# Parvalbumin interneuron in the ventral hippocampus functions as a

## discriminator in social memory

### Supporting information

## **SI Methods**

Animal. PV-IRES-Cre (B6;129P2-Pvalb<sup>tm1(cre)Arbr</sup>/J, stock number: 008069) and SOM-IRES-Cre (B6N.Cg-Sst<sup>tm2.1(cre)Zjh</sup>/J, stock number: 018973) transgenic mice were gifted by Cao's laboratory (National Institute of Biological Sciences, Beijing) and were primarily imported from the Jackson Laboratory (JAX Mice and Services, Bar Harbor, ME, USA). All mice were maintained under a standard 12 h light/dark cycle (lights on at 8:00 A.M.) at a constant temperature of 23 ±1 °C, with food and water available *ad libitum*. PV-Cre mice of both genders aged 2–6 months were used for this study. All experimental procedures were conducted in accordance with the regulations of the Laboratory Animal Care and Use Committees of the Institute of Psychology, Chinese Academy of Sciences.

**Social Isolation.** Adolescent mice (postnatal day 28 [P28]) were either housed in groups of 2–5 mice per cage (GH) or individually housed (IH) for 8 weeks, with the IH mice prevented from coming into contact with other mice. At P88, both groups were subjected to behavioral tests. Moreover, to determine the effect of social re-exposure for IH mice, some were housed in a social group (2–5 mice per cage) for 2 weeks (re-group housed [RGH]). One week after the completion of all tests, the mice were sacrificed and fixed with 4% paraformaldehyde in phosphate buffer saline (PBS) solution.

**Virus Preparation.** All recombinant Adeno-associated virus (AAV) vectors comprised a double-floxed inverted open reading frame (DIO) construct under the control of CMV or Ef1 $\alpha$  promoter, which led to a Cre-dependent expression strategy. The serotype of AAV-DIO-TeNT-EGFP, AAV-DIO-hChR2(H134R)-mCherry, AAV-DIO-eNpHR3.0-EGFP, AAV-DIO-EGFP, and AAV-DIO-mCherry was AAV8, while AAV-DIO-hM3Dq-mCherry, AAV-DIO-hM4Di-mCherry, and AAV-DIO-Gcamp6(f) were serotyped with AAV9 coat proteins. All viruses used for this study were packaged by Obio Technology Co., Ltd. (Shanghai, China). The final viral vector titers ranged from 2 × 10<sup>12</sup> to 8 × 10<sup>12</sup> particles/ml.

**Stereotaxic Surgery.** The animals were anesthetized with intraperitoneal 450 mg/kg avertin (2,2,2-tribromoethanol) and then fixed in a stereotaxic frame. Virus solution was injected at a flow rate of 0.1  $\mu$ l/min using a glass pipette attached to a 10 ml Hamilton microsyringe through a flexible pipe that was filled with mineral oil. After completing the injection, the needle was kept at the injection site for at least 5 min

and then slowly withdrawn.

In cell-specific inactivation experiments, the viral vector carrying the TeNT gene fused with enhanced green fluorescence protein (EGFP; AAV-CMV-DIO-TeNT-EGFP) or EGFP alone (AAV- Ef1 $\alpha$ -DIO-EGFP) was bilaterally injected (0.5 µl per side) into the ventral or dorsal CA1 (the vCA1 or dCA1) of the PV-Cre mice. vCA1 injections were targeted at AP: -3.16 mm, ML: ±3.20 mm, and DV: -4.50 mm; and dCA1 injections were targeted at AP: -2.00 mm, ML: ±1.50 mm, and DV: -1.50 mm.

In optogenetic stimulation experiments, 0.6  $\mu$ l of AAV-Ef1 $\alpha$ -DIO-hChR2-mCherry, AAV-Ef1 $\alpha$ -DIO-mCherry, or AAV-Ef1 $\alpha$ -DIO-EGFP was bilaterally injected into the vCA1 (AP: -3.16 mm, ML: ±3.20 mm, DV: -4.50 mm), and the optical fiber was implanted in the vCA1 with a tip at 0.5 mm above the injection site. A screw was placed on the skull around the implant site to provide additional stability. Dental cement was applied to secure the optical fiber implant.

In the chemogenetic experiment, 0.5  $\mu$ l of AAV-hSyn-DIO-hM3Dq-mCherry, AAV-Ef1 $\alpha$ -DIO-hM4Di-mCherry, or AAV-Ef1 $\alpha$ -DIO-mCherry was bilaterally injected into vCA1 (AP: -3.16 mm, ML: ±3.20 mm, DV: -4.50 mm).

In the *in vivo* calcium imaging experiment, PV-Cre mice received a unilateral injection (0.8  $\mu$ l) of Cre-dependent AAV carrying Gcamp6(f) into the vCA1 (AP: -3.16 mm, ML: ±3.20 mm, DV: -4.50 mm). An optical fiber was implanted at 0.1 mm above the site of the virus injection. Dental cement was applied to secure the optical fiber implant.

After surgery, the animals were returned to their cages and allowed to recover for 3–4 weeks before the experiments were initiated.

**Optogenetic Manipulation.** Targeted neurons were activated by a 473-nm blue laser (20 ms per pulse, 8 Hz, 15 mW), or inhibited by a 589-nm yellow laser (constant, 10 mW) via optical patch cords (AniLab Software & Instruments C., Ltd, China). Laser generators were produced at Changchun New Industries Optoelectronics Tech. Co., Ltd. (Changchun New Industries Optoelectronics Technology Co., Ltd, China). The parameters for optogenetic stimulation in the present study were in accordance with the previous studies (1, 2) in which hippocampal parvalbumin interneurons (PVI) drove intrinsic hippocampal oscillations and the hippocampal network optimally at the theta band (4–10 Hz). The patch cords were coupled with a FC fitted rotary joint (Doric Lenses Inc., Quebec, Canada) to avoid entanglement of the patch cords and keep the light stable. Stimulation frequency and pulse duration were controlled with a Master 8 stimulator (A.M.P.I. Co., Ltd., Jerusalem, Israel).

**Chemogenetic Manipulation.** Clozapine-N-Oxide (CNO, HY-17366, MedChemExpress) was dissolved in dimethyl sulfoxide (DMSO, D2650, Sigma) to a stocking solution of 5 mg/ml and stored at 4°C. Each day before the experiment, the CNO stocking solution was diluted with saline (0.9% NaCl solution) to a final concentration of 0.5 mg/ml. PV-hM3Dq and PV-mCherry mice were injected with CNO intraperitoneally (10 mg/kg) immediately or 3 h later following a familiarization

session. PV-hM4Di mice were administrated with 5 mg/kg CNO because they became seizure-susceptible with a dose of 10 mg/kg. The mice that exhibited a seizure were excluded.

#### **Behavioral Tests.**

**Social Discrimination Test.** In the present study, social memory was quantified by a modified social discrimination test (SDT) (3, 4), which is a valid test based on a rodent's nature of preference for interacting with novel conspecies rather than familiar ones. The SDT apparatus was composed of a rectangle plastic box (60 cm length  $\times$  40 cm width  $\times$  30 cm height) and two vertical wire mesh cages. The background luminance was 15 lux and the light sources were well distributed around the chamber to avoid the innate preference for darkness in mice. Briefly, the social discrimination procedure comprised three sessions: familiarization, separation, and recognition, all of which corresponded to three stages of the social information process (encoding, retention, and retrieval). This design enabled the effects of manipulations on the different "stages" of social memory to be investigated.

Experimental subjects were habituated to the social discrimination chamber for several minutes for each of three successive days before testing. On the testing day (recognition session), a test mouse was placed in the testing apparatus and allowed to explore it freely for 5 min. Then, the familiar and the novel target mice were individually placed within the vertical wire mesh cages. The positions of the target animals in this test were arranged in a counterbalanced manner. All of the target mice used in this experiment were juvenile wild-type conspecifics (4–6 weeks). Between tests, the chamber and cages were cleaned with 20% ethanol before initiating the next test. Video recordings of the tests were made with a camera that was suspended above the testing apparatus, and these recordings were analyzed by a well-trained observer who was blinded to the groups. The amount of time that the test mice spent exploring target animals within a 2 cm vicinity of each cage was measured. The "social discrimination index" was calculated by the following equation:

Social discrimination index = (Duration  $_{Novel}$  – Duration  $_{Familiar}$ ) / (Duration  $_{Novel}$  + Duration  $_{Familiar}$ )

*Optogenetic delivery in recognition session:* Three days before the familiarization session, the test mice were individually housed in isolated cages. At the beginning of the familiarization session, a "to-be-recognized" mouse was taken out of its home cage and placed in the experimental subject's cage. This session lasted for two different time periods (24 h and 2 weeks), which represented two levels of memory strength. The separation session was the interval between the familiarization session and behavioral recording. In this session, the target mouse that was familiar to the test mouse was removed and placed into a new cage for 30 min before the test. The laser was delivered in the recognition session. This behavioral procedure was applied for both the experiment regarding PV-specific excitation/inhibition by optogenetic stimulation and the experiment regarding chronic PVI inactivation.

Optogenetic delivery in familiarization session: The mice were group-housed (2–4 mice per cage), since previous studies revealed that individually housed mice

showed only short-lasting social recognition memory (<120 min) (3, 5). On the day of the experiment, each of the testing mice and the "to be recognized" mice were separated into new isolated new cages 2 h before familiarization. Then, a target mouse that was to be recognized was placed in a testing mouse's cage (familiarization session). This session lasted 10 minutes, during which optogenetic stimulation was delivered. Then, the familiar mice were returned to their cages, and water bottles and several food pellets were added to each cage rack. Twenty-four hours after familiarization, SDT would be conducted.

*Optogenetic delivered in separation session:* The pre-familiarization preparation and familiarization session was identical to that of the "*Optogenetic delivered in familiarization session*" section. The separation session was also for 24 hours, during which optogenetic stimulation was delivered at 30, 60, 90, 180, or 360 min after a single 10-min social interaction with the "to be recognized" mouse.

**Three-chamber Sociability Test.** The three chamber sociability test was performed as previously described (6). The apparatus comprised a Plexiglas rectangular box (60 cm length  $\times$  30 cm width  $\times$  20 cm height), divided into three compartments (20 cm  $\times$  30 cm). The protocol is shown in Fig. 2*G*. The test was composed of three consecutive sessions.

*Habituation:* The testing mouse was placed into the central chamber of the three-chambered apparatus and allowed to acclimate and freely explore the three chambers for 5 min.

*Social interaction:* At the end of the acclimation period, a novel conspecific mouse of the same sex was introduced to the "social" chamber inside a vertical wire mesh cage. In another (non-social) chamber, an identical empty cage was placed. At the beginning of each test, the testing mouse would be introduced to the social chamber, and this session lasted for 5 min. The stranger mouse was randomly placed in each test to prevent chamber bias. Furthermore, to directly compare the social function between each group, we calculated a "social interaction index" by the following equation:

Social interaction index =  $(Duration _{Social} - Duration _{Nonsocial}) / (Duration _{Social} + Duration _{Nonsocial})$ 

*Social novelty:* About 1 min after social interaction, another novel mouse was placed in the cage of the non-social chamber, which was empty during the social interaction session. The testing mouse would be initially introduced to the novel mouse chamber. The duration of investigation was also recorded for 5 min in this session. Moreover, the "social novelty index" was calculated by the following equation:

Social novelty index = (Duration  $_{Novel}$  – Duration  $_{Familiar}$ ) / (Duration  $_{Novel}$  + Duration  $_{Familiar}$ )

Between tests, the chambers were cleaned with 20% ethanol and allowed to dry completely before initiating the next test. The time spent in the non-social, center, and social chambers was quantified using the Xeye Aba 3.2 tracking system (Beijing Macroambitior S&T Development Co., Ltd., Beijing, China).

**Open Field Test.** The open field test was conducted with a square plastic box (40 cm length  $\times$  40 cm width  $\times$  30 cm height) that was painted white. The box had a defined central area (20 cm length  $\times$  20 cm width). Mice were individually placed in the central area of the chamber and allowed to freely explore the entire box for 5 min. Between tests, the box was cleaned with 20% ethanol and wiped down with a clean paper towel. The tracking length and the time spent in the central area were recorded using the Xeye Aba 3.2 tracking system.

**Novel Objects Recognition Test.** One day after the open field test, the novel object recognition test (NORT) was performed to assess non-social recognition ability. In this test, two identical objects (green cylindrical toy bricks) were symmetrically placed at an open field (Fig. S2A). Subjected mice were placed into the field and allowed to explore the objects freely for 10 min for each of four consecutive days (days 1–4). On day 5, a novel object (red-blue mosaic block) randomly replaced one of the familiar objects. The test mice were then placed into the apparatus again and the time that mice spent interacting with the objects was recorded. The objects and open field were cleaned with 20% ethanol before each test. The "object discrimination index" was calculated by the following equation:

Object discrimination index = (Duration  $_{Novel}$  – Duration  $_{Familiar}$ ) / (Duration  $_{Novel}$  + Duration  $_{Familiar}$ )

**Elevated Plus Maze (EPM).** The elevated plus maze was used to assess anxiety-like behavior. The white-painted maze consisted of four arms (30 cm length  $\times$  5 cm width). Two opposite open arms without walls and two opposite closed arms with 15 cm high walls formed a "+" shape. The maze was elevated 76 cm above the floor by four metal legs under each arm. Each mouse was placed at the junction of the open and closed arms, facing an open arm. The mouse was allowed to freely explore the entire maze for 5 min. The time spent in both the open and closed arms was recorded using the Xeye Aba 3.2 tracking system.

**Prepulse Inhibition (PPI).** Prepulse inhibition of the acoustic startle response was used to assess sensorimotor gating. The Startle Reflex Lab controlled by SR-Lab software (San Diego Instruments, USA) was employed for this test. Mice were confined to a cylindrical restraint tube inside a sound-attenuating chamber for the duration of testing. Briefly, after being exposed to 10 min of background noise (60 dB), each subject was presented with a total of 106 trials. The test session comprised startle trials (40 ms burst of 115 dB white noise), no stimulus trial (no noise was delivered except background noise), and prepulse inhibition (PPI) trials. A prepulse (20 ms burst of white noise at 66, 70, 74, or 78 dB intensity) preceded the 115 dB startle pulse (40 ms) by 100 ms. Trials were pseudo-randomly presented with an inter-trial interval of 9 to 30 s. The startle response was recorded every 1 ms for 100 ms after the onset of a startle stimulus. The maximum startle amplitude was used as the dependent variable. Baseline startle responses were calculated as the average

response to the pulse-alone trials. PPI was calculated as a percentage score for each prepulse trial type: PPI (%) =  $(1 - [(\text{startle response for pulse with prepulse}) / (\text{startle response for pulse alone})]) \times 100.$ 

In vivo Ca<sup>2+</sup> Fiber Photometry in Freely Moving Mice. A commercialized fiber photometry system (ThinkerTech Inc., Nanjing, China) was used for recording the  $Ca^{2+}$  signals from PVIs, which has been described in detail elsewhere (7, 8). As shown in Fig. 5A, a beam from a 488-nm laser (OBIS 488LS; Coherent) was reflected by a dichroic mirror (MD498; Thorlabs), focused with a  $10 \times \text{objective lens}$  (NA = 0.3; Olympus), and then coupled to an optical commutator (Doric Lenses). A 2-m long optical fiber (230  $\mu$ m outer diameter, NA = 0.37) guided the light between the commutator and the implanted optical fiber. The laser intensity at the tip of the optical fiber was adjusted to a range of 30-40 µW to minimize photo bleaching. The GCaMP6(f) fluorescence was filtered with a green fluorescence protein (GFP) bandpass filter (MF525-39, Thorlabs) and collected by a photomultiplier tube (PMT) (R3896, Hamamatsu). An amplifier (C7319, Hamamatsu) was used to convert the PMT current output to voltage signals, which were further filtered through a low-pass filter (40 Hz cut-off; Brownlee 440). The analog voltage signals were digitalized at 500 Hz using a Power 1401 digitizer and recorded by custom software developed in house using LabView. GCaMP signals were collected at a sampling frequency of 50 Hz. Fiber photometry recording data were exported to Matlab for further analysis. All raw data were segmented and aligned according to the onset of individual behavioral bouts. The fluorescence signal was normalized within each mouse by calculating the dF/F as  $(F - F_0) / F_0$ , where  $F_0$  was the baseline fluorescence signal averaged over 3 s (heading and interaction) or 2 s (withdrawal) before the initiation of the behavioral event. Bout peaks dF/F were the average value of the largest signals within each bout.

Before the SDT, the mice were allowed to habituate the testing room for 3 days. In each habituation day, mice would explore the testing chamber for 10 min, and the implanted fiber was linked to a jumper cable but no laser on. In data analyses, we identified three types of social-associated behaviors—interaction, heading and withdrawal. For each type of behavior, we picked up 5-8 sec calcium signals around them for further analyses.

Immunohistochemical Procedure. For all cohorts, mice were anesthetized with Avertin sequentially saline and perfused with followed by 4% paraformaldehyde/phosphate buffer (PFA). Brains were then removed and post-fixed overnight in 4% PFA, and then they were immersed in 30% sucrose solution at  $4 \,^{\circ}{\rm C}$ until they sunk to the bottom. Brains were sectioned into 40 µm thick slices and stored in cryoprotectant at -20 % in the dark until antibody staining. Free-floating sections were washed  $3 \times 10$  min in PBS, followed by incubation in blocking buffer (PBS containing 10% goat serum and 0.7% Triton X-100) for 2 h at room temperature. After blocking, primary antibodies were added to 5% goat serum in PBS solution and the sections were incubated overnight at  $4 \, \mathbb{C}$ . Primary antibodies included mouse anti-parvalbumin (Millipore, MAB1572, 1:300) and rabbit anti-c-Fos (Abcam, ab190289, 1:500). Sections were then washed  $3 \times 15$  min with PBS before incubation with secondary antibodies (Alexa Fluor-488 or Alexa Fluor-546 conjugated secondary antibodies, Invitrogen, 1:500) for 2 h at room temperature. Sections were again washed  $2 \times 10$  min in PBS and then stained by 4',6-diamidino-2-phenylindole (DAPI) for 15 min,  $1 \times 10$  min in PBS, and mounted onto slides with mounting medium (Vectashield) on glass slides. Fluorescence images were taken by fluorescence microscopy (Leica, DM5500B) using  $10 \times$  and  $20 \times$  objectives. The PV and c-Fos expressions were quantified by ImageJ software. The scale in ImageJ was based on the physical dimensions of the photograph recorded by the Leica microscopy system. The to-be-counted photograph was first transformed from RGB color mode into 8-bit mode, and then the "threshold" for positive signals was set in the software. Only stains that were in the settled thresholds of fluorescent intensity (FI) and size were included in the quantification.

For c-Fos analysis, mice were sacrificed by perfusion with 4% PFA 90 min after completion of the behavioral tests. As described previously (9, 10), each c-Fos-positive nucleus was classified into one of three expression levels (low, medium, and high) according to its own FI (= IntDen / Area, data from Image J). Intensity thresholds were defined as follows: low  $\leq 30\% \times$  (strongest FI – weakest FI), high  $\geq 70\% \times$  (strongest FI – weakest FI), and medium (the remaining 40%). Note that the comparison and classification of fluorescent intensity was performed within each brain section. Moreover, the colocalization of PV and c-Fos was determined by a well-trained observer who was blinded to the treatment groups.

**Statistics.** The data were analyzed using GraphPad Prism 6.0 software and Matlab. The results are expressed as mean  $\pm$  standard error of the mean (SEM). Statistical significance was determined by Student's *t*-test, Mann–Whitney U test, or two-way analysis of variance (ANOVA), which was followed by Bonferroni's multiple comparisons post hoc test. The criterion for statistical significance was p < 0.05.

#### References

- B. Amilhon *et al.*, Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency. *Neuron* 86, 1277-1289 (2015).
- 2. N. Ognjanovski *et al.*, Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation. *Nat Commun* **8**, 15039 (2017).
- 3. M. Engelmann, J. Hadicke, J. Noack, Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure. *Nat Protoc* **6**, 1152-1162 (2011).
- 4. T. Okuyama, T. Kitamura, D. S. Roy, S. Itohara, S. Tonegawa, Ventral CA1 neurons store social memory. *Science* **353**, 1536-1541 (2016).
- 5. J. H. Kogan, P. W. Frankland, A. J. Silva, Long-term memory underlying hippocampus-dependent social recognition in mice. *Hippocampus* **10**, 47-56 (2000).
- 6. O. Yizhar *et al.*, Neocortical excitation/inhibition balance in information processing and social dysfunction. *Nature* **477**, 171-178 (2011).
- L. A. Gunaydin *et al.*, Natural neural projection dynamics underlying social behavior. *Cell* 157, 1535-1551 (2014).

- 8. Y. Li *et al.*, Hypothalamic Circuits for Predation and Evasion. *Neuron* **97**, 911-924.e915 (2018).
- 9. F. Donato, S. B. Rompani, P. Caroni, Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. *Nature* **504**, 272-276 (2013).
- 10. S. Ruediger *et al.*, Learning-related feedforward inhibitory connectivity growth required for memory precision. *Nature* **473**, 514-518 (2011).

#### **SI Figures and Table**





(A) Time schedule for social isolation and following experiments. (B) The scatter plot describing the correlation between mice's performance in SDT and the number of  $PV^+$  cells in the vHPC (n = 24). (C) The scatter plot describing the correlation between mice's performance in NORT and the number of  $PV^+$  cells in the vHPC (n = 21). (D—F) The scatter plot describing the correlation between mice's performance in SDT and the number of  $PV^+$  cells in the vCA1 (D), vCA2/3 (E) or vDG (F), n = 22 for each correlation. (G—I) The scatter plot describing the correlation between mice's performance in NORT and the number of  $PV^+$  cells in the vCA1 (G), vCA2/3 (H) or vDG (I), n = 20 for each correlation. Red and black dots represent individual-housed (IH) and group-housed (GH) mice, respectively. SDI: social discrimination index, ODI: object discrimination index. \*p < 0.05.



#### Fig. S2. PV<sup>+</sup> counts analyses in the dHPC subfields after social isolation.

(A) Protocol for novel object recognition test (NORT). In initial habituation session, mice were allowed to freely explore in an open field with two identical objects. During the recognition session, a novel object randomly replaced one of the familiar objects, the investigating duration toward novel and familiar objects were respectively recorded. (B) The hippocampal subfields of interest delineation. Blue, dCA1; red, dCA2; orange, dCA3; green, dDG. (C) The distribution of the proportion of PV<sup>+</sup> cells in distinct subfields of dHPC. (D—G) Comparisons of PV<sup>+</sup> counts in dCA1 (D), dCA2 (E), dCA3 (F) and dDG (G). GH: n = 10; IH: n = 11. All data are expressed as mean  $\pm$  SEM. \**p* < 0.05; ns, not significant. (*H* and *I*) The scatter plot describing the correlation between mice's performance in SDT (*H*) or NORT (*I*) and the number of PV<sup>+</sup> cells in the dHPC (n = 21). (*J*—*M*) The scatter plot describing the correlation between mice's performance in SDT and the number of PV<sup>+</sup> cells in the dCA1 (*J*), dCA2 (*K*), dCA2 (*L*) or dDG (*M*). (*N*—*Q*) The scatter plot describing the correlation between mice's performance in SDT and the number of PV<sup>+</sup> cells in the dCA1 (*J*), dCA2 (*P*) or dDG (*Q*). Red and black dots represent individual-housed (IH) and group-housed (GH) mice, respectively. SDI: social discrimination index.





(*A*) To determine the effect of social re-exposure for individual-housed mice, some were housed in a social group (2–5 mice per cage) for 2 weeks (re-group housed). The SDT was conducted after social isolation and social re-exposure treatments. (*B-D*) The number of PV<sup>+</sup> counts in the vHPC (*B*) and its subfields (*C*). One week after the completion of all tests, the mice were sacrificed and fixed with 4% paraformaldehyde in phosphate buffer saline (PBS) solution. The PV immunostaining was performed. (*D*) Representative images of PV expression in different groups. GH: group-housed, n = 7; IH: individual-housed, n = 6; RGH: re-group housed, n = 5; SDI: social discrimination index. All data are expressed as mean ± SEM. \**p* < 0.05; \*\**p* < 0.01.



Fig. S4. Other behavioral tests in PVIs-inactivation experiment.

(A) Coronal sections of a PV-Cre mouse injected with AAV9-CMV-DIO-TeNT-GFP into dCA1, which were stained with anti-GFP (green) and DAPI (blue). (*B* and *C*) Chronic inactivation of dCA1-PVIs by TeNT (n = 8) did not affect mice performance in SDT (*B*) or comparison of SDI with control groups (n = 7) (*C*). (*D*) Investigation duration toward novel or familiar object in NORT (left) and comparison of object discrimination index (right) (GFP: n = 9; TeNT: n = 11). (*E*) Total duration that the subject mice spent in the open arm of EPM (*right*) or in the center zone of open field (*left*) showing a reduced anxiety in vCA1-PV-TeNT mice (EPM: n = 17 for each group; open field: n = 17 for GFP group, n = 16 for TeNT group). (*F*) Travel distance (*left*) and average speed (*right*) in the open field (n = 17 for each group). (*G*) Measurement of prepulse inhibition at different prepulse intensities (66, 70, 74 or 78 dB) (GFP: n = 11; TeNT: n = 14). All data are expressed as mean  $\pm$  SEM. \*p < 0.05; \*\*\*p < 0.001; ns, not significant.



Fig. S5. Other behavioral tests in optogenetic experiment.

(*A* and *C*) Sniffing duration toward a novel and familiar mouse in SDT observed in PV-ChR2 (n = 7) (*A*) and PV-NpHR mice (n = 8) (*C*) when the optogenetic laser was turned on or off. (*B* and *D*) Comparisons of SDI under laser on and off condition. (*E* and *F*) PV-ChR2 mice (n = 9) spent more time in the sniffing area of novel mouse compared to their own roommate (E); no difference in SDI was found between PV-mCh (n = 7) and PV-ChR2 group (*F*). (*G* and *H*) PV-Cre mice treated by TeNT (n = 6) in the vCA1 spent similar time in investigating the novel mouse or their own roommate (*G*); PV-TeNT mice exhibited significant lower SDI compared with PV-GFP mice (n = 5) (*H*). (*I*—*L*). Both PV-ChR2 (n = 9) or PV-NpHR (n = 10) mice and their own controls (mCherry: n = 8; GFP: n = 10) showed a preference for novel object in NORT (*I* and *K*, respectively). No difference was found in ODI between ChR2 or NpHR mice and their own controls (*J* and *L*, respectively). (*M*—*P*) In open field test, total travel distance (*M* and *N*) and time spent in center zone (*O* and *P*) were compared between PV-ChR2 (n = 6) or PV-NpHR (n = 7) mice and their own controls (mCherry: n = 6; GFP: n = 7). All data are expressed as mean ±SEM. \*p < 0.05; \*\*p < 0.01; \*\*p < 0.001; ns, not significant.



Fig. S6. Effects of chemogenetic manipulation of vCA1-PVIs during consolidation stage on social memory.

(A) Protocol for chemogenetic manipulation of vCA1-PVIs during separation session. (B) Changes of SDI in the AAV-DIO-hM3Dq-mCherry or AAV-DIO-hM4Di-mCherry infected PV-Cre mice, which were subjected CNO injections immediately or 3 hours after social familiarization. All data are expressed as mean  $\pm$  SEM. \*p < 0.05; \*\*p < 0.01.



Fig. S7. Effects of optogenetic excitation or inhibition of vCA1-PVIs coupling with investigating one of a pair of familiar/novel objects on object discrimination. (A and D) A pair of familiar objects (A) or novel objects (D) was used as the targets in ODT and laser stimulation was delivered only when the subject mouse was in the sniffing area of one of the target objects. (B and C) No significant preference or avoidance exploration was observed in either ChR2 (n = 7; B) or NpHR (n = 7; C) mice, when a pair of familiar objects was used as the targets. (E and F) Similarly, no changed exploration was found in either ChR2 (n = 6; E) or NpHR (n = 6; F) mice, when a pair of novel objects was used as the targets. FO: familiar object; NO: novel object. All data are expressed as mean  $\pm$  SEM. ns, not significant.



Fig. S8. Ca<sup>2+</sup> dynamics of vCA1-PVIs in freely moving mice during heading to social mice and investigating different body parts of social mice. (*A*) A representative sample showing Ca<sup>2+</sup> transient relative to heading behavior followed by approach or heading action only (*left*). Proportion of interaction-associated behaviors, including direct interaction, heading only and heading followed by approach (*right*). (*B*) Proportion of anogenital, facial and flank investigation during social interaction (*left*). Quantitative analysis of peak dF/F of Ca<sup>2+</sup> signals in different part investigation (*right*). (*C*) Quantitative analyses of peak dF/F of Ca<sup>2+</sup> signals in different investigation stages. In this test, novel mouse, toy mouse and toy mouse with novel urine were individually used as the investigation targets. All data are expressed as mean ± SEM. \**p* < 0.05.





(A) Expression of c-Fos proteins in the vCA1 was unregulated in novel-interaction mice (n = 8) compared with familiar-interaction ones (n = 8). The red puncta indicate c-Fos<sup>+</sup> neurons. (**B**) c-Fos nuclei were classified into three levels of expression (low, medium and high) according to its relative fluorescence intensity in brain section (left). Example of overlap between PV and distinct levels of c-Fos (right). (**C**) The distribution of the approximate proportion of neurons labeled by PV in distinct stratums of the vCA1. Green, stratum oriens (Or); orange, stratum pyramidale (Pyr); grey, stratum radiatum (Rad). (**D**) Proportion of PV colocalized with three distinct levels of c-Fos nuclei occupied within total number of PV<sup>+</sup> neurons in stratum Pyr or Or. (**E and F**) Comparison of activation level of PVIs in stratum Or (**E**) or Pyr (**F**) by examining their overlap with distinct levels of c-Fos under novel (n = 6) or familiar (n = 5) interaction condition. All data are expressed as mean ± SEM. \**p* < 0.05.



Fig. S10. Effect of 40 Hz optogenetic stimulation of vCA1-PVIs on the social memory retrieval.

(A) Total duration in sniffing area during SDT observed in ChR2 (n = 7) and mCherry (n = 6) mice (*left*). Comparison of SDI between optogenetic mice and their control (*right*). (B) A pair of familiar mice was used as the social targets in SDT and laser stimulation was delivered only when the subject mouse was in the sniffing area of one of the target mice. The time that PV-ChR2 mice (n = 6) spent in investigating the familiar mouse (coupling with 473-nm laser stimulation) was increased, compared to the control (n = 7). All data are expressed as mean  $\pm$  SEM. \*p < 0.05; ns, not significant.

| Impaired social memory parallel occurred with decreased PV <sup>+</sup> counts in the vHPC (related to Fig. 1) |                                                           |                                                             |                       |                      |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-----------------------|----------------------|--|--|
|                                                                                                                | GH: familiar vs novel (C1)                                | Paired t test                                               | <i>t</i> (10) = 5.866 | <i>p</i> = 0.0002*** |  |  |
| SDT                                                                                                            | IH: familiar vs novel (C2)                                | Paired t test                                               | <i>t</i> (12) = 0.887 | <i>p</i> = 0.3927    |  |  |
|                                                                                                                | SDI: GH vs IH (D)                                         | Unpaired t test                                             | t (22) = 3.352        | <i>p</i> = 0.0029**  |  |  |
|                                                                                                                | GH: familiar vs novel (E1)                                | Paired t test                                               | <i>t</i> (9) = 4.038  | <i>p</i> = 0.0029**  |  |  |
| NORT                                                                                                           | IH: familiar vs novel (E2)                                | Paired t test                                               | <i>t</i> (10) = 2.368 | <i>p</i> = 0.0394*   |  |  |
|                                                                                                                | ODI: GH vs IH (F)                                         | Unpaired t test                                             | <i>t</i> (19) = 0.753 | <i>p</i> = 0.4605    |  |  |
|                                                                                                                | dHPC: GH vs IH (H)                                        | Unpaired t test                                             | <i>t</i> (19) = 1.995 | <i>p</i> = 0.0606    |  |  |
|                                                                                                                | vHPC: GH vs IH (I)                                        | Unpaired t test                                             | t (22) = 4.062        | <i>p</i> = 0.0005*** |  |  |
| Number of PV                                                                                                   | vCA1: GH vs IH (M)                                        | Unpaired t test                                             | <i>t</i> (20) = 4.785 | <i>p</i> = 0.0001*** |  |  |
| cells                                                                                                          | vCA2/3: GH vs IH (N)                                      | 2A2/3: GH vs IH (N) Unpaired <i>t</i> test $t (20) = 2.215$ |                       | <i>p</i> = 0.0386*   |  |  |
|                                                                                                                | vDG: GH vs IH (O)                                         | Unpaired t test                                             | <i>t</i> (20) = 1.096 | <i>p</i> = 0.2856    |  |  |
| Functional absen                                                                                               | ce of vCA1-PVIs by TeNT impaire                           | d social memory (rela                                       | ted to Fig. 2)        |                      |  |  |
| ODT                                                                                                            | GFP: familiar vs novel (C1)                               | Paired t test                                               | t (11) = 9.602        | p < 0.0001***        |  |  |
| SDI:                                                                                                           | TeNT: familiar vs novel (C2)                              | Paired t test                                               | t (10) = 1.505        | p = 0.1631           |  |  |
| VCAI-PVIS                                                                                                      | SDI: GFP vs TeNT (D)                                      | Unpaired t test                                             | t (21) = 4.037        | p = 0.0006***        |  |  |
| (DT                                                                                                            | GFP: familiar vs novel (E1)                               | Paired t test                                               | t(5) = 5.802          | <i>p</i> = 0.0021**  |  |  |
| SDI:                                                                                                           | TeNT: familiar vs novel (E2)Paired t test $t (6) = 4.664$ |                                                             | <i>p</i> = 0.0035**   |                      |  |  |
| VCAT-SOMIS                                                                                                     | SDI: GFP vs TeNT (F)                                      | Unpaired t test                                             | <i>t</i> (11) = 0.139 | <i>p</i> = 0.8918    |  |  |
|                                                                                                                | Main effect of groups                                     |                                                             | F (1, 29) = 0.930     | <i>p</i> = 0.3427    |  |  |
| Three                                                                                                          | Main effect of chambers                                   | Mixed two-way                                               | F (2, 58) = 161.0     | <i>p</i> < 0.0001*** |  |  |
| chambers test:                                                                                                 | group × chambers interaction                              | ANOVA                                                       | F (2, 58) = 0.156     | <i>p</i> = 0.8557    |  |  |
| interaction                                                                                                    | Subjects                                                  |                                                             | F(29,58)=5.561e-005   | <i>p</i> > 0.9999    |  |  |
| session (H)                                                                                                    | Social interaction index: GFP<br>vs TeNT (I)              | Unpaired t test                                             | t (29) = 0.393        | <i>p</i> = 0.6973    |  |  |
|                                                                                                                | Main effect of groups                                     |                                                             | F (1, 29) = 0.172     | <i>p</i> = 0.6811    |  |  |
|                                                                                                                | Main effect of chambers                                   | Mixed two-way                                               | F (2, 58) = 49.44     | <i>p</i> < 0.0001*** |  |  |
| Three                                                                                                          | group × chambers interaction                              | ANOVA                                                       | F (2, 58) = 5.785     | <i>p</i> = 0.0051**  |  |  |
| chambers test:                                                                                                 | Subjects                                                  |                                                             | F(29,58)=1.022e-007   | <i>p</i> > 0.9999    |  |  |
| social novelty                                                                                                 | GFP: familiar vs novel (J1)                               | Bonferroni post                                             | <i>t</i> (15) = 5.714 | <i>p</i> < 0.0001*** |  |  |
| session (J)                                                                                                    | TeNT: familiar vs novel (J2)                              | hoc analysis                                                | <i>t</i> (16) = 1.069 | <i>p</i> = 0.8691    |  |  |
|                                                                                                                | Social novelty index: GFP vs<br>TeNT (K)                  | Unpaired <i>t</i> test                                      | t (29) = 2.737        | <i>p</i> = 0.0105*   |  |  |
| Selective manipulation of PVIs in the vCA1 during encoding, consolidation or retrieval stage of social memory  |                                                           |                                                             |                       |                      |  |  |
| (related to Fig. 3)                                                                                            | )                                                         | U,                                                          | C                     | 2                    |  |  |
|                                                                                                                | mCh: familiar vs novel (C1)                               | Paired t test                                               | <i>t</i> (9) = 5.019  | <i>p</i> = 0.0007*** |  |  |
| Laser delivered                                                                                                | ChR2: familiar vs novel (C2)                              | Paired t test                                               | <i>t</i> (9) = 2.044  | <i>p</i> = 0.0713    |  |  |
| during                                                                                                         | SDI: mCh vs ChR2 (D)                                      | Unpaired <i>t</i> test $t(18) = 4.332$                      |                       | <i>p</i> = 0.0004*** |  |  |
| recognition                                                                                                    | GFP: familiar vs novel (E1)                               | Paired t test                                               | <i>t</i> (7) = 6.998  | <i>p</i> = 0.0002*** |  |  |
| session of SDT                                                                                                 | NpHR: familiar vs novel (E2)                              | Paired t test                                               | <i>t</i> (8) = 3.713  | <i>p</i> = 0.0059**  |  |  |
|                                                                                                                | SDI: GFP vs NpHR (F)                                      | Unpaired t test                                             | <i>t</i> (15) = 3.935 | <i>p</i> = 0.0013**  |  |  |
| Laser delivered                                                                                                | mCh: familiar vs novel (H1)                               | Paired t test                                               | <i>t</i> (7) = 3.153  | p = 0.0161*          |  |  |

| during            | ChR2: familiar vs novel (H2)                              |                         | Paired t test            | <i>t</i> (7) = 5.504       | <i>p</i> = 0.0009*** |
|-------------------|-----------------------------------------------------------|-------------------------|--------------------------|----------------------------|----------------------|
| familiarization   | SDI: mCh vs ChR2 (I)                                      |                         | Unpaired t test          | <i>t</i> (14) = 0.691      | <i>p</i> = 0.5009    |
| session of SDT    | GFP: familiar vs novel (J1)                               |                         | Paired t test            | <i>t</i> (8) = 3.231       | <i>p</i> = 0.0120*   |
|                   | NpHR: familiar vs novel (J2)                              |                         | Paired t test            | <i>t</i> (10) = 3.556      | <i>p</i> = 0.0052**  |
|                   | SDI: GFP vs NpHR (K)                                      |                         | Unpaired t test          | <i>t</i> (18) = 0.1417     | <i>p</i> = 0.8889    |
|                   | Interaction                                               |                         |                          | F (3, 45) = 0.262          | <i>p</i> = 0.8526    |
|                   | ChR2                                                      | SDI in time points      | Mixed two-way            | F (3, 45) = 0.531          | <i>p</i> = 0.6633    |
| Laser delivered   | (M)                                                       | Groups                  | ANOVA                    | F (1, 15) = 0.756          | <i>p</i> = 0.3984    |
| during            |                                                           | Subjects                |                          | F (15, 45) = 0.954         | <i>p</i> = 0.5158    |
| separation        |                                                           | Interaction             |                          | F (3, 39) = 0.068          | <i>p</i> = 0.9766    |
| session of SDT    | NpHR                                                      | SDI in time points      | Mixed two-way            | F (3, 39) = 0.339          | <i>p</i> = 0.7975    |
|                   | (N)                                                       | Groups                  | ANOVA                    | F (1, 13) = 0.046          | <i>p</i> = 0.8330    |
|                   |                                                           | Subjects                |                          | F (13, 39) = 1.877         | <i>p</i> = 0.0646    |
| Optogenetic man   | ipulation of I                                            | PVIs during investigati | ing one of a pair of nov | vel/familiar mice (related | l to Fig. 4)         |
| Approaching       | mCh: fami                                                 | liar (with laser) vs    | Paired t test            | t(7) = 0.008               | <i>p</i> = 0.9938    |
| one of a pair of  | familiar (w                                               | ithout laser) (A1)      |                          |                            |                      |
| tamiliar mice     | ChD2, from                                                | :1:                     |                          |                            |                      |
| 473pm laser in    | familiar (w                                               | inar (with laser) vs    | Paired t test            | <i>t</i> (7) = 2.810       | p = 0.0261*          |
| 473IIII lasel III | familiar (without laser) (A2)                             |                         |                          |                            |                      |
| Approaching       | GEP: familiar (without laser) vs                          |                         |                          |                            |                      |
| one of a pair of  | familiar (with laser) (B1)                                |                         | Paired t test            | t(6) = 0.832               | p = 0.4525           |
| familiar mice     |                                                           |                         |                          |                            |                      |
| triggered         | NnHR · fan                                                | uiliar (without laser)  |                          | t (6) = 0.6527             |                      |
| 589nm laser in    | vs familiar                                               | (with laser) (B2)       | Paired t test            |                            | p = 0.5382           |
| SDT               | vs fullitar (with fuser) (B2)                             |                         |                          |                            |                      |
| Approaching       | mCh: novel (with laser) vs                                |                         |                          |                            | <i>p</i> = 0.5038    |
| one of a pair of  | novel (without laser) (C1)                                |                         | Paired t test            | t(6) = 0.7110              |                      |
| novel mice        |                                                           | , , ,                   |                          |                            |                      |
| triggered         | ChR2: novel (with laser) vs<br>novel (without laser) (C2) |                         |                          |                            | <i>p</i> = 0.6443    |
| 473nm laser in    |                                                           |                         | Paired <i>t</i> test     | t(6) = 0.4858              |                      |
| SDT               |                                                           |                         |                          |                            |                      |
| Approaching       | GFP: novel (without laser) vs                             |                         |                          | (5) 0.041                  | 0.0102               |
| one of a pair of  | novel (with laser) (D1)                                   |                         | Paired t test            | t(5) = 0.241               | p = 0.8193           |
| novel mice        |                                                           |                         |                          |                            |                      |
| triggered         | NpHR: novel (without laser) vs                            |                         |                          | ((5) 0.751                 |                      |
| 589nm laser in    | novel (with                                               | laser) (D2)             | Parred I test            | l(3) = 0.751               | p = 0.4807           |
| SDT               |                                                           |                         |                          |                            |                      |
| In vivo measurem  | nent of Ca <sup>2+</sup> of                               | lynamics of vCA1-PV     | Is in SDT (related to F  | ig. 5)                     |                      |
|                   | Bout peak:                                                | familiar vs novel       | Paired t test            | t(6) = 44330               | n = 0.0044 **        |
| SDT:              | (E)                                                       |                         |                          | . (0) – 1.330              | P = 0.0044           |
| Interaction       | 1st 1/3 bou                                               | ts peak (F1)            | Paired t test            | <i>t</i> (6) = 3.565       | <i>p</i> = 0.0119*   |
|                   | 2nd 1/3 bouts peak (F2)                                   |                         | Paired t test            | <i>t</i> (6) = 4.263       | <i>p</i> = 0.0053**  |

|                                                                    | 3rd 1/3 bouts peak (F3)        |                                    | Paired t test                                               | <i>t</i> (6) = 1.197              | p = 0.2765           |  |
|--------------------------------------------------------------------|--------------------------------|------------------------------------|-------------------------------------------------------------|-----------------------------------|----------------------|--|
| SDT: heading                                                       | Bout peak: familiar vs povel   |                                    | D. L. L.                                                    |                                   | 0.000144             |  |
| toward (J)                                                         | Bout peak: familiar vs novel   |                                    | Paired t test                                               | t(5) = 4.126                      | p = 0.0091**         |  |
| SDT:                                                               |                                |                                    |                                                             |                                   |                      |  |
| withdrawal (L)                                                     | Bout peak: familiar vs novel   |                                    | Paired t test                                               | t(6) = 7.836                      | $p = 0.0002^{***}$   |  |
| <i>In vivo</i> measurement of Ca <sup>2+</sup> dynamics of vCA1-PV |                                |                                    | Is when investigating different targets (related to Fig. 6) |                                   |                      |  |
|                                                                    | Novel mouse                    | vs familiar mouse                  | Paired t test                                               | <i>t</i> (5) = 3.593              | <i>p</i> = 0.0157*   |  |
| Investigating                                                      | Novel mouse vs object          |                                    | Paired t test                                               | <i>t</i> (5) = 7.897              | <i>p</i> = 0.0005*** |  |
| novel/familiar                                                     | Novel mouse                    | vs mouse toy                       | Paired t test                                               | t(5) = 4.310                      | <i>p</i> = 0.0078**  |  |
| mouse, object,                                                     | Familiar mou                   | se vs novel object                 | Paired t test                                               | t(5) = 1.865                      | <i>p</i> = 0.1212    |  |
| mouse toy (C)                                                      | Familiar mou                   | se vs mouse toy                    | Paired t test                                               | t(5) = 0.9467                     | <i>p</i> = 0.3873    |  |
|                                                                    | Novel object                   | vs mouse toy                       | Paired t test                                               | <i>t</i> (5) = 0.8573             | <i>p</i> = 0.4304    |  |
|                                                                    | Novel mouse                    | vs familiar mouse                  | Paired t test                                               | <i>t</i> (5) = 3.288              | <i>p</i> = 0.0218*   |  |
|                                                                    | Novel mouse                    | vs object                          | Paired t test                                               | <i>t</i> (5) = 4.578              | <i>p</i> = 0.006**   |  |
| Latency to peak                                                    | Novel mouse                    | vs mouse toy                       | Paired t test                                               | <i>t</i> (5) = 3.652              | p = 0.0147*          |  |
| (D)                                                                | Familiar mou                   | se vs novel object                 | Paired t test                                               | t(5) = 1.151                      | p = 0.3017           |  |
|                                                                    | Familiar mou                   | se vs mouse toy                    | Paired t test                                               | t(5) = 0.9139                     | p = 0.4027           |  |
|                                                                    | Novel object                   | vs mouse toy                       | Paired t test                                               | t(5) = 0.5721                     | p = 0.5920           |  |
|                                                                    | Novel mouse                    | vs familiar mouse                  | Paired t test                                               | t(4) = 4.906                      | p = 0.008*           |  |
| Heading to                                                         | Novel mouse vs object          |                                    | Paired t test                                               | t(4) = 3.682                      | p = 0.0212*          |  |
| novel/familiar                                                     | Novel mouse vs mouse tov       |                                    | Paired t test                                               | t(4) = 2.702                      | p = 0.054            |  |
| mouse, object,                                                     | Familiar mouse vs novel object |                                    | Paired t test                                               | t(4) = 0.3164                     | p = 0.7675           |  |
| mouse toy (F)                                                      | Familiar mouse vs mouse tov    |                                    | Paired t test                                               | t(4) = 4.185                      | p = 0.0139*          |  |
|                                                                    | Novel object                   | vs mouse toy                       | Paired t test                                               | t(4) = 3.265                      | p = 0.0309*          |  |
| Correlation analy                                                  | sis between PV                 | 7 <sup>+</sup> counts in vHPC a    | nd behaviors (related to                                    | o Fig. S1)                        | -                    |  |
| Correlation betwe                                                  | een PV <sup>+</sup>            | With SDI (B)                       | Pearson correlation                                         | r = 0.5045                        | <i>p</i> = 0.0119*   |  |
| counts in the vHI                                                  | PC (H)                         | With ODI (C)                       | Pearson correlation                                         | r = 0.1177                        | p = 0.6112           |  |
| Correlation betwe                                                  | een PV <sup>+</sup>            | With SDI (D)                       | Pearson correlation                                         | <i>r</i> = 0.7574                 | <i>p</i> < 0.0001*** |  |
| counts in the vCA                                                  | A1                             | With ODI (G)                       | Pearson correlation                                         | r = 0.0060                        | p = 0.9800           |  |
| Correlation betwe                                                  | een PV <sup>+</sup>            | With SDI (E)                       | Pearson correlation                                         | r = 0.3273                        | p = 0.1475           |  |
| counts in the vCA                                                  | A2/3                           | With ODI (H)                       | Pearson correlation                                         | r = -0.2385                       | p = 0.3113           |  |
| Correlation between PV <sup>+</sup>                                |                                | With SDI (F)                       | Pearson correlation                                         | <i>r</i> = 0.1254                 | p = 0.5881           |  |
| counts in the vDG                                                  |                                | With ODI (I)                       | Pearson correlation                                         | <i>r</i> = -0.0342                | p = 0.8861           |  |
| Correlation analy                                                  | sis between PV                 | <sup>7+</sup> counts in distinct : | subfields of the hippoc                                     | ampus and behaviors (re           | elated to Fig.       |  |
| S2)                                                                |                                |                                    |                                                             |                                   |                      |  |
|                                                                    |                                | dCA1: GH vs IH                     | Unpaired t test                                             | <i>t</i> (19) = 1.696             | <i>p</i> = 0.1062    |  |
| Number of PV <sup>+</sup> c                                        | ells in dHPC                   | dCA2: GH vs IH                     | Unpaired t test                                             | ed <i>t</i> test $t(19) = 0.3396$ |                      |  |
| subfields (D-G)                                                    |                                | dCA3: GH vs IH                     | Unpaired t test                                             | t (19) = 0.5709                   | <i>p</i> = 0.5748    |  |
|                                                                    |                                | dDG: GH vs IH                      | Unpaired <i>t</i> test $t(19) = 2.532$                      |                                   | <i>p</i> = 0.0203    |  |
| Correlation betwe                                                  | een PV <sup>+</sup>            | With SDI (H)                       | Pearson correlation $r = 0.1673$                            |                                   | <i>p</i> = 0.4686    |  |
| counts in the dHI                                                  | PC (I)                         | With ODI (I)                       | Pearson correlation                                         | son correlation $r = 0.3593$      |                      |  |
| Correlation betwe                                                  | een PV <sup>+</sup>            | With SDI (J)                       | Pearson correlation                                         | <i>r</i> = 0.02215                | <i>p</i> = 0.9241    |  |
| counts in the dCA1                                                 |                                | With ODI (N)                       | Pearson correlation                                         | <i>r</i> = 0.2897                 | <i>p</i> = 0.2027    |  |

| Correlation between PV <sup>+</sup>                                                                                                    |                                                                                                                                                                                                                                                                                                                                         | With SDI (K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rson correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r = 0.3724                                                                                                                                                                                                                                                                                                                                              | p = 0.0964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| counts in the dCA2                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | With ODI (O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rson correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r = -0.2045                                                                                                                                                                                                                                                                                                                                             | p = 0.3738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Correlation between PV <sup>+</sup>                                                                                                    |                                                                                                                                                                                                                                                                                                                                         | With SDI (L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rson correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>r</i> = 0.3268                                                                                                                                                                                                                                                                                                                                       | p = 0.1482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| counts in the dCA3                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         | With ODI (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rson correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r = -0.01471                                                                                                                                                                                                                                                                                                                                            | p = 0.9495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Correlation b                                                                                                                          | etween PV <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | With SDI (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rson correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>r</i> = 0.2794                                                                                                                                                                                                                                                                                                                                       | p = 0.2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| counts in the                                                                                                                          | dDG                                                                                                                                                                                                                                                                                                                                     | With ODI (Q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rson correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r = 0.1521                                                                                                                                                                                                                                                                                                                                              | p = 0.5105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Effect of re-g                                                                                                                         | roup manipulation                                                                                                                                                                                                                                                                                                                       | in PV <sup>+</sup> counts in vH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lated to Fig. S3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | GH vs IH vs<br>RGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e-way ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F (2, 15) = 3.696                                                                                                                                                                                                                                                                                                                                       | <i>p</i> = 0.0495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDI (A)                                                                                                                                |                                                                                                                                                                                                                                                                                                                                         | GH vs IH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Denfermeninget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>t</i> (15) = 2.713                                                                                                                                                                                                                                                                                                                                   | <i>p</i> < 0.05*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | GH vs RGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nferroni post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>t</i> (15) = 1.025                                                                                                                                                                                                                                                                                                                                   | <i>p</i> > 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | IH vs RGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hoc analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>t</i> (15) = 1.502                                                                                                                                                                                                                                                                                                                                   | p > 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | GH vs IH vs<br>RGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e-way ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F (2, 15) = 5.316                                                                                                                                                                                                                                                                                                                                       | <i>p</i> = 0.0180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The PV <sup>+</sup> cou                                                                                                                | nts in vHPC (B)                                                                                                                                                                                                                                                                                                                         | GH vs IH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>t</i> (15) = 3.222                                                                                                                                                                                                                                                                                                                                   | p < 0.05*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | GH vs RGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nierroni post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>t</i> (15) = 0.9596                                                                                                                                                                                                                                                                                                                                  | <i>p</i> > 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | IH vs RGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | noc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>t</i> (15) = 2.032                                                                                                                                                                                                                                                                                                                                   | <i>p</i> > 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | Groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F (2, 15) = 7.436                                                                                                                                                                                                                                                                                                                                       | <i>p</i> = 0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TI DX/+                                                                                                                                |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mixed two-way<br>ANOVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F (1.681, 25.21) =<br>81.83                                                                                                                                                                                                                                                                                                                             | <i>p</i> < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The PV cou                                                                                                                             | nts in vHPC                                                                                                                                                                                                                                                                                                                             | Interaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>F</i> (4, 30) = 3.127                                                                                                                                                                                                                                                                                                                                | <i>p</i> = 0.0291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| subfields (C)                                                                                                                          |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | vCA1: GH vs IH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ъ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t(10.99) = 4.542                                                                                                                                                                                                                                                                                                                                        | p = 0.0025 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                         | vCA1: GH vs IH<br>All other<br>comparisons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bor<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nferroni post<br>analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t (10.99) = 4.542<br>p > 0.0                                                                                                                                                                                                                                                                                                                            | <i>p</i> = 0.0025**<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other behavi                                                                                                                           | oral tests in PVIs-in                                                                                                                                                                                                                                                                                                                   | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bon<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nferroni post<br>analysis<br>elated to Fig. S4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t (10.99) = 4.542<br>p > 0.0                                                                                                                                                                                                                                                                                                                            | <i>p</i> = 0.0025**<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other behavi                                                                                                                           | oral tests in PVIs-in<br>GFP: familiar vs                                                                                                                                                                                                                                                                                               | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bon<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nferroni post<br>analysis<br>elated to Fig. S4)<br>Paired <i>t</i> test                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t (10.99) = 4.542<br>p > 0.0<br>t (7) = 6.338                                                                                                                                                                                                                                                                                                           | $p = 0.0025^{**}$<br>5<br>$p = 0.0004^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other behavi<br>SDT:                                                                                                                   | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs                                                                                                                                                                                                                                                                          | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bon<br>hoc<br>ent (re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elated to Fig. S4) Paired <i>t</i> test Paired <i>t</i> test                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$                                                                                                                                                                                                                                                                                             | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Other behavi<br>SDT:<br>dCA1-PVIs                                                                                                      | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN                                                                                                                                                                                                                                                       | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bor<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | analysis<br>analysis<br>elated to Fig. S4)<br>Paired <i>t</i> test<br>Paired <i>t</i> test<br>Unpaired <i>t</i> test                                                                                                                                                                                                                                                                                                                                                                                                                   | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$                                                                                                                                                                                                                                                                            | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Other behavi<br>SDT:<br>dCA1-PVIs                                                                                                      | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs                                                                                                                                                                                                                                   | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bon<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elated to Fig. S4) Paired <i>t</i> test Unpaired <i>t</i> test Paired <i>t</i> test                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$                                                                                                                                                                                                                                                            | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)                                                                                          | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs                                                                                                                                                                                                              | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bon<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | analysis<br>analysis<br>Paired to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Paired t test<br>Paired t test<br>Paired t test                                                                                                                                                                                                                                                                                                                                                                                     | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$                                                                                                                                                                                                                                           | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.3501$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)                                                                                          | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN                                                                                                                                                                                           | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bor<br>hoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | elated to Fig. S4) Paired t test Paired t test Unpaired t test Paired t test Paired t test Unpaired t test Paired t test Unpaired t test Unpaired t test Unpaired t test                                                                                                                                                                                                                                                                                                                                                               | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$                                                                                                                                                                                                                          | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.3501$ $p = 0.0332^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM                                                                                   | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm                                                                                                                                                                       | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>5 novel (B2)<br>T (C)<br>novel (D1)<br>5 novel (D2)<br>IT (D3)<br>ss: GFP vs TeNT (E2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bon<br>hoc<br>ent (re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Unpaired t test<br>Unpaired t test                                                                                                                                                                                                                                                                                                                                        | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$                                                                                                                                                                                                         | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.3501$ $p = 0.0332^{*}$ $p = 0.023^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM                                                                                   | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo                                                                                                                                                  | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>us: GFP vs TeNT (E2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bon hoce the second sec    | analysis<br>analysis<br>Paired to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Unpaired t test<br>Unpaired t test<br>Unpaired t test                                                                                                                                                                                                                                                                                                                          | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$                                                                                                                                                                                        | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0252^{*}$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.023^{*}$ $p = 0.023^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field                                                                     | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distan                                                                                                                           | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>ns: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Bor</li> <li>hoc</li> <li>ent (re</li> <li>2)</li> <li>21)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Unpaired t test<br>Unpaired t test<br>Unpaired t test<br>Unpaired t test                                                                                                                                                                                                                                                                                                  | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (18) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$                                                                                                                                                                       | $p = 0.0025^{**}$ $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0252^{*}$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.023^{*}$ $p = 0.033^{*}$ $p = 0.033^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field                                                                     | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distan<br>Mean speed (F2)                                                                                                        | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>a novel (B2)<br>T (C)<br>novel (D1)<br>a novel (D2)<br>IT (D3)<br>as: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bor<br>hoc<br>ent (re<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | analysis<br>analysis<br>Paired t test<br>Paired t test<br>Daired t test<br>Unpaired t test<br>Paired t test<br>Daired t test<br>Unpaired t test                                                                                                                                                                                                                                                   | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$                                                                                                                                                      | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0252^{*}$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.023^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field                                                                     | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distar<br>Mean speed (F2)<br>groups                                                                                              | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>IS: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E2)<br>ne: (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bor<br>hocent (re<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test                                                                                                                                                                                                                                                                           | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (18) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$                                                                                                                                  | $p = 0.0025^{**}$ $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.033^{*}$ $p = 0.023^{*}$ $p = 0.033^{*}$ $p = 0.247$ $p = 0.439$ $p = 0.7599$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field<br>Prepulse                                                         | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distar<br>Mean speed (F2)<br>groups<br>prepulse intensity                                                                        | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>as: GFP vs TeNT (E2<br>ne: GFP vs TeNT (E2<br>ne: GFP vs TeNT (E3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2)<br>Bor<br>hoc<br>ent (re<br>2)<br>21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Paired t test<br>Unpaired t test                                                                                                                                                                                                                                                          | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$ $F (3, 69) = 12.72$                                                                                                              | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0252^{*}$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.023^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field<br>Prepulse<br>inhibition                                           | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distar<br>Mean speed (F2)<br>groups<br>prepulse intensity<br>Interaction                                                                              | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>ns: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E3)<br>nce (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2)<br>2)<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Mixed two-way<br>ANOVA                                                                                                                                                                                                                                                 | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (18) = 2.306$ $t (31) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$ $F (3, 69) = 12.72$ $F (3, 69) = 0.265$                                                                         | $p = 0.0025^{**}$ $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.023^{*}$ $p = 0.023^{*}$ $p = 0.033^{*}$ $p = 0.247$ $p = 0.439$ $p = 0.7599$ $p < 0.0001^{***}$ $p = 0.8503$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field<br>Prepulse<br>inhibition<br>(G)                                    | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distan<br>Mean speed (F2)<br>groups<br>prepulse intensity<br>Interaction<br>Subjects                                             | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>ns: GFP vs TeNT (E2<br>ne: GFP vs TeNT (E2<br>ne: GFP vs TeNT (E3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Mixed two-way<br>ANOVA                                                                                                                                                                                                                                                 | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$ $F (3, 69) = 12.72$ $F (3, 69) = 32.47$                                                                         | $p = 0.0025^{**}$ $p = 0.0004^{***}$ $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.033^{*}$ $p = 0.023^{*}$ $p = 0.033^{*}$ $p = 0.247$ $p = 0.439$ $p = 0.7599$ $p < 0.0001^{***}$ $p = 0.8503$ $p < 0.0001^{***}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field<br>Prepulse<br>inhibition<br>(G)<br>Other behavi                    | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in center zo<br>Total travel distar<br>Mean speed (F2)<br>groups<br>prepulse intensity<br>Interaction<br>Subjects<br>oral tests in optoget                    | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>a novel (B2)<br>T (C)<br>novel (D1)<br>a novel (D2)<br>TT (D3)<br>ts: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E3)<br>netic experiment (ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bor<br>hoc<br>ent (re<br>2)<br>2)<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test<br>Mixed two-way<br>ANOVA                                                                                                                                                                                                                                                                    | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$ $F (3, 69) = 12.72$ $F (3, 69) = 12.72$ $F (3, 69) = 32.47$                                                                      | $p = 0.0025^{**}$ 5 $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.033^{*}$ $p = 0.023^{*}$ $p = 0.0001^{***}$ |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field<br>Prepulse<br>inhibition<br>(G)<br>Other behavi                    | oral tests in PVIs-in<br>GFP: familiar vs<br>TeNT: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in open arm<br>Time in center zo<br>Total travel distar<br>Mean speed (F2)<br>groups<br>prepulse intensity<br>Interaction<br>Subjects<br>oral tests in optoge | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>s novel (B2)<br>T (C)<br>novel (D1)<br>s novel (D2)<br>IT (D3)<br>ns: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E2)<br>ne: GFP vs TeNT (E3)<br>ne: GFP vs TeNT (E4)<br>netic experiment (reference)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2)<br>Born (reference of the second seco | hferroni post<br>analysis<br>elated to Fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$ $F (3, 69) = 12.72$ $F (3, 69) = 12.72$ $F (3, 69) = 32.47$ $t (6) = 3.271$                                                      | $p = 0.0025^{**}$ $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.033^{*}$ $p = 0.023^{*}$ $p = 0.033^{*}$ $p = 0.033^{*}$ $p = 0.247$ $p = 0.439$ $p = 0.7599$ $p < 0.0001^{***}$ $p = 0.8503$ $p < 0.0001^{***}$ $p = 0.0170^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Other behavi<br>SDT:<br>dCA1-PVIs<br>NORT (D)<br>EPM<br>Open field<br>Prepulse<br>inhibition<br>(G)<br>Other behavi<br>ChR2: laser off | oral tests in PVIs-in<br>GFP: familiar vs<br>SDI: GFP vs TeN<br>GFP: familiar vs<br>TeNT: familiar vs<br>ODI: GFP vs TeN<br>Time in open arm<br>Time in open arm<br>Time in center zo<br>Total travel distar<br>Mean speed (F2)<br>groups<br>prepulse intensity<br>Interaction<br>Subjects<br>oral tests in optogen<br>Laser off: fam   | vCA1: GH vs IH<br>All other<br>comparisons<br>nactivation experime<br>novel (B1)<br>a novel (B2)<br>T (C)<br>novel (D2)<br>T (D3)<br>as: GFP vs TeNT (E2<br>ne: GFP vs TeNT (E2 | Bor<br>hoc<br>ent (re<br>2)<br>2)<br>2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hferroni post<br>analysis<br>Paired t fig. S4)<br>Paired t test<br>Paired t test<br>Unpaired t test                                                                              | t (10.99) = 4.542 $p > 0.0$ $t (7) = 6.338$ $t (6) = 7.853$ $t (13) = 1.841$ $t (8) = 2.748$ $t (10) = 0.980$ $t (18) = 2.306$ $t (30) = 2.399$ $t (31) = 2.229$ $t (31) = 1.181$ $t (31) = 0.784$ $F (1, 23) = 0.096$ $F (3, 69) = 12.72$ $F (3, 69) = 12.72$ $F (3, 69) = 12.72$ $F (3, 69) = 32.47$ $t (6) = 3.271$ $t (6) = 3.271$ $t (6) = 0.3032$ | $p = 0.0025^{**}$ $p = 0.0004^{***}$ $p = 0.0002^{***}$ $p = 0.0002^{***}$ $p = 0.0886$ $p = 0.0252^{*}$ $p = 0.0332^{*}$ $p = 0.033^{*}$ $p = 0.023^{*}$ $p = 0.0001^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| NpHR: laser on    | Laser off: familiar vs novel (C1)                         |                            | Unpaired t test        | t(7) = 6.160                        | p = 0.0005 ***     |
|-------------------|-----------------------------------------------------------|----------------------------|------------------------|-------------------------------------|--------------------|
|                   | Laser on: familiar vs novel (C2)                          |                            | Unpaired t test        | <i>t</i> (7) = 3.302                | <i>p</i> = 0.0131* |
| vs laser off      | SDI: Laser off vs laser on (D)                            |                            | Unpaired t test        | <i>t</i> (7) = 2.370                | p = 0.0496*        |
|                   | mCh: roommate vs novel (E1)                               |                            | Paired t test          | <i>t</i> (6) = 5.185                | p = 0.0020 **      |
|                   | ChR2: roommate vs novel (E2)                              |                            | Paired t test          | <i>t</i> (8) = 7.135                | p < 0.0001***      |
| SDT (with         | SDI: mCh vs ChR2 (F)                                      |                            | Unpaired t test        | <i>t</i> (14) = 0.827               | p = 0.4221         |
| roomate)          | GFP: roommat                                              | te vs novel (G1)           | Paired t test          | <i>t</i> (5) = 5.016                | p = 0.0041**       |
|                   | TeNT: roomma                                              | ate vs novel (G2)          | Paired t test          | <i>t</i> (5) = 0.4652               | <i>p</i> = 0.6613  |
|                   | SDI: GFP vs T                                             | CeNT (H)                   | Unpaired t test        | <i>t</i> (10) = 0.333               | <i>p</i> = 0.7458  |
|                   | mCh: familiar                                             | vs novel (I1)              | Paired t test          | <i>t</i> (7) = 2.595                | <i>p</i> = 0.0357* |
|                   | ChR2: familia                                             | r vs novel (I2)            | Paired t test          | <i>t</i> (8) = 2.464                | <i>p</i> = 0.0391* |
| NOPT              | ODI: mCh vs                                               | ChR2 (J)                   | Unpaired t test        | t(15) = 0.003                       | p = 0.9974         |
| NORI.             | GFP: familiar                                             | vs novel (K1)              | Paired t test          | t (9) = 2.635                       | p = 0.0271*        |
|                   | NpHR: familia                                             | ar vs novel (K2)           | Paired t test          | <i>t</i> (9) = 2.392                | p = 0.0404*        |
|                   | ODI: GFP vs N                                             | NpHR (L)                   | Unpaired t test        | <i>t</i> (18) = 0.158               | <i>p</i> = 0.8773  |
|                   | Total travel                                              | mCh vs ChR2 (M)            | Unpaired t test        | t(10) = 0.262                       | <i>p</i> = 0.7989  |
| Open field        | distance                                                  | GFP vs NpHR (N)            | Unpaired <i>t</i> test | <i>t</i> (12) = 2.043               | <i>p</i> = 0.0637  |
| Open neid         | Time in                                                   | mCh vs ChR2 (O)            | Unpaired t test        | <i>t</i> (10) = 1.241               | p = 0.2431         |
|                   | center zone GFP vs NpHR (P)                               |                            | Unpaired t test        | t (12) =0.8058                      | <i>p</i> = 0.4360  |
| Effects of chemo  | genetic manipula                                          | ation of vCA1-PVIs dur     | ing consolidation sta  | age on social memory                | (related to Fig.   |
| S6)               |                                                           |                            |                        |                                     |                    |
|                   | Main effect of                                            | groups                     |                        | F (2, 16) = 2.968                   | p = 0.0801         |
| DREADDs           | Main effect of times                                      |                            | Mixed two-way          | F (1, 16) = 6.163                   | p = 0.0245*        |
| manipulation      | group × times interaction<br>Subjects<br>0h: mCh vs hM3Dq |                            | ANOVA                  | F (2, 16) = 3.678                   | p = 0.0485*        |
| during            |                                                           |                            |                        | F (16, 16) = 0.795                  | <i>p</i> = 0.6746  |
| separation        |                                                           |                            |                        | t (11) = 3.370                      | <i>p</i> = 0.0039  |
| session of SDT    | 0h: mCh vs hN                                             | )h: mCh vs hM4Di           |                        | t (11) = 2.599                      | p = 0.0280         |
| (B)               | 3h: mCh vs hM3Dq                                          |                            | hoc analysis           | t (11) = 0.6322                     | <i>p</i> > 0.9999  |
|                   | 3h: mCh vs hM4Di                                          |                            |                        | t (11) = 0.2051                     | <i>p</i> > 0.9999  |
| Optogenetic man   | ipulation of PVI                                          | s during investigating o   | ne of a pair of novel  | /familiar object (relate            | ed to Fig. S7)     |
|                   | mCh: laser off vs laser on (B1)                           |                            | Paired t test          | tired <i>t</i> test $t(5) = 0.2870$ |                    |
| A pair of         | ChR2: laser off vs laser on (B2)                          |                            | Paired t test          | <i>t</i> (6) = 0.0795               | p = 0.9392         |
| familiar objects  | GFP: laser off                                            | vs laser on (C1)           | Paired t test          | <i>t</i> (5) = 0.0072               | <i>p</i> = 0.9945  |
|                   | NpHR: laser off vs laser on (C2)                          |                            | Paired t test          | <i>t</i> (5) = 0.3131               | <i>p</i> = 0.7668  |
|                   | mCh: laser off vs laser on (E1)                           |                            | Paired t test          | <i>t</i> (5) = 0.5947               | p = 0.5779         |
| A pair of novel   | ChR2: laser off vs laser on (E2)                          |                            | Paired t test          | <i>t</i> (6) = 1.098                | <i>p</i> = 0.3142  |
| objects           | GFP: laser off vs laser on (F1)                           |                            | Paired t test          | <i>t</i> (5) = 1.298                | p = 0.2509         |
|                   | NpHR: laser off vs laser on (F2)                          |                            | Paired t test          | <i>t</i> (5) = 0.2836               | p = 0.7881         |
| Additional analys | sis of fiber-photo                                        | ometry results (related to | o Fig. S8)             |                                     |                    |
| Investigating     |                                                           |                            | Repeated               | F(1.692, 8.462) =                   |                    |
| different body    | Main effect                                               |                            | One-way                | 45.04                               | p < 0.0001         |
| narts (B)         |                                                           |                            | ANOVA                  |                                     |                    |
| Parts (D)         | Anogenital vs.                                            | Facial                     | Bonferroni post        | t(5) = 4.301                        | <i>p</i> < 0.05*   |

|                                                            | Anogenital vs. Flank he                                 |                 | c analysis         | t(5) = 1             | 7.898         | <i>p</i> < 0.01**   |
|------------------------------------------------------------|---------------------------------------------------------|-----------------|--------------------|----------------------|---------------|---------------------|
|                                                            | Facial vs. Flank                                        |                 |                    | <i>t</i> (5) = 6.322 |               | <i>p</i> < 0.01**   |
|                                                            | Bouts                                                   |                 |                    | F (1.26              | 7, 5.068) =   | 0.0025**            |
|                                                            |                                                         |                 | mantad             | 28.24                |               | p = 0.0025***       |
|                                                            | Investigation targets Two-way<br>ANOVA<br>targets ANOVA |                 |                    |                      | 2, 6.847) =   | n = 0.0050**        |
| Signal decay                                               |                                                         |                 | NOVA               | 13.37                |               | <i>p</i> = 0.0050   |
| across bouts.                                              |                                                         |                 |                    | F (1.72              | 9, 6.917) =   | p = 0.0033 **       |
| Novel mouse                                                |                                                         |                 |                    | 15.32                |               |                     |
| vs mouse toy                                               | 1st 1/3 bouts: Novel mouse vs.                          | Bonferroni post |                    | t(4) = -             | 4.114         | p < 0.05*           |
| vs mouse toy                                               | mouse toy                                               |                 |                    | .(1)-                |               | <i>p</i> < 0.05     |
| with urine (C)                                             | 2nd 1/3 bouts: Novel mouse vs.                          |                 |                    | t(A) = A A A         |               | n < 0.05*           |
|                                                            | mouse toy                                               | ho              | c analysis         | ,(1)-                |               | <i>p</i> < 0.05     |
|                                                            | 2nd 1/3 bouts: Novel mouse vs.                          | noc analysis    |                    | t(4) =               | 6.16          | p < 0.05*           |
|                                                            | mouse toy with urine                                    |                 |                    | ,(1)-                | 0.10          | <i>p</i> < 0.05     |
|                                                            | All other comparisons                                   |                 |                    | p > 0.               |               | 05                  |
| The evaluation of                                          | c-Fos expression in the vCA1 after soci                 | ial iı          | nteraction (relate | ed to Fig.           | S9)           | I                   |
| Number of<br>c-Fos+ nuclei                                 | Familiar vs novel (A1)                                  |                 | Mann-whitney test  |                      | <i>U</i> = 11 | <i>p</i> = 0.0281*  |
|                                                            | PV ×Low c-Fos: familiar vs novel (E1)                   |                 | Mann-whitney test  |                      | <i>U</i> = 10 | <i>p</i> = 0.4004   |
| Proportion that                                            | PV × Medium c-Fos: familiar vs novel                    |                 | Mana addition      | 4 4                  | <i>TT</i> 11  |                     |
| PV × c-Fos in                                              | (E2)                                                    |                 | Mann-whithe        | ey test              | U = 11        | p = 0.5022          |
| OI.                                                        | PV × High c-Fos: familiar vs novel (E                   | E3)             | Mann-whitney test  |                      | <i>U</i> = 15 | <i>p</i> > 0.9999   |
| <b>Proportion</b> that                                     | PV ×Low c-Fos: familiar vs novel (F                     | 1)              | Mann-whitney test  |                      | <i>U</i> = 4  | p = 0.0455*         |
| $\mathbf{P}\mathbf{V}$ × c Fos in                          | PV × Medium c-Fos: familiar vs nove                     | el              | Monn whith         | w tast               | U - 11        | <i>p</i> = 0.5281   |
| FV × C-FOS III                                             | (F2)                                                    |                 | wiann-winnie       | ey test              | U = 11        |                     |
| 1 yı.                                                      | PV × High c-Fos: familiar vs novel (F                   | 73)             | Mann-whitney test  |                      | <i>U</i> = 10 | <i>p</i> = 0.3853   |
| Stimulating vCA1-PVIs at 40Hz in SDT (related to Fig. S10) |                                                         |                 |                    |                      |               |                     |
|                                                            | mCh: familiar vs novel (A1)                             |                 | Paired t test      | t (5)                | = 5.069       | <i>p</i> = 0.0039** |
| SDT at 40Hz                                                | ChR2: familiar vs novel (A2)                            |                 | Paired t test      | t (6)                | = 1.790       | p = 0.1237          |
|                                                            | SDI: mCh vs ChR2 (B)                                    |                 | Unpaired t test    | t (11                | ) = 2.387     | <i>p</i> = 0.036*   |
| Approaching                                                | roaching mCh: familiar (with laser) vs familiar         |                 | Daired t test      | + (6)                | - 0 2052      | n = 0.7778          |
| one of a pair of                                           | (without laser) (C1)                                    |                 | I alleu i test     | 1 (0)                | - 0.2955      | <i>p</i> = 0.7778   |
| familiar mice                                              |                                                         |                 |                    |                      |               |                     |
| triggered 473nm                                            | ChR2: familiar (with laser) vs familia                  | r               | Paired + test      | + (5)                | - 2 581       | n = 0.0404*         |
| laser at 40Hz in                                           | (without laser) (C2)                                    |                 | i alleu l test     | 1(3)                 | - 2.301       | p = 0.0494          |
| SDT                                                        |                                                         |                 |                    |                      |               |                     |