlations between a-amidated protons and
their corresponding [ protons; turquoise - correlation between d-protons and y protons of Orn that are not
O-amidated; red - correlation between the a-protons of Orn lactam monomer and their corresponding 3

protons; yellow - correlation between 8-amidated protons and their corresponding y protons.
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Figure S48. '"H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Arg. '"H NMR spectrum of a mixture of glc and Arg in D>O (a) before and (b) after dry-down at
85 °C for seven days.
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Figure S49. "H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and Arg. glc and Arg were dried at 85 °C for seven days and the resulting depsipeptides were
resuspended in DMSO-Ds and analyzed by '"H NMR. The 'H NMR spectrum of the mixture is shown (a)

before and (b) after the dry-down, indicating changes in the amide region upon dry-down.
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Figure S50. 'H-'H COSY NMR spectra of dry-down reactions of glc and Arg. glc and Arg were dried
at 85 °C for seven days and the resulting depsipeptides were resuspended in DO and analyzed by 'H-'H
COSY for peak assignments. Cross peaks of interest are circled: black - correlation between the a-proton
and B protons of Arg that is not a-amidated; green - correlation between a-amidated protons and their
corresponding 3 protons; turquoise - correlation between d-protons and y protons of Arg that are not side

chain amidated.
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Figure S51. '"H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and His. "H NMR spectrum of a mixture of glc and His in D,O (a) before and (b) after dry-down at 85

°C for seven days.
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Figure S52. '"H NMR spectrum supports the formation of amide bonds upon dry-down reactions of
glc and His. glc and His were dried at 85 °C for seven days and the resulting depsipeptides were
resuspended in DMSO-Ds and analyzed by '"H NMR. The 'H NMR spectrum of the mixture is shown (a)

before and (b) after the dry-down, indicating changes in the amide region upon dry-down.
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Figure S53. '"H-'H COSY NMR spectra of dry-down reactions of glc and His. glc and His were dried
at 85 °C for seven days and the resulting depsipeptides were resuspended in DO and analyzed by 'H-'H
COSY for peak assignments. Cross peaks of interest are circled: black — correlation between the a-proton
and P protons of His that is not a-amidated; green/red - correlations between a-amidated protons and their

corresponding P protons.
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Figure S54. "H NMR spectrum of cyclic Dab and cyclic Orn standards confirms the formation of
lactams upon dry-down reactions involving Dab and Orn. (a) Cyclic Dab (3-Aminopyrrolidin-2-one)

and (b) cyclic Orn (3-Aminopiperidine-2-one) were resuspended in D,O and analyzed by '"H NMR.
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Figure S55. '"H NMR spectrum of glc standards containing a C-terminal lactam. '"H NMR spectrum of
glc standards, amidated to a Dab lactam (a) or to an Orn lactam (b). Standards were resuspended in D>O

and analyzed by "H NMR.
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Figure S56. "TH NMR spectrum of glc-Dab and glc-Orn standards. '"H NMR spectrum of glc standards,
a-amidated to Dab (a) or to Orn (b) with free side chains. Standards were resuspended in D,0O and analyzed

by 'H NMR.
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Figure S57. Extent of amidation on the a-amine or on the g-amine of Lys in five independent
replicates of glctLys dry-downs verifies reproducibility of the product mixtures. Amidation

percentages were quantitated by integration of '"H NMR peaks. Error bars indicate 95% confidence limits.
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Figure S58. "H NMR spectrum supports similar oligomeric distribution upon dry-down of glc with
D-Lys or L-Lys. '"H NMR spectrum of a mixture of glc and D-Lys in D,O (a) before and (b) after dry-
down at 85 °C for seven days shows similar product distribution compared with that observed for a dry-

down of glc with L-Lys (Fig. 3D).
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Figure S59. "H NMR spectrum supports a similar oligomeric distribution upon dry-down of glc with
a racemate of Lys as with L-Lys. "H NMR spectrum of a mixture of glc with a racemic mixture of Lys in
D0 (a) before and (b) after dry-down at 85 °C for seven days shows similar product distribution compared

with that observed for a dry-down of glc with L-Lys (Fig. 3D).

74



Me Me 50

1300
% 1200

OH (1100

900
800

700

Intensity

|600

500

[-300

Chemical Shift (ppm)

900

700

[-600

[-500

Intensity

300

& ‘ALAJL BT (N . | W

Chemical Shift (ppm)

Figure S60. "H NMR spectrum of a dry-down of glc with an N-¢ di-methylated Lys confirms reactivity
through the a-amine. 'H NMR spectrum of a mixture of glc with a di-methylated Lys in D,O (a) before
and (b) after dry-down at 85 °C for seven days confirms reactivity at the a-amine and the absence of

amidation at the g-amine.
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Figure S61. '"H NMR spectrum of a dry-down of glc with an N-g tri-methylated Lys confirms
reactivity through the o-amine. "H NMR spectrum of a mixture of glc with a tri-methylated Lys in D,O
(a) before and (b) after dry-down at 85 °C for seven days confirms reactivity at the a-amine and the absence

of amidation at the e-amine.
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Figure S62. '"H NMR spectrum of a dry-down of glc with a N-f di-methylated Dpr. 'H NMR spectrum
of a mixture of glc with a di-methylated Dpr in D,O (a) before and (b) after dry-down at 85 °C for seven
days.
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Figure S63. Dry-down reactions chemically select for proteinaceous amino acids. The 'H-NMR
spectrum of a dry-down reaction containing glc, Lys, and Orn indicated that Lys maintains free g-amines
upon its polymerization whereas Orn with free side chain amines is extensively excluded from the

oligomers. Rather, Orn is observed mainly as the lactam.
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Figure S64. "H NMR spectrum of a dry-down of glc with L-2-amino-3-guanidinopropionic acid (Agp)
resulted in formation of oligomers. '"H NMR spectrum of a mixture of glc with Agp in D,O (a) before

and (b) after dry-down at 85 °C for seven days resulted in the formation of oligomers.
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Figure S65. ESI-MS of a dry-down reaction of glc and L-2-amino-3-guanidinopropionic acid (Agp)
resulted in cyclized products. glc and Agp were dried at 85 °C for seven days and the resulting products
were analyzed by negative-mode ESI-MS (a) or positive mode ESI-MS (b), indicating a variety of

oligomers. glc is labeled in red, Agp is labeled in green. Labeled species correspond to [M—H]" ions (a) or

[M+H]" ions (b).
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