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Phenome-wide Burden of Copy-Number Variation
in the UK Biobank

Matthew Aguirre,1,2 Manuel A. Rivas,1 and James Priest2,3,*

Copy-number variations (CNVs) represent a significant proportion of the genetic differences between individuals and many CNVs asso-

ciate causally with syndromic disease and clinical outcomes. Here, we characterize the landscape of copy-number variation and their

phenome-wide effects in a sample of 472,228 array-genotyped individuals from the UK Biobank. In addition to population-level selec-

tion effects against genic loci conferring highmortality, we describe genetic burden from potentially pathogenic and previously unchar-

acterized CNV loci across more than 3,000 quantitative and dichotomous traits, with separate analyses for common and rare classes of

variation. Specifically, we highlight the effects of CNVs at two well-known syndromic loci 16p11.2 and 22q11.2, previously uncharac-

terized variation at 9p23, and several genic associations in the context of acute coronary artery disease and high body mass index. Our

data constitute a deeply contextualized portrait of population-wide burden of copy-number variation, as well as a series of dosage-medi-

ated genic associations across the medical phenome.
Introduction

Copy-number variants (CNVs) are a class of structural

variation typically defined as large deletions or duplica-

tions of at least 50 base-pairs of genomic sequence.1,2

CNVs exhibit substantial variability in both size and fre-

quency in the population and have been implicated across

a variety of common and rare health outcomes.3 Regional

deletion and duplication syndromes have also been

described at many loci, clustering near areas of segmental

duplication which may potentiate non-allelic homologous

recombination.4–6 For example, CNV-based architectures

for neuropsychiatric (e.g., autism spectrum disorder),

developmental (e.g., 16p11.2 [MIM: 611913]),7,8 and syn-

dromic cardiac disease (e.g., 22q11.2 [MIM: 188400]) (see

GeneReviews in Web Resources) phenotypes have been

well established.

Despite a growing body of research on CNV-related syn-

dromes and disease etiologies, large-scale studies of CNV

effects have been limited by their rarity in the general pop-

ulation. However, burden testing methods that address

this rarity by pooling observed variation across gene re-

gions have yielded reproducible associations in the context

of congenital heart disease and various neurocognitive

outcomes.10,11 Moreover, as studies which include either

microarray or NGS-based genotype data have grown in

size and scope, it has become possible to describe the distri-

bution of CNVs at kilobase-level resolution in the general

population.12,13 Furthermore, the aggregation of richly an-

notated phenotype data in biobanks has diversified the set

of phenotypes available for well-powered association

studies, and allows for more precise characterization of

well-established pathogenic CNVs.14–17

We here describe the genome-wide landscape of copy-

number variation and their associations with 3,157 pheno-
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types in a cohort of 332,584 participants from the UK

Biobank.18 We replicate well-established syndromic effects

of common CNVs—namely 22q11.2 deletion (DiGeorge)

syndrome and two variants of 16p11.2 deletion syn-

drome—and highlight associations for body mass index

(BMI), acute coronary artery disease (CAD), and related

adipose and cardiovascular phenotypes. Summary statis-

tics from traditional genome-wide associations for com-

mon CNVs as well as from gene-level aggregate burden

tests of rare variants across all phenotypes are available

for download on the Global Biobank Engine.19
Material and Methods

CNVs were called using PennCNV v.1.0.4 on raw signal intensity

data from each genotyping array. Phenotype data were derived

fromdata-fields collected for UK Biobank corresponding to various

body measurements, biomarkers, disease diagnoses, and medical

procedures from medical records, as well as a questionnaire about

lifestyle and medical history. Summary-level data from all statisti-

cal tests described here, as well as more thorough documentation

on phenotyping, are available on the Global Biobank Engine19

and can be found in related publications.20

CNV Calling in UK Biobank
Methods for genetic data acquisition and quality control as per-

formed by the UK Biobank have been previously described.18 In

brief, two similar arrays were used for targeted genotyping within

the study population: the UK BiLEVE Axiom Array (n¼ 49,950) by

Affymetrix and the UK Biobank AxiomArray (n¼ 438,427), which

was custom designed by Applied Biosystems. Samples and array

markers were subject to threshold-based filtration and quality con-

trol prior to public release. Specifically, markers were tested for

discordance across control replicates, departures from Hardy-

Weinberg equilibrium, as well as effects due to batch, plate, array,

and sex; affected markers were set as missing in affected batches or
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removed. Similarly, samples were tested for missingness (>5%)

and heterozygosity across a set of high-quality markers, but sam-

ples identified as low quality (n ¼ 968) were not excluded. We

also chose to include these samples in this analysis, considering

that large structural variants may have been responsible for their

poor quality with respect to metrics used for filtration.

We used PennCNV v.1.0.421 to call CNVs within each of the 106

genotyping batches from UK Biobank. We first estimate genomic

runs of heterozygosity (RoH) for each sample using a previously

developed pipeline in PLINK22,23 using the –homozyg option.

We then select n ¼ 100 samples with total RoH covering less

than 20 Mb to train a hidden markov model (HMM) of copy state

on each chromosome. HMM training was initialized with condi-

tions optimized for Affymetrix arrays (affygw6.hmm), provided

in PennCNV resources. We used the general calling mode, which

performs likelihood-based testing for copy-number state (CN ¼
0,1,2,3,4) at each input marker using its log-normalized signal

intensity and allele balance in a given sample. We also apply

adjustment for GC content across sites using waviness factor

correction.24 After CNV calling, we exclude 1,360 samples with

more than 30 called CNVs from downstream analysis, resulting

in a cohort of 472,734 individuals with 275,180 unique variants.
Gene-Level Constraint Estimation
Regional selective constraint to CNV was estimated for all auto-

somal protein-coding genes, with genic CNV defined as any

variant overlapping within 10 kb of the HGNC gene region.We es-

timate a null model of structural mutation empirically as in a pre-

vious study,12 andmodel burden of genic CNVas a linear function

of gene size, fraction of genic sequence covered by regions of

segmental duplication as extracted from the UCSC Genome

Browser.25,26 We also account for biased observations due to array

genotyping (as compared to exome sequence) by including the

number of genic markers as a covariate. The formula for this

null model can be written as:

ncnv ¼ b1,lenðgeneÞ þ b2,fracðsegdupÞ þ b3,nmarkers þ e

From this model, we compute constraint z-scores for each gene us-

ing its negated standardized residual for each gene, winsorizing

the negative tail at the lowest 5% of values. We also compute

the probability of intolerance to CNV (akin to probability of

loss of function intolerance/pLI) as the non-normalized residual

over the number of expected CNV, with negative values rounded

to zero.
Genetic Associations
Variant-level associations in UK Biobank were estimated with

PLINK v2.00a (2 April 2019). We used the –glm firth-fallback op-

tion for computation. This option is a hybrid algorithm for logistic

regression which defaults to a standard regression solver for

computation, falling back to Firth’s regression in cases where

one of the cells of the 232 contingency table is zero, or where

the traditional method fails to converge in a pre-specified number

of iterations. These analyses were performed in a subset of 332,584

unrelated individuals of self-reported white British ancestry with

CNV genotype calls and were controlled for age, sex, and four

marker-based genomic principal components from the UK Bio-

bank PCA calculation. To ensure adequate power for estimating ge-

netic effects, we perform these tests on 7,038 CNVs observed at a

frequency of �0.005% (1 in �20,000, or 15 individuals) in the

whole sample of individuals with called CNVs.
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Gene-level burden tests were conducted across all gene:pheno-

type pairs using the same methods and cohort as the variant-level

GWAS. Genic burden was encoded as a binary variable which in-

dicates whether an individual has a CNVwhich contains any over-

lap within 10,000 base pairs of the HGNC gene region. CNVs

which overlapped several gene regions were used for analysis in

each gene. We treat deletions and duplications identically, with

the assumption that any CNV which overlaps a gene in this

fashion will disrupt its normal function. We included the

following as covariates in bothmodels: age, sex, fourmarker-based

genomic principal components from UK Biobank’s PCA calcula-

tion, and the number and combined length of CNVs in each

individual.

Targeted variant-level GWAS was performed for both BMI and

CAD in the same population, methods, and covariates as in the

CNV GWAS. We display summary statistics for variants imputed

from the Haplotype Reference Consortium18,27 (HRC) which over-

lap regions of interest as identifies in each of these analyses. Lead

variants for the BMI GWAS were identified by LD-clumping these

variants with PLINK’s –clump option using a p value threshold

of 10�10 and r-squared cutoff of 0.2 between lead variants. The

lead variant at 9p23 was selected by inspection. Correlation be-

tween lead variants and all nearby variation was computed with

PLINK’s –r2 option.

Two-sample mendelian randomization was performed via the

MR Base web app using GWAS summary statistics for LDLRAD3

expression QTLs from a CARDIoGRAMplusC4D meta-analysis.28

We report Wald summary statistics from inverse-variance

weighted Egger regression; these are the default analysis options

for the web interface.
Results

Landscape of Common and Rare CNVs in a Large

Volunteer Cohort

To call copy-number variants in UK Biobank, we apply

PennCNV21 separately within each genotyping batch,

resulting in 275,180 unique CNVs among 472,724 individ-

uals after sample quality control. We also observe heavy-

tailed distributions in size and allele count of CNVs, with

average CNV length �226 kb and the majority of called

variants singleton in the cohort (Figures 1A and 1B). This

translates to notable burden of variation for nearly all

individuals, with 439,464 (93.1%) of the individuals pos-

sessing at least one CNV detectable at kilobase resolution

(Figures 1C and 1D). Among individuals with at least one

CNV, we estimate an average burden of 5.5 variants

covering >200 kb of genomic sequence (median 3 variants

affecting �100 kb; Figures 1C and 1D). While in line with

previous reports,12 these estimates of individual-level

burden are likely conservative, as regions where array

markers are sparse or missing limit the accuracy of variant

calling. Furthermore, we are unable to call smaller (<1 kb)

variants due to inconsistent marker density across all chro-

mosomal regions on the Axiom and BiLEVE UK Biobank

genotyping arrays. This limitation is visible in the histo-

gram of called CNV lengths (Figure 1A); we call substan-

tially fewer variants on the order of hundreds of base-pairs

than on the order of thousands.
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Figure 1. Burden and Distribution of
Copy-Number Variation in UK Biobank
(A) Log-scale histogram of CNV lengths.
Mean length (dashed line) is 226.5 kb.
(B) Cumulative density of CNV allele
count (AC), displayed in log-log axes.
Average AC is 5.5, but average frequency as
experienced by the population (weighted
by count, hence AC2) is �1.6%.
(C and D) Histogram of CNV counts (C)
and log-scale base-pairs affected by CNV
per individual (D). Sample-level burden
is heavy-tailed, with the average individ-
ual carrying 4.2 variants (dashed line),
affecting mean �207.6 kb of genomic
sequence.
(E) Genome-wide density of CNV, defined
as the number of unique CNVs overlap-
ping 10 megabase (Mb) windows tiling
each chromosome. Hotspots of structural
variation are labeled by cytogenic band.
We also observe a highly non-uniform burden of varia-

tion across genomic position, with breakpoints most com-

mon near the ends of chromosomes, and at known regions

of segmental duplication (Figure 1E). Among them are

1p36, 8q24.3, 9q34.3, and 19q13, all of which have associ-

ated microdeletion syndromes causing developmental

delay with uniquely characteristic growth patterns.29–32

Other CNV hotspots like 6p21.33, which contains the ma-

jor histocompatibility complex protein gene family, may

be influenced by high marker density (in this case for

HLA allelotyping) in addition to these biological features

which underlie structural mutagenesis. However, these

loci do not categorically correspond to areas where struc-

tural variation is commonly observed in the population

(Figure S1). For example, 1p36 and 19q13 are also the

respective sites of common CNVs overlapping RHD

(MIM: 111680) and FUT2 (MIM: 182100) (Rhesus and

Lewis blood groups), but there are no such common vari-

ants within the telomeric 16p13 cytoband.

Survivorship Bias due to Genetic Selection against Early-

Onset Diseases

We estimate gene-level intolerance to structural variation

by adapting a method for estimating regional selective

constraint.12 Relative to the general population, the volun-

teers within the UK Biobank are described to have a
The American Journal of Human Ge
‘‘healthy-cohort’’ enrollment bias33

and were enrolled between the ages

of 40 to 69, which informs our find-

ings. Within the tail of positive

constraint z-scores, which indicate

the strongest intolerance to structural

variation, we observe enrichment for

genes which cause early-onset dis-

eases, particularly cancer. Among the

top 15 constrained genes (Table 1)

are BRCA1 (MIM: 113705) and
BRCA2 (MIM: 117305), which are associated with early-

onset breast cancer;34,35 MLH1 (MIM: 120486), MSH2

(MIM: 609309), MSH6 (MIM: 600678), which cause

early-onset colorectal cancer (Lynch syndrome [MIM:

120435]);36–38 and ATM (MIM: 607585) and APC (MIM:

611731), which are involved with mismatch repair can-

cers.39,40 In all we find 8,709 genes (47.9% of 18,183

protein coding autosomal genes in the analysis) to be intol-

erant to CNV, with probability of intolerance (see Material

and Methods) above 0.9; this is a greater than 2.5-fold in-

crease in the set of genes intolerant to loss of function vari-

ation identified in ExAC.41

Selections from the most highly constrained pathways

from Gene Ontology Consortium42 resources (Table 2)

also suggest strong intolerance to CNV among genes

involved with core biological processes like protein bind-

ing, cellular structural integrity (keratinization), develop-

ment (growth hormone receptor binding), and immune

regulation (natural killer cell activation). Similar results at

the gene and pathway level are observed for deletion-spe-

cific constraint (Tables S1 and S2), whereas duplication-

specific analysis suggests autoimmune-related genes and

pathways are most strongly intolerant to dosage effects

(Tables S1 and S2). Analysis of medical terms from the

Human Phenotype Ontology project43 further validates

the observation that genes with carcinogenic variation are
netics 105, 373–383, August 1, 2019 375



Table 1. 15 Genes Most Intolerant to Copy-Number Variation

Gene Constraint z
Probability of CNV
Intolerance

BRCA2 3.402 0.9911

BRCA1 2.570 0.9840

APC 2.086 0.9456

ATM 1.242 0.9892

MSH2 1.241 0.9883

MLH1 1.224 0.9962

MSH6 0.957 0.9933

RB1 0.905 0.9577

SBDS 0.861 0.9741

SPATA31D1 0.853 0.9979

CYP3A4 0.846 0.9979

PABPC3 0.831 0.9923

OTOP1 0.830 0.9930

KRT16 0.828 0.9979

ZNF302 0.827 0.9979

Columns are gene label, constraint z-score, and probability of CNV intolerance
(see Material and Methods for definitions).

Table 2. 15 Pathways from Gene Ontology Consortium Most
Enriched for Constrained Genes

GO ID
CNV-Intolerant Pathway
Name Delta z p

GO:0000137 Golgi cis cisterna 0.4086 7.14E�30

GO:0045095 keratin filament 0.2594 8.20E�30

GO:0031436 BRCA1-BARD1 complex 1.4562 2.18E�28

GO:0005515 protein binding 0.0707 5.52E�23

GO:0000800 lateral element 0.4642 1.48E�21

GO:0031424 keratinization 0.1816 1.50E�20

GO:0032301 MutSalpha complex 1.0987 7.98E�20

GO:0008194 UDP-glycosyltransferase
activity

0.3525 1.06E�18

GO:0052697 xenobiotic glucuronidation 0.4715 4.53E�18

GO:0070200 establishment of protein
localization to telomere

0.9767 1.58E�17

GO:0032300 mismatch repair complex 0.5164 4.29E�17

GO:0008274 gamma-tubulin ring
complex

0.3902 2.72E�16

GO:0008202 steroid metabolic process 0.2776 6.76E�16

GO:0042954 lipoprotein transporter
activity

0.4233 9.53E�15

GO:0015020 glucuronosyltransferase
activity

0.3365 1.24E�14

Columns are GO pathway ID/name, change in z-score between set and non-set
members, indicating mean strength of selective effect in the pathway, and
p value (t test, gene set members versus all others).
enriched among those most intolerant to CNV (Table 3).

Themost constrained HPO terms include carcinomas, neo-

plasms, and other conditions like chronic fatigue. Deletion-

specific analysis of HPO terms (Table S3) also follows this

trend, while duplication-specific constraint suggests strong

intolerance to variation altering normal developmental

pathways. HPO terms most strongly intolerant to puta-

tively dosage-altering variation include an array of nervous

and musculoskeletal abnormalities. These results indicate

strong selective effects occurring prior to enrollment in

the UK Biobank during childhood and early adulthood

against loss of function variation in core developmental,

metabolic, and tumor-suppressing genes, and against

dosage-altering variation in immune-related genes.

Association Testing Identifies CNVs at Several

Genomic Loci

We compute genome-wide associations across 3,157 phe-

notypes for 7,038 common CNVs observed at 0.005%

allele frequency (1 in 20,000) in our GWAS cohort, using

regression as implemented in the analysis software

PLINK.44 We also perform aggregate rare-variant burden

tests, pooled by gene. For these tests, we measure the net

effect of rare CNVs (AF < 0.1%) overlapping within 10 kb

of the gene region as defined by HGNC45 for 16,250 auto-

somal protein coding genes with at least five individuals

with overlapping CNV. In sum, we find 14,182 CNV-level

associations (about 4 per phenotype) and 102,606 gene-

level associations (about 32 per phenotype) with Bonfer-

roni-corrected p < 0.05/7,038 (7.1 3 10�6, for GWAS) or

0.05/16,250 (3.1 3 10�6, burden test). It is noteworthy
376 The American Journal of Human Genetics 105, 373–383, August
that many of our phenotype observations are correlated

(e.g., right/left hand grip strength), and aggregate gene-

level tests are also correlated (e.g., cases where a single

rare variant overlaps several genes, as in DiGeorge syn-

drome). A complete list of phenotypes analyzed is available

on the Global Biobank Engine (Web Resources). Here, we

describe representative results for one common disease

and one quantitative measure with established genetic

risk factors and large sample sizes in UK Biobank: acute cor-

onary artery disease (CAD) and body mass index (BMI).

For acute CAD, we identify two statistically significant

(p < 9 3 10�6) associations after Bonferroni correction

for the common CNV GWAS: an intergenic deletion at

chromosome 9p23 and a putative gene fusion event on

chromosome 4 (Figure 2A). The association of the dupli-

cated FGFR3-TACC3 fusion (MIM: 134934) is unclear;

only two individuals with this variant appear in gnomAD

SV resource and no previous experimental or genetic data

link this locus to cardiovascular disease. However, inter-

genic variants at the 9p21 locus have been implicated in

previous association studies of blood-based biomarkers

relevant to cardiac outcomes, specifically, decreases in he-

matocrit and hemoglobin concentration,46 as well as ca-

rotid plaque burden.47 A recent meta-analysis48 using

data from UK Biobank and CARDIoGRAMplusC4D identi-

fied a lead variant in the vicinity of this locus (rs2891168)
1, 2019



Table 3. 15 Pathways from Human Phenotype Ontology
Consortium Most Enriched for Constrained Genes

HPO ID CNV-Intolerant HPO Term Delta z P

HP:0006725 Pancreatic adenocarcinoma 0.5545 2.50E�46

HP:0012432 Chronic fatigue 0.7301 3.00E�39

HP:0025318 Ovarian carcinoma 0.6659 1.94E�38

HP:0003003 Colon cancer 0.4031 2.95E�37

HP:0004389 Intestinal pseudo-obstruction 0.6735 3.16E�36

HP:0100787 Prostate neoplasm 0.5044 2.72E�34

HP:0012125 Prostate cancer 0.5044 2.72E�34

HP:0100273 Neoplasm of the colon 0.3444 9.78E�34

HP:0030406 Primary peritoneal carcinoma 0.5883 8.40E�32

HP:0012334 Extrahepatic cholestasis 0.5551 4.59E�28

HP:0003002 Breast carcinoma 0.3147 3.65E�27

HP:0002885 Medulloblastoma 0.5220 2.38E�26

HP:0002254 Intermittent diarrhea 0.5046 4.04E�26

HP:0100834 Neoplasm of the large intestine 0.2734 7.87E�26

HP:0009592 Astrocytoma 0.5033 2.38E�24

Columns are HPO ID/term, change in z-score between set and non- set mem-
bers, indicating mean strength of selective effect in the pathway, and p value
(t test, gene set members versus all others).
associated with 6% unit increase in risk for similarly

defined coronary artery disease. However, the CNV we

here identify confers an estimated 12.4-fold increased

risk (95%CI: 7.2–21.3, p ¼ 3.7 3 10�6) and is at least

2 Mb distant from the nearest SNPs (rs10961206) at

genome-wide significance near the 9p21/9p23 locus in

themeta-analysis. This and the absence of linkage between

the 9p23 CNVs and rs10961206 (r2 ¼ 0.013) are suggestive

of independent effects. However, translocation of flanking

regulatory elements has been suggested as a mechanism

for CNV-derived phenotypic effect;49 given the proximity

of this variant to a well-established susceptibility region

(9p21) for CAD, we cannot rule out the possibility

that trans-regulatory effect on known regions drives this

association.

Gene-level burden testing of rare CNVs in individuals

with CAD implicates LDLRAD3 (MIM: 617986), a member

of the low-density lipoprotein (LDL) receptor family that

did not meet pre-specified significance criteria in revised

analyses but remains strongly associated with disease,

and is a clear outlying genome-wide signal (Figure 2B).

The CNVs called in this gene are predominantly deletions

affecting the coding sequence—in aggregate (n ¼ 27),

these variants confer an estimated 11-fold increase in risk

of acute CAD (95% CI: 6.5–19.0, p ¼ 6.7 3 10�6). Though

the role of lipoprotein receptors in cholesterol metabolism

is a well-established mechanism of risk for cardiovascular

disease, LDLRAD3 is not known to participate in choles-

terol metabolism. It is, however, a receptor widely ex-

pressed throughout adult tissues which may participate
The Americ
in proteolysis in the central nervous system.50,51 We there-

fore sought to replicate these findings using two-sample

mendelian randomization52 on expression quantitative

trait loci (eQTLs) from CAD summary statistics from a

CARDIoGRAMplusC4D meta-analysis.28 We identify a

nominally significant protective effect between an eQTL

increasing expression of LDLRAD3 and CAD (OR ¼ 0.85

[95%CI: 0.62–0.97], p ¼ 0.012), the direction of which is

consistent with a dosage model of LDLRAD3-mediated

risk for CAD.

We find multiple significant associations for BMI; three

deletions at chromosome 16p11.2, a locus implicated in

syndromic early-onset obesity and developmental delay

(Figure 3A). Each of these CNVs appears to correspond to

a distinct form of 16p11.2 deletion syndrome. The smaller

�220kb deletion (b ¼ 0.92 SD [95%CI: 0.72–1.12],

p ¼ 5.1 3 10�6, AC ¼ 24 [MIM: 613444]) has been associ-

ated with early-onset obesity and spans nine distinct

genes, with SH2B1 [MIM: 608937] the suspected causal

obesity gene.7 Obesity is also a phenotypic consequence

of a larger �593kb deletion (b ¼ 1.35 SD [95%CI: 1.18–

1.51], p ¼ 3.3 3 10�16, AC ¼ 37 [MIM: 611913]), which

is further associated with neurodevelopmental delay and

related conditions.8 However, this deletion spans a wholly

distinct set of genes which are suspected to play complex

dosage-dependent roles in the phenotypic consequences

of the syndrome.53 As both subtypes of 16p11.2 deletion

syndromemay present in early childhood, it is noteworthy

that the effect we measure on BMI is in a cohort comprised

entirely of older individuals, indicating burden of adult

disease associated with the CNV locus. Moreover, these

effects are consistent, though slightly higher, than

previous meta-analysis or targeted study of this locus in

UK Biobank.14,54

After controlling for multiple comparisons, burden

testing for BMI identifies KLHL22 at chromosome

22q11.2, recapitulates the 16p11.2 deletions at the gene

level (SH2B1, BOLA2 [MIM: 613182]), and associations at

five additional loci each with strong evidence for causality

(Figure 3B). Mechanisms for these loci are related to risk of

diabetes; mouse knockouts of USP2 (MIM: 604725) reduce

insulin resistance,55 NEUROD1 (MIM: 601724) variation is

a known cause of diabetes,56 and BHLHE40 (MIM: 604256)

may modify diabetes in mice via disturbances in circadian

rhythm.57 While SPTAN1 (MIM: 182810) has been previ-

ously associated with severe neurological disease,58 neither

SPTAN1 nor RHD have a previous association with

BMI. Variation at the 22q11.2 locus, also known as

DiGeorge syndrome, has variable phenotypic conse-

quences including craniofacial dysmorphisms and cono-

truncal congenital heart disease, along with increased

risk for an adverse cardiovascular outcomes and neuropsy-

chiatric disease later in life. Among individuals affected

with 22q11.2 deletion syndrome, obesity is a recognized

manifestation of disease, and we estimate a 1.5–2.0 point

increase in BMI for genic CNVs near 22q11.2 in KLHL22.

as well as 3.0–3.8 for genic CNV at 16p11.2—these effects
an Journal of Human Genetics 105, 373–383, August 1, 2019 377



Figure 2. Genome-wide CNV Associa-
tions for Acute Coronary Artery Disease
(CAD)
(A and B) Manhattan plots for (A) genome-
wide association of common copy-number
variants and (B) genome-wide burden test
of rare variants for genes with at least ten
individuals observed with CNVs.
(C) Locus inset of 9p23 CNV and summary
statistics from GWAS of coronary artery
disease using variants imputed on the
same study population used in the
CNV analysis. Variants are colored by
marker LD with lead regional GWAS SNPs
(rs145879274) from the analysis. This
marker is highly stratified by continental
ancestry and does not show significant
correlation with any other variant in the
region.
(D) Quantile-quantile plots for genome-
wide summary statistics from CNV
associations.
are attenuated relative to clinically estimated effect of

DiGeorge syndrome on obesity,59 our own estimates of

the effect of 16p11.2 deletion, and previous studies,14,54

likely due to the inclusion of non-causal variants which

overlap non-candidate genes in these regions. The pres-

ence of these associations in a large volunteer cohort offers

further evidence that these potentially pathogenic CNV

contribute to population-scale risk for common diseases.

Phenome-wide associations for each of the CNVs at

16p11.2 further highlight changes in biomarkers, bio-

measures, and increased risk of common disease, consis-

tent with high BMI over the course of a lifetime (Figure 4).

Genome-wide significant phenotypes for the 220 kb CNV

recapitulate the established syndromic effects from early-

onset obesity. We observe significant increases, on the

order of one standard deviation, in weight, BMI, hip and

waist circumference, reticulocyte count, and Cystatin C

measures for these individuals. The larger 593 kb CNV as-

sociates with similar measures of body size and fat, as

well as hypertension, diabetes/HbA1c, and abdominal

hernia. These results are also indicative of effects due to

developmental delay; namely, decreasedmeasures of mem-

ory, higher Townsend deprivation (an index of material

deprivation which considers employment, home/auto

ownership, and household overcrowding in a person’s

neighborhood), and lower lung capacity (FEV, FVC), with

higher associated risk of respiratory failure. Taken together,

these results highlight the variable expressivity of CNV-

related disease, as well as its long-term effects across the

medical phenome.
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Discussion

In calling copy-number variants

and performing genetic association

studies at scale from a large cohort

of array-genotyped individuals with
richly annotated phenotype data, we provide a portrait

of the phenome-wide burden of genomic copy-number

variation. Our estimates of the individual-level burden

of CNV and population-wide allele frequencies are

consistent with previous reports, and the deep pheno-

typic information available in the UK Biobank permits

more finely tuned measures of the genic intolerance

to CNV which include estimates of variation absent

from our cohort of predominantly healthy, middle-aged

individuals.

Our study has significant limitations that inform our

analysis. While arrays are an inexpensive way to genotype

large cohorts, permitting straightforward algorithms to

infer the presence of structural variation, the resulting

CNV calls are limited by the density and placement of

markers across chromosomes. For UK Biobank genotyping

arrays in particular, there are large portions of genomic

sequence with low marker density (in particular near

centromeric regions) which bias our resulting genotype

calls away from such regions. Array-derived CNV likewise

cannot differentiate structural events like inversions or

translocations, or determine breakpoint position at base-

pair resolution.60 Complicating these barriers is the fact

that our sample was genotyped on two distinct arrays,

which may cause identical CNVs to present with different

breakpoints across individuals in the call set—as evident in

the two calls of the 593 kb form of 16p11.2 deletion syn-

drome (Figure 3A). Our choice to present gene-level burden

tests which include the vast majority of variants included

in our CNV GWAS was informed by this realization. Given



Figure 3. Genome-wide CNV Associa-
tions for Body Mass Index (BMI)
(A and B) Manhattan plots for (A) genome-
wide association of common copy-number
variants and (B) genome-wide burden test
of rare variants for genes with at least five
individuals observed with CNVs.
(C) Locus inset of 16p11.2 CNVs and sum-
mary statistics from GWAS of BMI using
variants imputed on the same study popu-
lation used in the CNV analysis. Variants
are colored by marker LD with lead
regional GWAS SNPs overlapping each
CNV (rs62037365 in SH2B1; rs12716975
in non-coding BOLA2).
(D) Quantile-quantile plots for genome-
wide summary statistics from CNV
associations.
the release of exome-sequence data for 50,000 UK Biobank

participants,61 it is worth noting that NGS-based analysis

of structural variants is a natural extension of this

work which would complement the limitations of our

genotyping.

Our associations are also heavily impacted by a known

‘‘healthy-cohort’’ bias, which may influence null results

for phenotypes with known genetic contributions;

notably, there are no genome-wide significant hits in our

burden test for breast cancer. With this in mind, our

constraint scores constitute a sobering observation of ge-

netic survivorship bias. We take this opportunity to honor

these non-participating individuals and their implicit

contribution to our understanding of genetic disease.

Though consideration of genic intolerance to variation

may complement association studies, we find no novel

candidate genes for early-onset disease among our results.

However, the observation of selection bias in UK Biobank

suggests that findings from biobank studies around the

world will be influenced by implicit and explicit barriers

to participation.

Despite selection against high-penetrance alleles causing

early-onset disease, we detect a strong association for coro-

nary artery disease at LDLRAD3. While this locus has prior

putative association with bone mineral density,62 existing

large-scale GWASs do not detect a strong association with

coronary artery disease or established cardiometabolic

risk-factors. In our study, CNVs at this locus are associated

with some established cardiometabolic risk factors, such as

diabetes onset, smoking status, and arterial stiffness, but
The American Journal of Human G
not obesity or other fat-related pheno-

types (Figure S6). Consistent with our

findings that a decrease in LDLRAD3

dosage increases the risk of disease, a

strong eQTL increasing LDLRAD3

expression decreases the risk of dis-

ease when used as an instrument in

a two-sample mendelian randomiza-

tion in a large-scale study of coronary

artery disease. These results highlight
the utility of analyzing genic CNV which, when directly

impacting mRNA dosage, offer an interpretable mecha-

nism distinct from alterations of protein structure or small

changes in transcriptional regulation.

The observation of variation at the 16p11.2 and 22q11.2

loci sheds further light on the penetrance of potentially

pathogenic CNVs in the general population. The 16p11.2

recurrent microdeletion syndrome has been previously

described in individuals with autism and neuropsychiatric

disease and may include seizures, and brain and other

anatomic abnormalities. People carrying variation at the

22q11.2 locus within the general population are known

to be at increased risk of neuropsychiatric diseases63 for

which variable phenotypic penetrance is well recog-

nized.64 To wit, individuals with genetic variation at both

loci were by and large sufficiently healthy and capable of

volunteering to participate in UK Biobank. Our findings

support a growing recognition that the penetrance and ef-

fect sizes of syndromic alleles may require revision in the

context of broad population-based surveys of rare genetic

variation.65,66

These described associations suggest a role of structural

variation in population-wide burden of common disease

and suggest loci where CNV-derived syndromic disease

may exist. As such, these resources may be of imme-

diate use by genetic clinicians in classification of CNV

detected in clinical testing and for follow-up functional

study. Of particular interest would be an analysis of

‘‘human knockout’’ individuals with both gene copies

altered by CNV or other loss-of-function variation, as
enetics 105, 373–383, August 1, 2019 379



A

B D

C Figure 4. PheWAS of 16p11.2 CNVs
Selected genome-wide significant (p <
9 3 10�6) associations for 220 kb (top)
and 593 kb (bottom) 16p11.2 CNVs, with
n > 500 binary cases or 15,000 quantita-
tive values. Traits are grouped by type (bi-
nary/quantitative) then sorted by p value
(left). Log-odds ratio and standardized
betas (right) align with trait names on
the y axis, with the horizontal dashed
line separating positive and negative direc-
tion of association.
determined by SNP genotype data from UK Biobank. As

with single-nucleotide variation, the functional conse-

quence of and pathogenicity of genic structural variation

is difficult to classify. One consequence is a dosage effect

upon mRNA transcription; alternatively, dosage compen-

sation to modulate mRNA levels67 or fusion of flanking

regions may drive phenotypic alteration.68,69 Summary

statistics from association studies described here, as well

as for all phenotypes present on the Global Biobank

Engine, are freely available for download on the site. We

hope that these data will be leveraged to empower future

analyses of the phenome-wide effects of structural varia-

tion and gene-level dosage effects.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.
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Supplementary Figures and Tables: 
 

 
Figure S1: CNV density weighted by allele count in UK Biobank. Per-megabase genomic 
density of CNV, weighted by number of observations across all samples in UK Biobank. 
Variants are counted by whether the CNV has any overlap with 10 megabase (Mb) windows 
tiling each chromosome. Selected hotspots of structural variation are labeled by the region’s 
corresponding cytogenic band.  
 
 
  



 
Figure S2: CNV density normalized by array marker density in UK Biobank. Variants are 
counted by whether the CNV has any overlap with 10 megabase (Mb) windows tiling each 
chromosome, then divided by the number of markers in the window. Regions with no array 
markers are defined to have density of zero. Selected hotspots of structural variation are labeled 
by the region’s corresponding cytogenic band.  
  



 
 
Figure S3: Distribution of deletion- and whole-gene duplication-specific constraint 
scores from UK Biobank. Correlation between intolerance measures for partial-gene deletion, 
whole-gene duplication, and CNV burden. The legend for each panel denotes correlation 
(Spearman’s r) between burden-constraint and each other measure. Kernel density estimates 
for each distribution of constraint scores are in the panels opposite their corresponding axis 
labels. 
  



 
Figure S4: Distribution of constraint z-scores from UK Biobank and ExAC/gnomAD. Our 
measures of gene-level intolerance to structural variation show nominal correlation with 
gnomAD loss of function constraint z-scores (Spearman’s r = -0.012, left), and modest 
correlation with CNV-intolerance in ExAC (Spearman’s r = 0.103, right panel). Gaussian kernel 
density estimates for each distribution of z-scores are opposite their corresponding axes.  
 
While correlation between constraint measures across datasets is non-random, we suspect 
cohort-specific effects and varying definitions of genic burden of variation drive these 
departures. As a cohort of predominantly healthy adults, intolerance to variation in UK Biobank 
constraint is driven by severe early onset disease, while the same measures in ExAC/gnomAD, 
whose samples have a more diverse age range and relatively higher of burden of disease, 
highlight genes involved with fundamental biological processes whose loss of function likely 
confer phenotypic consequences causing embryonic lethality. 
  



 

 
Figure S5: Location of 16p11.2 Deletions. UCSC Genome Browser tracks for 220kb (top 
panel) and 593kb (bottom panel) CNVs at Chr16q11.2. 
  



 
Figure S6: LDLRAD3 burden test PheWas. Significant (p < 10-3) associations between 
regularized burden tests for LDLRAD3 CNV and phenotypes. We highlight quantitative traits 
with n > 15,000 observations and binary traits with n > 500 cases. Traits are grouped by data 
type then sorted by p-value (left). Log-odds ratio and standardized betas (right; for binary and 
quantitative traits, respectively) align with trait names on the y-axis, with the vertical dashed line 
separating positive and negative direction of association. 
 
  



 

 
Figure S7: LDLRAD3 burden test CNVs. Chromosomal location of all CNVs considered for 
the LDLRAD3 burden test, with respective allele count in the population used for association. 
Deletions are in red, duplications in blue. CNVs which extend beyond this locus are pruned at 
the edges of the 10kb padded window of LDLRAD3 used for the burden test. 
  



 
Figure S8: 9p23 CNV PheWas. Significant (p < 10-3) associations between regularized burden 
tests for 9p23 CNV (top hit from Acute CAD GWAS) and other phenotypes. We highlight 
quantitative traits with n > 15,000 observations and binary traits with n > 500 cases. Traits are 
grouped by data type then sorted by p-value (left). Log-odds ratio and standardized betas (right; 
for binary and quantitative traits, respectively) align with trait names on the y-axis, with the 
vertical dashed line separating positive and negative direction of association. 
  



Gene Deletion z Deletion pLI 
BRCA2 2.870 0.9834 
BRCA1 2.136 0.9578 
APC 1.790 0.9463 
ATM 1.063 0.9790 
MSH2 1.048 0.9843 
MLH1 1.033 0.9985 
MYH7 0.902 0.8711 
PMS2 0.858 0.9027 
SBDS 0.800 0.9670 
CYP3A4 0.799 0.9962 
SPATA31D1 0.799 0.9962 
TTN 0.798 0.9669 
OTOP1 0.793 0.9962 
MSH6 0.792 0.9924 
FAM205A 0.790 0.9905 

 
  

Table S1: Deletion- and whole-gene duplication-specific selective constraint. 15 genes 
most intolerant to overlapping deletion (left), and whole-gene duplication (right), with respective 
constraint z-scores. 
  

Gene Duplication z Duplication pLI 
HLA-DRB1 0.566 0.9970 
FRG2B 0.565 1.0000 
SPATA31D1 0.565 0.9985 
SLC35G6 0.565 1.0000 
NAT8 0.565 1.0000 
TUBB8 0.564 1.0000 
CSH2 0.564 1.0000 
ZNF302 0.564 1.0000 
CSHL1 0.564 1.0000 
GH1 0.564 1.0000 
CGB2 0.564 1.0000 
OR4F17 0.564 1.0000 
CGB5 0.564 1.0000 
CGB7 0.564 1.0000 
GH2 0.564 1.0000 



 
GO ID Deletion-intolerant Pathway Name Delta z P 

GO:0045095 keratin filament 0.229 3.00E-27 
GO:0000137 Golgi cis cisterna 0.351 4.14E-25 
GO:0005515 protein binding 0.055 3.09E-19 
GO:0008194 UDP-glycosyltransferase activity 0.314 4.03E-17 
GO:0052697 xenobiotic glucuronidation 0.423 1.22E-16 
GO:0000800 lateral element 0.380 3.54E-16 
GO:0031424 keratinization 0.147 1.36E-15 
GO:0042954 lipoprotein transporter activity 0.397 5.36E-15 
GO:0015020 glucuronosyltransferase activity 0.293 1.47E-13 
GO:0005131 growth hormone receptor binding 0.492 1.36E-12 
GO:0008202 steroid metabolic process 0.231 2.55E-12 
GO:0046703 natural killer cell lectin-like receptor binding 0.377 2.69E-12 
GO:0008274 gamma-tubulin ring complex 0.308 6.07E-12 
GO:0035459 cargo loading into vesicle 0.348 4.19E-11 
GO:0070531 BRCA1-A complex 0.692 1.09E-10 

 
 

GO ID Duplication-intolerant Pathway Name Delta z P 
GO:0000137 Golgi cis cisterna 0.333 3.59E-44 
GO:0045095 keratin filament 0.190 3.19E-33 
GO:0005515 protein binding 0.049 4.32E-31 
GO:0031424 keratinization 0.134 1.49E-22 
GO:0008202 steroid metabolic process 0.215 1.99E-21 
GO:0005801 cis-Golgi network 0.167 2.46E-18 
GO:0046703 natural killer cell lectin-like receptor binding 0.362 4.47E-18 
GO:0008194 UDP-glycosyltransferase activity 0.235 4.16E-17 
GO:0005132 type I interferon receptor binding 0.244 1.79E-15 
GO:0052697 xenobiotic glucuronidation 0.290 8.34E-15 
GO:0005131 growth hormone receptor binding 0.375 1.19E-14 
GO:0042271 susceptibility to natural killer cell mediated cytotoxicity 0.237 2.17E-14 
GO:0042954 lipoprotein transporter activity 0.283 5.69E-14 
GO:0002323 natural killer cell activation involved in immune response 0.246 1.30E-13 
GO:0008395 steroid hydroxylase activity 0.152 2.98E-13 

 
 
Table S2: Deletion- and whole-gene duplication-specific pathway constraint. GO pathways 
most intolerant to overlapping deletion (top), and whole-gene duplication (bottom), with change 
in constraint z-scores and significance thereof (t-test) relative to other pathways. 
  



HPO ID Deletion-intolerant HPO Term Delta z P 
HP:0006725 Pancreatic adenocarcinoma 0.469 1.22E-36 
HP:0012432 Chronic fatigue 0.631 2.91E-32 
HP:0025318 Ovarian carcinoma 0.576 9.38E-32 
HP:0003003 Colon cancer 0.343 2.55E-30 
HP:0004389 Intestinal pseudo-obstruction 0.576 2.83E-29 
HP:0100273 Neoplasm of the colon 0.291 4.29E-27 
HP:0100787 Prostate neoplasm 0.417 6.41E-26 
HP:0012125 Prostate cancer 0.417 6.41E-26 
HP:0030406 Primary peritoneal carcinoma 0.488 3.38E-24 
HP:0100834 Neoplasm of the large intestine 0.241 1.76E-23 
HP:0012334 Extrahepatic cholestasis 0.480 2.44E-23 
HP:0003002 Breast carcinoma 0.267 2.69E-22 
HP:0009592 Astrocytoma 0.449 9.80E-22 
HP:0100707 Abnormality of the astrocytes 0.449 9.80E-22 
HP:0002885 Medulloblastoma 0.444 3.32E-21 

 
HPO ID Duplication-intolerant HPO Term Delta z P 
HP:0000707 Abnormality of the nervous system 0.039649 3.10E-17 
HP:0012638 Abnormality of nervous system physiology 0.039371 1.93E-16 
HP:0012759 Neurodevelopmental abnormality 0.03731 5.04E-15 
HP:0000007 Autosomal recessive inheritance 0.039233 2.08E-14 
HP:0012639 Abnormality of nervous system morphology 0.038852 5.67E-14 
HP:0003011 Abnormality of the musculature 0.038621 9.58E-14 
HP:0012373 Abnormal eye physiology 0.037309 9.81E-14 
HP:0000478 Abnormality of the eye 0.039384 1.16E-13 
HP:0100022 Abnormality of movement 0.036173 6.27E-13 
HP:0012758 Neurodevelopmental delay 0.036116 8.81E-13 
HP:0001249 Intellectual disability 0.035805 1.02E-12 
HP:0012443 Abnormality of brain morphology 0.037981 1.32E-12 
HP:0002011 Morphological abnormality of the central nervous system 0.039044 2.08E-12 
HP:0011842 Abnormality of skeletal morphology 0.039995 2.24E-12 
HP:0000924 Abnormality of the skeletal system 0.040534 4.56E-12 

 
Table S3: Deletion- and whole-gene duplication-specific medical term constraint. HPO 
terms most intolerant to overlapping deletion (top), and whole-gene duplication (bottom), with 
change in constraint z-scores and significance thereof (t-test) relative to other pathways. 
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