
ARTICLE

Pleiotropic Meta-Analysis of Cognition, Education, and
Schizophrenia Differentiates Roles of Early
Neurodevelopmental and Adult Synaptic Pathways

Max Lam,1,2,3 W. David Hill,4,5 Joey W. Trampush,6 Jin Yu,2 Emma Knowles,7 Gail Davies,4,5

Eli Stahl,8,9,10 Laura Huckins,8,9,10 David C. Liewald,5 Srdjan Djurovic,11,12 Ingrid Melle,12,13

Kjetil Sundet,13,14 Andrea Christoforou,15 Ivar Reinvang,14 Pamela DeRosse,2 Astri J. Lundervold,16
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Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Para-

doxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment,

despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published

genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying

these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be

identified and characterized. Specifically, we identified subsets of variants associated in the expected (‘‘concordant’’) direction across all

three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted

with variants that demonstrated the counterintuitive (‘‘discordant’’) relationship between education and schizophrenia (i.e., greater risk

for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability,

education, and/or schizophrenia at p< 53 10�8. Pleiotropic analysis successfully identifiedmore than 100 loci that were not significant

in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic

correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms—early

neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways—that were

linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses

revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimen-

sions implicated in both general health outcomes and psychiatric illness.
Introduction

It has long been observed that impaired cognitive ability is

a significant aspect of the illness in schizophrenia (MIM:
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181500).1–5 Cognitive deficits have been shown to be

largely independent of clinical state and treatment status

in patients with schizophrenia1,4,6–9 and are observed (in

more subtle forms) in their first-degree relatives.10,11
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Moreover, cognitive deficits precede illness onset by many

years; they begin in early childhood5,12–14 and thus result

in reduced educational attainment.15,16

Unlike phenotypic correlation, which measures covari-

ances within the distribution of the phenotypes, genetic

correlation (rg) indexes the covariance between SNPzphe-

notype genome-wide association study (GWAS) effect sizes

across a pair of phenotypes measured in separate GWAS

studies. Recent advances in psychiatric and cognitive

genomics have reliably demonstrated that the inverse

relationship between cognitive ability and risk for schizo-

phrenia is also observed at the molecular genetic level

(rg z �.20).17–23 Paradoxically, genetic correlation studies

have indicated a positive relationship between educational

attainment and risk for schizophrenia (rg z .10),20,23–27

despite the fact that educational attainment and cogni-

tive ability exhibit a very strong polygenic overlap

(rg z .70).18,23,27 Educational attainment is often consid-

ered to be a proxy for cognitive ability; however, the lack

of perfect genetic overlap between the two, combined

with the paradoxical genetic correlation between educa-

tional attainment and schizophrenia, suggests an opportu-

nity to decompose distinct genetic mechanisms account-

ing for this pattern of results.

Whereas genetic-correlation analysis has recently

become widespread because of the availability of tech-

niques such as linkage disequilibrium (LD) score regression

(LDSC),25,28 these approaches generally result in a single,
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genome-wide estimate of polygenic overlap. Moreover,

novel meta-analytic approaches (e.g., multi-trait analysis

of GWAS [MTAG]29) for merging seemingly heterogeneous

GWAS datasets tend to exploit commonalities across phe-

notypes rather than differences; for example, two recent

studies have employed MTAG across the highly correlated

cognitive and educational GWASs in order to accelerate the

process of gene discovery.18,23 In contrast, few studies have

attempted to examine the counter-intuitive correlation be-

tween schizophrenia and educational attainment or to

parse subsets of SNPs that might drive cross-phenotype

correlations. An initial effort has successfully identified a

few individual loci that act in paradoxical fashion,

increasing educational attainment while simultaneously

increasing risk for schizophrenia;30 two other studies

have identified loci that demonstrate other pleiotropic

effects.19,31

To date, however, no studies have utilized pleiotropic

meta-analytic techniques to comprehensively parse vari-

ance from cognitive, educational, and schizophrenia-

focused GWASs that might pinpoint differential biological

mechanisms. In order for the paradoxical pattern of

genome-wide correlations to exist, there must be identifi-

able subsets of SNPs that are differentially involved in

driving these genetic relationships. Therefore, we sought

to identify differentially associated variants, which could

yield crucial insights into the fine-grained genetic architec-

ture of schizophrenia and in turn give us insights into the
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etiopathogenic mechanisms underlying the illness—

mechanisms that standard GWAS cannot detect.

In the study reported here, we first utilized a simple sub-

setting approach to identify SNPs that are significantly

associated either with cognitive ability or with educational

attainment, but not with both (Figure S1A). We hypothe-

sized that these SNP subsets would demonstrate stronger

genetic correlations with schizophrenia than what is

observed with a simple genome-wide approach. We then

employed a pleiotropic meta-analytic approach, associa-

tion analysis based on subsets (ASSET),32 which permits

the characterization of each SNP with respect to its pattern

of effects on multiple phenotypes (Figure S1B). For

example, ASSET has previously been used to demonstrate

that the minor allele of rs2736100 (at the TERT [MIM:

187270] locus) is positively associated with risk for pancre-

atic cancer (MIM: 260350), negatively associated with risk

for kidney (MIM: 144700) and lung cancers (MIM:

211980), and not significantly associated with risk for can-

cers of the breast (MIM: 114480), bladder (MIM: 109800),

or prostate (MIM: 176207); other cancer loci were demon-

strated to have various other patterns of effects.32 We uti-

lized ASSET to identify two types of loci: (1) those SNPs

that are consistently associated with all three phenotypes

in the expected direction (i.e., the same allele is associated

with higher cognitive ability, higher educational attain-

ment, and lower risk for schizophrenia), which we label

‘‘concordant,’’ and (2) SNPs that demonstrate the paradox-

ical association between education and schizophrenia (i.e.,

the same allele associated with higher educational attain-

ment and higher risk for schizophrenia), which we labeled

‘‘discordant.’’ Next, we compared the statistically signifi-

cant ASSET results to the output of single-trait GWASs

of cognitive ability, educational attainment, or schizo-

phrenia20,33,34 in order to identify novel loci suggested

by ASSET. Subsequently, we conducted a series of pathway

and transcriptome-wide analyses to biologically charac-

terize differential mechanisms underlying concordant

versus discordant loci. Finally, we performed a series of ge-

netic correlation analyses to compare the overlap of

concordant and discordant SNP subsets with other rele-

vant traits. Further analytic details are covered in the Mate-

rial and Methods section; the full analysis workflow is also

represented in Figures S1 and S2.
Material and Methods

Stage 1: Simple Subsetting Approach Based on p Values

in Cognition and Education GWAS
Note that for most purposes in this manuscript, we are using the

largest GWAS for schizophrenia,35 cognitive ability,18 and educa-

tional attainment36 published prior to 2018. For each of these

phenotypes, larger GWASs have been published in 2018; these

were used for validation and extension as described in subsequent

sections. Before we performed wany subsetting analyses, we used

genome-wide genetic correlations to confirm the earlier observed

genetic correlations between schizophrenia and both cognitive
336 The American Journal of Human Genetics 105, 334–350, August
ability and education. In stage 1, preliminary SNP subsets were

formed simply based on p value thresholds of cognitive ability

and educational attainment GWAS: (1) SNPs nominally associated

with cognition (p < 0.05) and not associated with education

(p > 0.05) were selected, resulting in 74,470 SNPs; (2) SNPs nomi-

nally associated with cognition (p < 0.05) and not associated with

education using a stricter threshold (p > 0.5) were selected, result-

ing in 66,657 SNPs; (3) similar procedures were carried out for

SNPs nominally associated with education (p < 0.05) but not

with cognition (p > 0.05), were selected, resulting in 104,807

SNPs; and (4) SNPs nominally associated with education

(p < 0.05) and not cognition using a stricter threshold (p > 0.5)

were selected, resulting in 44,803 SNPs.

Next, we performed a heterogeneity test between results of

cognitive and educational GWAS by usingMETAL37 and generated

sets of SNPs showing opposite effects between the two (i.e., the

same allele predicts better cognitive performance but less educa-

tional attainment, and vice versa). We identified sets of SNPs of

varying sizes on the basis of varying p value thresholds for the het-

erogeneity tests (p< 0.5; p< 0.25; p < 0.1; p < 0.05; p< 0.01; and

p < 0.001).

To evaluate the degree of genetic correlation of these prelimi-

nary subsets of SNPs with respect to schizophrenia, we utilized

GNOVA,38 a recently published method similar to LD score regres-

sion. GNOVA is specifically designed to examine genetic correla-

tions using SNP subsets (rather than global genome-wide

summary statistics), whereas such applications have not been

explicitly tested in LD score regression and may not be robust.
Stage 2: ASSET Meta-Analysis and ASSET-Generated

SNP Subsets
Schizophrenia GWAS summary statistics based on a European

ancestry GWAS of schizophrenia (n ¼ 77,096, cases ¼ 33,640,

controls ¼ 43,456; GWAS mean c2 ¼ 1.677) were obtained

from the Psychiatric Genomics Consortium.35 To make them

compatible with effect sizes (beta weights) derived from the

linear-regression-based cognition and education GWASs, we con-

verted odds ratios from the case-control schizophrenia GWAS to

beta by taking the natural logarithm of the odds ratios. Effect di-

rection per SNP was also reversed for schizophrenia so thatit

would be consistent with the interpretation of cognition and

education (i.e., concordant alleles are those where the direction

of effect is the same for cognitive ability, educational attainment,

and schizophrenia). Summary statistics for the education GWAS

were obtained from the Social Science Genomics Association

Consortium (SSGAC)36 (n ¼ 328,917, GWAS mean c2 ¼ 1.638).

GWAS summary statistics for cognition are available via earlier in-

verse-variance meta-analysis of samples18 from the COGENT27

consortium (n ¼ 107,207, GWAS mean c2 ¼ 1.245). We applied

general quality-control parameters to the schizophrenia and

cognitive GWAS summary statistics but we excluded SNPs

with INFO scores < 0.6 and minor-allele frequency < 0.01; mul-

tiple quality-control parameters’ thresholds were previously re-

ported for the education GWAS,36 and summary statistics were

provided by the SSGAC. Detailed quality-control and meta-ana-

lytic procedures were reported earlier.18 Only SNPs that were

present for all three phenotypes were retained as inputs to the

ASSET meta-analysis, resulting in 7,306,098 SNPs for subsequent

analysis.

Pooling GWAS summary statistics via conventional inverse-vari-

ance meta-analysis increases power but also poses methodological
1, 2019
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Figure 1. Design of the Present Study
(A) Input GWAS studies used for ASSET
analysis.
(B) Definition of concordant and discor-
dant SNP subsets. Concordant SNPs have
alleles that demonstrate negative effects
on cognitive ability, educational attain-
ment, and schizophrenia risk (i.e.,
increased schizophrenia risk, reverse-coded
for consistency). Discordant SNPs have al-
leles that demonstrate paradoxical effects
on educational attainment and schizo-
phrenia (i.e., higher educational attain-
ment and increased schizophrenia risk,
reverse-coded). The Y axes on the forest
plots represent different input summary
statistics for cognition, education, and
schizophrenia.
challenges when different studies are capturing heterogeneous

and/or pleiotropic phenotypes. In the case of pleiotropy, individ-

ual variants are likely to be associated with only a subset of the

traits analyzed, or theymight even demonstrate effects in different

directions for the different phenotypes under analysis. ASSET

meta-analysis32 is an agnostic approach that generalizes standard

fixed-effects meta-analysis by allowing a subset of the input

GWASs to have no effect on a given SNP, and it exhaustively

searches across all possible subsets of ‘‘non-null’’ GWAS inputs

within a fixed-effect framework to identify the strongest associa-

tion signal in both positive and negative directions. ASSET then

evaluates the significance of these positive and negative associa-

tions while accounting for multiple testing. This methodology

allows for a powerful pooled two-tailed Z-score test statistic that

effectively combines p values for variants with strong effects in

opposite directions across input GWASs. ASSET also permits the

addition of a covariance term for the adjustment of overlapping

samples. The genetic correlation matrix between the three input

GWASs had been added to all reported ASSET analyses so that

this adjustment could be performed. Recently, comparisons be-

tween cross-phenotype meta-analysis methodologies demon-

strated that ASSET performed best as the number of meta-analyzed

traits with null effects increased, and ASSET also did well in terms

of specificity and sensitivity of the results. In addition, the ASSET

approach best controlled for potential Type 1 inflation due to sam-

ple overlap and for non-uniform distribution of effect sizes.39 As

such, for the purpose of the current report, we selected ASSET

for its conservative effect estimates and minimal inflation.
The American Journal of Human G
We combined GWAS summary statistics

from schizophrenia, cognition, and educa-

tion by using ASSET two-tailed meta-anal-

ysis (version 1.9.1) to obtain single cross-

phenotype pleiotropic GWAS results.

Default parameters were applied with the

‘‘h.traits’’ function. Inter-study correlations

of the phenotype were first ascertained

via LDSC,25,28 which accounts for the

genome-wide genetic correlation of the

phenotypes and also for sample overlap.

ForeachgivenSNP,ASSETgeneratesZ scores

of effect size and p values based on the

strongest association from the input studies

in positive and negative directions, respec-
tively; then these p values are pooled into a single two-tailed p value

for pleiotropy.32,39 SNPs with similar relationships across the input

traits (regardless of statistical significance) are then grouped into

subsets identified by ASSET (see Figure 1B and Figure S1, bottom).

Again, as noted above, it is important to emphasize that the per-

SNP direction of effect was reversed for schizophrenia so that it was

consistent with the interpretation of cognition and education (i.e.,

higher scores are better, such that higher scores for schizophrenia

are now coded as decreased risk for the disorder). Thus, in the nota-

tions to follow,X represents variant subsetswith the same effect di-

rections, following the reversal of the direction of effect for the

schizophrenia dataset, and j represents traits whose effect sizes

are in the opposite direction of those for the other two traits (again

following the reversal of the direction of effect for the schizo-

phrenia dataset). ASSET subsets included: (1) scz X edu X cog

(concordant, variants with an allele associated with an increase in

cognitive ability and educational attainment, but a decrease in

schizophrenia risk); (2) eduX cog j scz (schizophrenia outliers, var-
iants associated with an increase in cognitive ability and educa-

tional attainment but also with an increase in schizophrenia

risk); (3) scz X cog j edu (education outliers, variants associated

with an increase in schizophrenia risk and reduced cognitive abil-

ity, but an increase in educational attainment); and (4) scz X
edu j cog (cognition outliers, variants associated with an increase

in schizophrenia risk and reduced educational attainment, but an

increase in cognitive ability) subsets. ASSET also identified SNPs

where only a single trait (scz or edu or cog) was significant; these

were included in a category called ‘‘single phenotype.’’
enetics 105, 334–350, August 1, 2019 337



Finally, to generate an appropriate contrast for the ‘‘concordant’’

subset, we included a combined single ‘‘discordant’’ subset, repre-

senting the counter-intuitive genetic correlation between educa-

tion and schizophrenia, where discordant ¼ (edu X cog j scz) þ
(scz X cog j edu) [subsets 2 and 3 above], regardless of the effect

for cognition. These contrasts are also represented visually in

Figure 1 and Figure S1.
Consolidation of Independent Loci
Independent genome-wide-significant loci for each ASSET meta-

analysis subset were identified via SNP clumping procedures that

are a part of the functional mapping and annotation (FUMA) pipe-

line.40 For the LD-rich MHC region, a single top SNP was retained.

For all other loci, clumping procedures were carried out on the ba-

sis of the European 1000 Genomes Project phase 3 reference panel.

First, ‘‘independent significant SNPs’’ were defined as those SNPs

with a p value < 5 3 10�8 and with an LD of r2 < 0.6 and other,

more significant SNPs at the same locus. Second, candidate SNPs

were then identified for subsequent annotations and were defined

as all SNPs that had an MAF of 0.01 and a maximum p value of

0.05 and that were in LD, with r2 R 0.6, with at least one of the

independent significant SNPs. To ensure that biological annota-

tion of these loci would not be hampered by poor coverage at

any locus, we included SNPs that came from the 1000 Genomes

reference panel but that might not have been included in the

ASSET data. Third, ‘‘lead SNPs’’ were defined as the independent

significant SNPs that had the strongest signal at a given locus

and were strictly independent from each other (r2 < 0.1). Finally,

risk loci that were 250 kb or closer were merged into a single

locus. The FUMA procedure was iterated across all ASSET SNP sub-

sets, which were comprised (by definition) of non-overlapping

SNPs. Additional variant annotations were conducted with

ANNOVAR,41 and lookups with published GWASs were conducted

with the GWAS catalog. Additional SNP lookups were performed

with the input summary statistics (cognition, education, and

schizophrenia GWASs18,35,36), recent MTAG analyses of intelli-

gence,23 recent cognition or intelligence20,21 GWASs, and pleio-

tropic analyses of cognition and schizophrenia19 as well as

education and schizophrenia.31 RAggr43 was utilized for extracting

SNPs within 250 kb and r2 > 0.6 from published reports to allow

merging of loci generated from ASSET subsets.
MAGMA Gene-Based Analysis: Tissue Expression and

Competitive Pathway Analysis
SNPs were mapped to 19,436 protein-coding genes via MAGMA as

implemented in the FUMA40 pipeline. MAGMA44 gene analysis

was performed with a default SNP-wide mean model that used

the 1000 Genomes phase 3 reference panel and default gene anno-

tations that are part of the FUMA pipeline. Genome-wide SNP

p values and SNP-level sample sizes were included in the input

files. MAGMA gene-tissue expression analysis was carried out

with the Genotype-Tissue Expression (GTEx; version 745–47)

resource to examine the relationship between gene expression in

a specific tissue type and ASSET results. The gene-property test

was performed for average expression (log2-transformed RPKM

with pseudocount 1 after winsorization at 50) of 53 specific tissue

types conditioning on average expression across all tissue types.

In order to identify specific biological processes linked to our sub-

phenotypes of interest, we also used the results that emerged from

the ASSETanalysis to conductMAGMA competitive pathway anal-

ysis. Gene sets that were tested included drug-related path-
338 The American Journal of Human Genetics 105, 334–350, August
ways,48,49 as well as custom-curated neurodevelopmental and

other brain-related gene sets that had gone through stringent qual-

ity control in a studyoriginally designed to interrogate rare variants

in schizophrenia.50 In the latter, pathways with more than 100

genes from Gene Ontology (release 146; June 22, 2015 release),

KEGG (July 1, 2011 release), PANTHER (May 18, 2015 release),

REACTOME (March 23, 2015 release), DECIPHER Developmental

Disorder Genotype-Phenotype (DDG2P) database (April 13, 2015

release), and theMolecular SignaturesDatabase (MSigDB)hallmark

processes (version 4, March 26, 2015 release) were initially

included. Brain-level tissue expressiongene sets included theBrain-

span RNA-seq dataset51 and the GTEx v7 dataset.45 MAGMA gene-

based and gene-set analysis were conducted with MAGMA v1.6.44

Additional gene sets were selected on the basis of risk for schizo-

phrenia and neurodevelopmental disorders, including those re-

ported for schizophrenia rare variants52 (translational targets of

FMRP [MIM: 309550]; components of the post-synaptic density;

ion channel proteins; components of the ARC, mGluR5, and

NMDARcomplexes;proteinsat cortical inhibitory synapses; targets

of mir-137; and genes near schizophrenia common risk loci) and

autism (MIM: 613436) risk (targets of CHD8 [MIM: 610528], splice

targets of RBFOX [MIM: 605104], hippocampal gene expression

networks, and neuronal gene lists from theGenes2Cognition data-

base, as well as loss-of-function [LoF]-intolerant genes [pLI > 0.9

from the ExAC v0.3.1 pLI metric], ASD risk genes for FDR < 10%

and 30%, and ASD or developmental disorder de novo genes hit

by an LoF and/or missense de novo variant). Further details of cura-

tion of these gene sets was previously reported.50
S-PrediXcan: Brain-Tissue Expression Profiles and

Hypergeometric Gene-Set Enrichment Analysis
Genetically regulated gene expression was imputed for the ASSET

summary statistics with tissuemodels fromGTEx v7 and the Com-

monMind Consortium via S-PrediXcan (formerly MetaXcan).53–55

GTEx v7 tissue included amygdala (n¼ 88), anterior cingulate cor-

tex (n ¼ 109), basal ganglia (n ¼ 144), cerebellar hemisphere

(n ¼ 125), cerebellum, cortex (n ¼ 136), frontal cortex (n ¼
118), hippocampus (n ¼ 111), hypothalamus (n ¼ 108), nucleus

accumbens (n ¼ 130), putamen (n ¼ 111), spinal cervical-1 (n ¼
83), and substantia nigra (n¼ 80). The CommonMind consortium

data consist of tissue expression data derived from the dorsolateral

prefrontal cortex (DLPFC, n ¼ 279).56 GTEX v7 Tissue expression

models were trained using elastic net models that were made pub-

licly available (see Web Resources). Elastic net models for DLPFC

were contributed by collaborators from the CommonMind Con-

sortium.56–58 Bonferroni correction was first conducted for each

ASSET subset of genes. Genes that survivedmultiple testing correc-

tions were entered into GENE2FUNC, which is part of the FUMA40

pipeline, to be tested for over-representation. This analysis differs

from the MAGMA gene-set analysis in that the MAGMA gene-set

analysis is used to examine whether gene sets, united by a known

biological theme, are enriched for the phenotype under investiga-

tion. In a test of over-representation, as conducted with

GENE2FUNC, the shared function of the genes of interest is un-

known, and its elucidation is the goal of a test of over-representa-

tion. The over-representation test conducted with GENE2FUNC

queries gene sets from (1) the Molecular Signature Database

(MsigDB v 5.2), (2) WikiPathways (curated version 20161010),

and (3) GWAS catalog (reported genes ver e91 20180206); to avoid

spurious results, we required a minimum of three genes per

pathway. For each gene set, hypergeometric tests were conducted
1, 2019



A

B

Figure 2. Genetic Correlations with
Schizophrenia for SNPs Demonstrating
Heterogeneity of Effects between (A)
Cognitive Ability and (B) Educational
Attainment
(A) Cognitive ability.
(B) Educational attainment.
Genetic correlation was carried out with
GNOVA. Error bars represent standard er-
rors. Education ¼ Okbay PMID 27225129;
cognition ¼ Lam PMID 29186694; schizo-
phrenia (Ripke) ¼ PGC Schizophrenia
Working Group PMID 25056061.
so that the list of genes significant in each ASSET subset could be

examined for overlap with gene sets within the databases stipu-

lated above; Bonferroni correction for multiple testing was

applied. To reduce the likelihood that hypergeometric pathway

analysis would be influenced by the dense number of genes within

the MHC region, we removed genes within the coordinates of

28,000,000–35,000,00059 on chromosome 6.
Genetic Correlations
To examine how our ASSET concordant and discordant SNP sub-

sets relate to other phenotypes with available GWAS data, we con-

ducted genetic correlation tests by using GNOVA,38 an approach

similar to LD score regression but capable of working with SNP

subsets. Notably, GNOVA provides a corrected rg that has been

demonstrated to be robust to sample overlaps, and GNOVA is

able to account for LD across SNPs.38 We selected a series of neuro-

psychiatric, inflammatory, brain, metabolic, and cardiovascular

phenotypes that have been previously demonstrated to have ge-

netic correlations with cognitive measures and used them to inter-

rogate the genetic overlaps of our ASSET subsets. Interpretation of

GNOVA for the concordant subset was straightforward because the

three input GWASweights all follow the same direction (following

the reverse coding of schizophrenia, as noted previously). In

contrast, discordant SNPs have two separate potential weights

(allelic b for schizophrenia versus allelic b for education); as shown

in Figure 1B, a given SNP might have somewhat different effect

sizes (distances from the center line) for education as compared

to schizophrenia. Therefore, we weighted each SNP by the stron-

ger value of b: variants for which the schizophrenia b was stronger

than the education b were referred to as ‘‘schizophrenia type’’ and

variants with the opposite pattern were referred to as ‘‘education
The American Journal of Human G
type.’’ Nevertheless, it is important to

emphasize that the discordant SNPs repre-

sent a single dimension of biology, and the

net effects of all ‘‘schizophrenia type’’ vari-

ants were equivalent to those of the ‘‘educa-

tion type’’ SNPs, albeit with opposite signs.

Results

Stage 1: Preliminary Evaluation of

Genetic Correlations

We used GWAS summary statistics

for cognition (n ¼ 107,207)18 and

education (n ¼ 328,917)36 to evaluate

preliminary genetic correlations with
schizophrenia (n¼ 77, 096).35 Consistent with previous re-

sults, the inverse genetic correlation that GNOVA revealed

between cognition and schizophrenia was significant

(rg ¼ �.21, se ¼ 0.03, p ¼ 1.12 3 10�12), as was the

counter-intuitive positive correlation between education

and schizophrenia (rg ¼ 0.08, se ¼ 0.02, p ¼ 2.05 3

10�5). Note that these analyses were conducted before we

reversed the direction of effect for schizophrenia.

Prior to the main ASSET analysis, we used two simple ap-

proaches to examine subsets of SNPs and their association

with schizophrenia (Figure S1). First, we selected SNPs that

were nominally associated with education (p < 0.05) and

generally not associated with cognition (p> 0.05); GNOVA

revealed a slightly stronger positive correlation, rg of 0.17,

between this subset of educational attainment SNPs and

schizophrenia than did genome-wide summary statistics

(Figure 2A). With a stricter threshold for SNPs not associ-

ated with cognition (p > 0.50), these ‘‘non-cognitive’’

educational attainment SNPs also attained an rg of 0.17

with schizophrenia. GNOVA analyses were repeated for

SNPs nominally associated with cognition (p < 0.05),

but generally not associated with education (p > 0.05),

and the analyses were repeated again with the stricter

threshold for education (p > 0.50). Values for rg of �.50

and �.11 were obtained between schizophrenia and these

cognition subsets (Figure 2A).

The second approach involved calculating the heteroge-

neity p values for cognition and education and identifying

SNPs that have discrepant direction of effects between
enetics 105, 334–350, August 1, 2019 339



Figure 3. Manhattan Plots for ASSET
Results
ASSET meta-analysis outputs:
(A) All subsets.
(B) Concordant subset.
(C) Discordant subset.
cognition and education. These SNPs were then binned,

ranging from low probability (p < 0.5) to high probability

(p < 0.001) for heterogeneous effect sizes between cogni-

tion and education (Figure 2B). GNOVA indicated that

the greater the discrepancy in effect direction between

SNP effects for cognition and education, the stronger the

association between cognition and schizophrenia. How-

ever, this pattern was not observed for education and

schizophrenia.

Stage 2: ASSET Meta-Analysis and SNP Subsets

Genome-wide cross-phenotype ASSETmeta-analysis across

7,306,098 SNPs revealed 300 lead SNPs (across 236 inde-

pendent loci) that met the genome-wide significance

threshold of p < 5 3 10�8 for the ASSET two-tailed test

(see Figure 3A and Tables S1 and S2). There were

1,381,020 SNPs that demonstrated consistent direction of

effects between cognition, education, and schizophrenia

(i.e., lower cognitive ability, lower educational attainment,

and increased risk for schizophrenia); these were assigned

to the ‘‘concordant’’ subset, which contained 89 genome-

wide-significant loci harboring 103 independent signifi-

cant SNPs. By contrast, the ‘‘discordant’’ subset, which

consisted of SNPs with counter-intuitive allelic effects for
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schizophrenia vis-à-vis education, en-

compassed 1,891,743 SNPs, with 65

genome-wide-significant loci com-

prising 77 independent significant

SNPs (Figures 3B and 3C and Table

S1). Significant loci for other ASSET

subsets are also detailed in Table S2.

Other supplemental tables show

FUMA-derived annotations for poten-

tial functional consequences, includ-

ing CADD scores (Table S3), eQTL

lookups (Table S4), and prior GWAS

lookups (Table S5).

Consolidation of Independent Loci

Next, we wanted to identify which

loci from our ASSET results were not

previously identified with respect

to the three-input GWAS. Using

RAggr,43 we extracted SNPs with r2 >

0.6 within a window of 250 kb of

lead SNPs in reported GWASs, i.e., we

extracted 101 loci from the Euro-

pean-ancestry cohorts of the Psychiat-

ric Genomics Consortium GWAS of
schizophrenia,35 74 loci from the SSGAC educational

attainment GWAS,36 and 40 loci from the COGENT

GWAS of cognitive ability.18 These were merged with the

236 loci from ASSET. As earlier described, independent

loci within 250 kb were merged, resulting in 280 indepen-

dent loci being identified across ASSET and the input

GWAS. As shown in the resulting Venn diagram (Figure 4),

110 loci not reported earlier were identified by the ASSET

meta-analysis. In contrast, 126 loci overlapped with either

education or schizophrenia, whereas 44 loci were only sig-

nificant in the input GWAS and not in ASSET.

Very recently, new GWASs have been published for

schizophrenia, cognitive ability, and educational attain-

ment, and these studies are larger than the input GWAS

used for our ASSET analysis.20,33,34 This permitted us to

perform a lookup of our 110 ‘‘novel’’ ASSET SNPs, thus

providing an opportunity to validate ASSET as a tool for lo-

cus discovery (Table S6). We also performed lookup in a pa-

per that utilized MTAG to examine intelligence20 and

several recent papers that applied pleiotropic approaches

to these phenotypes.19,23,31 We found that 75% of the

loci were in fact reported as significant in the later GWASs

with larger sample sizes, and 28 of the 110 loci were

independent from other single-phenotype GWAS reports.



Figure 4. Venn Diagram Comparing Significant ASSET Loci to
Significant Loci from Input GWASs
Education ¼ Okbay PMID 27225129; Cognition ¼ Lam PMID
29186694; Schizophrenia (Ripke) ¼ PGC Schizophrenia Working
Group PMID 25056061; ASSET ¼ results from ASSET meta-
analysis.
These loci are reported in Table 1. Notably, three of these

loci (indexed by rs207338, rs708212, and rs11617058)

were identified in secondary analyses (using MTAG) per-

formed in the study of educational attainment,34 and

one locus (rs67652508) has been reported as being

genome-wide significant for association to putamen vol-

umes as measured on magnetic resonance imaging (MRI)

scans of the brain.60 Further ANNOVAR41 annotations

are available for novel loci (Table S7).

MAGMA Gene-Based Analysis: Tissue-Expression and

Competitive-Pathway Analysis

MAGMA gene-based analysis was conducted on all ASSET

subsets. 772 genes survived Bonferroni correction in the

overall ASSET analysis, with 306 genes in the concordant

subset and 304 genes within the discordant subset (Table

S8). MAGMA gene property analysis revealed significant

association (p < 0.000926, Bonferroni-corrected) of gene

expression of ASSET SNP subsets across GTExv7 brain

tissues (Figure S3 and Table S9). There were no significant

differences between concordant and discordant result sub-

sets; both subsets were significantly enriched (positive beta

weights) across all brain compartments.

Because of the significant enrichment in brain tissues,

we next performed MAGMA competitive-pathway ana-

lyses by using neurodevelopmental and other brain-related

gene sets as curated in a recent publication;50 full results

are reported in Table S10. Although there was considerable

overlap of pathway enrichment across ASSET categories,

several gene sets were uniquely associated with either the

concordant or the discordant result subsets (Table 2). Spe-

cifically, the CHD8 pathway, reflecting genes involved in

early neurodevelopment, was uniquely associated with

the concordant subset (p ¼ 7.11 3 10�6). In contrast, a

number of synaptic pathways (e.g., ion-channel and syn-

aptic-density pathways) and constrained gene sets ap-
The Americ
peared to be uniquely associated with the discordant

subset. Only two gene sets were enriched in both the

concordant and the discordant results, and these were

rather generic: brain-enriched genes and schizophrenia

GWAS results (Table S10). It is notable that when the

MHC region was removed from the pathway analysis,

the overall pattern of results remained (see Table S10).

To see whether the distinction between the concordant

and discordant subsets harbors potential implications

for drug targeting (for schizophrenia and/or cognitive

enhancement), we performed drug-based and drug family

competitive gene set analyses on our MAGMA results.

These analyses revealed that the class of drugs associated

with voltage-gated calcium channel genes was over-repre-

sented among in the results from the discordant subset

(Bonferroni-corrected p ¼ 0.02), as was Abacavir (nucleo-

side reverse transcriptase inhibitor; Bonferroni-corrected

p ¼ 0.00018). Although both of these sets showed similar

direction of effects with respect to the concordant subset,

no drug-related gene sets attained Bonferroni-corrected

significance in the results from the concordant subset

(Table S11).

S-Predixcan: Brain Tissue Expression Profiles and Gene-

Set Enrichment Analysis

Transcriptome-wide association analysis (TWAS) was car-

ried out via S-Predixcan to identify top expressed genes

within GTEXv746 and CommonMind Consortium54,56–58

brain tissue models (Figure 5 and Table S12). The top

brain-expressed genes unique to the discordant subsets

were CYP21A1P (MIM: 613815), CFB (MIM: 138470), and

C4A (MIM: 120810), along with 177 additional genes

that were significantly expressed in the discordant, but

not the concordant, subsets. On the other hand, ELOVL7

(MIM: 614451), NAGA (MIM: 609241), and 201 other

genes were uniquely associated with the concordant sub-

set. Significant genes identified by S-Predixcan were sub-

jected to GENE2FUNC hypergeometric gene-set analysis

(excluding MHC genes, which were over-represented due

to significant LD; see Material and Methods for more de-

tails). The goal of this analysis was to examine whether

the genes identified in the TWAS overlapped with those

found in known biological systems. As shown in Table 3,

the results of the TWAS consistently identified genes found

in cell adhesion and membrane protein gene sets for the

concordant subset. In contrast, synaptic (specifically den-

dritic) pathways, as well as chromosomal repair pathways,

were consistently identified by the TWAS during examina-

tion of the discordant subset.

Genetic Correlations

A series of psychiatric, personality, structural-brain-imag-

ing, metabolic, cardiovascular, and anthropometric traits

were selected for GNOVA modeling with the ASSET subset

results (see Figure 6 and Table S13); multiple testing was

adjusted on the basis of the false discovery rate (FDR).The

concordant subset demonstrated significant (FDR < .05)
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Table 1. Loci Identified by ASSET

Lead SNPs Chr
Base Position
Start (bp)

Base Position
End (bp) GWAS p Value Beta (b) SE Nearest Gene SNP Function

rs13010104 2 208331258 208369715 9.30 3 10-9 �0.0148 0.0026 ENSG00000223725 ncRNA_intronic

rs207338 4 19053350 19070123 4.99 3 10-8 �0.0108 0.0020 ENSG00000248238 intergenic

rs6844280 4 31371970 31387144 3.53 3 10-8 0.0113 0.0021 ENSG00000251434 intergenic

rs71615297 4 179013479 179210420 2.17 3 10-8 �0.0115 0.0021 RNU1-45P intergenic

rs73260443 5 113404038 113464825 6.30 3 10-9 �0.0147 0.0025 ENSG00000251628 intergenic

rs9372208 6 109507533 109648130 2.96 3 10-9 �0.0120 0.0020 ENSG00000233908 intergenic

rs9371912 6 155907483 156009420 1.06 3 10-10 �0.0168 0.0026 RNU7-152P intergenic

rs1870571 8 80129136 80296429 4.69 3 10-9 0.0124 0.0021 ENSG00000253659 intergenic

rs11786685 8 81220185 81316928 2.79 3 10-8 �0.0116 0.0021 ENSG00000253237 intergenic

rs3890699 8 110164392 110344596 7.31 3 10-9 0.0122 0.0021 NUDCD1 intergenic

rs11166628 8 137022220 137091947 3.27 3 10-8 0.0113 0.0020 ENSG00000253248 ncRNA_intronic

rs10993909 9 136924744 136942560 3.13 3 10-8 0.0116 0.0021 BRD3 intronic

rs10994707 10 62919886 63096664 1.14 3 10-9 0.0202 0.0033 TMEM26 intergenic

rs72945305 11 81164016 81210528 3.34 3 10-8 �0.0128 0.0023 ENSG00000254747 intergenic

rs556587 11 92317365 92554716 1.57 3 10-8 �0.0163 0.0029 FAT3 intronic

rs75261250 11 124276497 124303201 2.16 3 10-8 �0.0188 0.0034 OR8X1P intergenic

rs708212 12 31517960 31769501 7.79 3 10-9 0.0133 0.0023 DENND5B intronic

rs3741434 12 53605344 53605344 1.20 310-10 0.0191 0.0030 RARG UTR3

rs7321596 13 44390857 44514022 3.16 3 10-8 �0.0109 0.0020 LACC1 intergenic

rs11617058 13 85176690 85305386 2.95 3 10-11 0.0183 0.0028 LINC00333 intergenic

rs67652508 14 55487496 55567991 2.88 3 10-8 �0.0140 0.0025 MAPK1IP1L intergenic

rs11130 16 15687755 15837246 4.24 3 10-8 0.0110 0.0020 NDE1 UTR3

rs7214058 17 9968014 9995284 6.32 3 10-9 0.0118 0.0020 GAS7 intronic

rs28584904 17 68984046 69007006 2.36 3 10-8 0.0144 0.0026 ENSG00000271101 intergenic

rs56791590 18 26259012 26496051 7.59 3 10-9 0.0117 0.0020 ENSG00000265994 intergenic

rs12462428 19 16665215 16738369 2.20 3 10-8 0.0143 0.0026 ENSG00000141979:
MED26:CTC-429P9.4

intronic:intronic:intronic

rs5767976 22 48133458 48183889 8.14 3 10-10 �0.0125 0.0020 RP11-191L9.4 ncRNA_intronic

rs68178377 22 50742346 50771464 4.28 3 10-8 0.0122 0.0022 DENND6B exonic

Abbreviations are as follows: Chr ¼ chromosome; SE ¼ standard error
genetic correlations, in the expected direction, with many

forms of psychopathology in addition to schizophrenia

(such forms included ADHD [MIM: 143465], bipolar disor-

der [MIM: 125480], and major depressive disorder [MDD,

MIM: 608516], as well as neuroticism and smoking). This

subset also demonstrated a significant (FDR < .05) positive

genetic correlation (i.e., better cognition/higher educa-

tion/lower risk for schizophrenia) with larger volumes of

several brain regions (including total intracranial volume)

as measured by structural MRI, as well as several measures

of infant size and adult height. Significant positive associ-

ations were also seen with the personality dimensions of

openness and conscientiousness, and (surprisingly) with

self-reported cancer; significant negative associations
342 The American Journal of Human Genetics 105, 334–350, August
were seen for total cholesterol and triglycerides, as well as

the presence of ulcerative colitis and inflammatory bowel

disease. Additionally, a negative genetic correlation was

observed for the concordant subset with BMI andmeasures

of cardiovascular disease (i.e., lower cognition/lower edu-

cation/greater risk for schizophrenia associated with

greater BMI and risk for cardiovascular disease).

The discordant subset was strongly associated with

schizophrenia and education, by definition, in a manner

demonstrating the paradoxical relationship (higher educa-

tion with greater risk for schizophrenia, Figure 6). (It is

important to note that the light blue bars and dark

blue bars in Figure 6 are essentially mirror images of each

other and are therefore providing somewhat redundant
1, 2019



Table 2. MAGMA Significant Gene Sets for Concordant and Discordant SNP Subsets

Concordant

MAGMA Gene Sets NGENES p Pbon BETA BETA_STD SE

Cotney2015:hNSC_Chd8_prom* 8,186 4.05 3 10-9 7.11310-6 0.115 0.0571 0.0199

Cotney2015:hNSCþhumanþmouse_Chd8_prom 1,902 2.81 3 10-5 0.049458 0.123 0.0378 0.0304

Sugathan2014:Chd8_binding 5,314 1.69 3 10-5 0.029744 0.0874 0.04 0.0211

Discordant

Trapnell2012: constrained_genes_0_10* 1,705 3.41 3 10-7 0.0006 0.131 0.0383 0.0263

Lek2016: constrained_genes_pLI_90* 2,972 3.33 3 10-7 0.000585 0.104 0.0387 0.021

Darnell2011:fmrp_targets* 765 1.41 3 10-5 0.024693 0.162 0.0327 0.0387

ddg2p:dominant_mis_all_brain 137 4.42 3 10-6 0.007768 0.411 0.0357 0.0925

g2cdb:bayes_collins_mouse_psd_consensus* 918 8.89 3 10-6 0.015615 0.152 0.0333 0.0353

g2cdb:bayes_collins_mouse_psd_full* 1,442 1.26 3 10-6 0.002214 0.134 0.0363 0.0284

g2cdb:human_psd* 1,001 1.40 3 10-6 0.002461 0.159 0.0363 0.0339

g2cdb:human_psp* 1,039 2.04 3 10-6 0.003579 0.154 0.0358 0.0334

GOBP:membrane_depolarization 105 2.17 3 10-5 0.038129 0.439 0.0334 0.107

GOBP:synaptic_transmission 549 6.58 3 10-6 0.011554 0.205 0.0353 0.0471

GOMF:voltage-gated_cation_channel_activity* 144 6.43 3 10-7 0.00113 0.45 0.0401 0.093

Sanders2015:asd_fdr10* 64 4.67 3 10-6 0.008207 0.622 0.037 0.14

Sanders2015:asd_lof_genes* 559 3.52 3 10-6 0.006178 0.203 0.0352 0.0451

Abbreviations are as follows: NGENES ¼ number of genes in pathway; Pbon ¼ Bonferroni-corrected p value; BETA_STD ¼ standardized beta; GOBP ¼ gene
ontology biological process; GOMF ¼ gene ontology biological molecular function; Cotney ¼ PMID 25752243; hNSC ¼ human neural stem cells; prom ¼ pro-
motor; Sugathan ¼ PMID 25294932; Trapnell ¼ PMID 22383036; Lek ¼ PMID 27535533; Darnell ¼ PMID 21784246; ddg2p ¼ DECIPHER developmental dis-
order genotype-phenotype; dominant_mis_all_brain ¼ dominant mode of effect/loss-of-function missense/brain affected; g2cdb ¼ Genes2cognition database;
psd¼ post-synaptic density; psp¼ post-synaptic proteomes; Sanders¼ 26402605; asd_fdr_10¼ autism risk genes, FDR< 0.10; and asd_lof_genes¼ ASD loss-of-
function genes.
*Results remaining significant after removal of MHC region variants.
information; both sets of bars are included to indicate the

both sides of this dimension). Interestingly, a similar

pattern was observed for bipolar disorder (higher educa-

tion/greater risk for schizophrenia—greater risk for bipolar

disorder). Similar relationships were also observed, at a

nominally significant level, for autism spectrum disorder

and eating disorders (MIM: 606788), which were not asso-

ciated with the concordant subset, as well as for MDD. The

reverse relationship, however, was observed with ADHD

(i.e., higher education/greater risk for schizophrenia—

lower risk for ADHD). This pattern was also observed for

the smoking, BMI, and cardiovascular disease phenotypes.

A counter-intuitive pattern was observed for the relation-

ship between the discordant subset and neuroticism,

which was the opposite of that observed for MDD (despite

the fact that MDD and neuroticism are themselves highly

correlated).
Discussion

A consistent finding in recent schizophrenia, cognition,

and education GWASs has been the involvement of

both neurodevelopmental pathways and synaptic pro-
The Americ
cesses;19,20,39,61,62,92 the present study aimed to at least

partially disentangle these mechanisms. In this study, we

leveraged the genetic pleiotropy underlying three partially

overlapping, complex phenotypes in order to identify ho-

mogeneous subsets of SNPs with distinct characteristics.

Specifically, we were able to parse a subset of SNPs with al-

leles that were associated in the expected fashion across

our three phenotypes of interest: lower cognitive ability,

lower educational attainment, and greater risk for schizo-

phrenia. These ‘‘concordant’’ SNPs were characterized by

their association with genes and pathways relevant to early

neurodevelopmental processes. By contrast, SNPs that

demonstrated a counterintuitive, discordant pattern of as-

sociation (higher educational attainment yet greater risk

for schizophrenia) were primarily associated with genes

and pathways involved in synaptic function of mature

neurons.

This distinction was robustly observed across several

methods of functional annotation. First, MAGMA compet-

itive gene-set analysis revealed a significant enrichment of

CHD8-related genes in the concordant subset (Table 2).

CHD8, encoding a chromatin remodeling protein, is a

gene that has been robustly associated with autism62–65

but that to date has only limited or anecdotal evidence
an Journal of Human Genetics 105, 334–350, August 1, 2019 343



Figure 5. S-PrediXcan Transcriptome-
Wide Association Results
(A) Concordant and (B) discordant subsets.
for association to schizophrenia.66,67 Disruption of the ho-

mologous gene (Chd8) in animal models has demonstrated

that the resulting protein plays a key role in very early neu-

rodevelopmental processes, including neuronal prolifera-

tion and differentiation68,69 as well as cell adhesion and

axon guidance.70 On the other hand, MAGMA competi-

tive gene-set analysis revealed a significant enrichment of

discordant genes for functions including synaptic trans-

mission and postsynaptic density, as well as membrane de-

polarization and voltage-gated cation channel activity.

Although these processes have been commonly associated

with both schizophrenia33,35 and cognitive pheno-

types,20,21,24,71–74 our study is the first to demonstrate

that these synaptic mechanisms operate in a surprising

manner: the same synaptic functions that increase risk

for schizophrenia also serve to enhance educational

attainment.

The linkage of early neurodevelopmental processes to

SNPs associated with impaired cognition and increased

risk for schizophrenia is consistent with a large body of

literature demonstrating that cognitive deficits are often

observed early on in the lifespans of these individ-

uals.5,13,14,75At the same time, thediscordant variant subset

implicates more mature neuronal regulation, and synaptic

pruning mechanisms that are most prominent later in

childhood, adolescence, and into adulthood, ostensibly as

part of a neuroplasticity mechanism for makingmore ‘‘effi-

cient’’ connections within the brain.77 However, the dysre-

gulation of such mechanisms has been shown to be intri-

cately linked to schizophrenia psychopathology.78 It is
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important to note that these results

are obtained from separate GWASs of

two different phenotypes and do not

represent a subset of highly educated

individuals with schizophrenia.

Rather, it is plausible to posit an in-

verted U relationship such that effi-

cient synaptic pruning processes are

essential mechanisms underlying aca-

demic performance but might be car-

ried too far in disorders such as

schizophrenia.

Additionally, transcriptome-wide

analysis using S-Predixcan pointed to-

ward the same distinction between

concordant and discordant genes and

pathways. Two of the strongest genes

with differential expression in the

concordant subset were NAGA (an

enzyme cleaving specific moieties

from glycoconjugates) and NDUFAF2

(part of the mitochondrial complex
[MIM: 609653]); rare mutations in each of these genes are

associated with early and severe neurodevelopmental disor-

ders.79,80 TWAS of the discordant subset revealed synaptic

genes including C4A, which plays a key role in synaptic

pruning,78 as well as other genes essential to synapse struc-

ture and function; such genes include ARL3 (MIM:

604695), FXR1 (MIM: 600819), and CNNM2 (MIM:

607803). Moreover, pathway analysis of S-Predixcan results

(Table 3) demonstrated that the strongest gene set associ-

ated with the concordant subset was cell-to-cell adhe-

sion via plasma-membrane adhesion molecules (GO:

0098742); this gene set encompasses processes such as

those necessary for neural tube closure, cerebral cortex

migration, and neuronal-glial interactions. In contrast,

the discordant subset transcriptome was significantly en-

riched for genes located at dendrites, as well as for genes

associatedwithDNA repair. Recently, the role of DNA repair

in modulating neuronal activity-induced gene expression

has been shown to be crucial for synaptic plasticity and

related processes of learning and memory;81 impairments

in DNA repair have been linked to neurodegeneration82,83

ASSET also permitted the identification of SNPs for

cognition-related phenotypes. Lookups of the full

ASSET results revealed that �75% of the additional 110

loci, which were not identified in the input GWAS

studies,18,35,36 were in fact replicated in an MTAG study

examining intelligence20 and in more recent follow-up

GWASs20,33,34 that used larger samples and were better

powered for variant discovery. This result strongly supports

the validity of the ASSET methodology and demonstrates



Table 3. GENE2FUNC Pathway Analysis of GO Genesets with MHC Filtered

Category GeneSet N_genes N_overlap p Pbon

Concordant

GO_bp GO_CELL_CELL_ADHESION_VIA_PLASMA_MEMBRANE_ADHESION_
MOLECULES

202 10 6.89 3 10-9 3.1 3 10-5

GO_bp GO_RESPONSE_TO_XENOBIOTIC_STIMULUS 105 7 6.22 3 10-8 2.8 3 10-4

GO_bp GO_HOMOPHILIC_CELL_ADHESION_VIA_PLASMA_MEMBRANE_
ADHESION_MOLECULES

151 8 7.74 3 10-8 3.4 3 10-4

GO_bp GO_CELL_CELL_ADHESION 604 14 4.46 3 10-7 2.0 3 10-3

GO_mf GO_OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NAD_P_H_QUINONE_
OR_SIMILAR_COMPOUND_AS_ACCEPTOR

52 4 6.39 3 10-6 5.8 3 10-3

GO_cc GO_MEMBRANE_MICRODOMAIN 286 8 1.53 3 10-5 8.9 3 10-3

GO_cc GO_MEMBRANE_PROTEIN_COMPLEX 1018 16 1.58 3 10-5 9.2 3 10-3

GO_bp GO_PURINE_RIBONUCLEOSIDE_BISPHOSPHATE_METABOLIC_PROCESS 20 3 2.77 3 10-6 1.2 3 10-2

GO_cc GO_MITOCHONDRION 1633 21 2.47 3 10-5 1.4 3 10-2

GO_bp GO_BIOLOGICAL_ADHESION 1027 17 4.56 3 10-6 2.0 3 10-2

GO_bp GO_MACROMOLECULAR_COMPLEX_ASSEMBLY 1388 20 6.87 3 10-6 3.0 3 10-2

GO_bp GO_MITOCHONDRIAL_RESPIRATORY_CHAIN_COMPLEX_I_
BIOGENESIS

56 4 9.25 3 10-6 4.1 3 10-2

Discordant

GO_cc GO_DENDRITIC_SHAFT 37 3 1.28 3 10-5 7.4 3 10-3

GO_bp GO_DOUBLE_STRAND_BREAK_REPAIR 165 6 3.89 3 10-6 1.7 3 10-2

GO_cc GO_NUCLEAR_CHROMOSOME 522 9 3.84 3 10-5 2.2 3 10-2

GO_mf GO_PROTEIN_DOMAIN_SPECIFIC_BINDING 620 10 3.14 3 10-5 2.8 3 10-2

GO_bp GO_NON_RECOMBINATIONAL_REPAIR 70 4 7.97 3 10-6 3.5 3 10-2

GO_cc GO_DENDRITE 451 8 6.94 3 10-5 4.0 3 10-2

Note: N_gene ¼ Genes identified in pathway; N_overlap ¼ input genes overlapping with pathway; Pbon ¼ Bonferoni-adjusted p value
that the approach indeed improves power for cross-pheno-

type discovery of new loci, as previously discussed by the

developers of the method.32 Notably, several of our loci

were associated with eQTLs, suggesting new potential bio-

logical mechanisms for individual variation in cognitive

and psychiatric phenotypes. For example, one of the loci

strongly implicates variation in PLXNB2 (MIM: 604293),

a gene associated with GABA and glutamate synapses in

the hippocampus.84 Another locus shows strong eQTL

signal with NDE1 (MIM: 609449), a neurodevelopmental

gene at the 16p13.11 locus, where copy-number variants

have been associated with neurodevelopmental disor-

ders.85 Our work supports and extends a recent study by

Bansal and colleagues,30 whose paper is the only published

report (to our knowledge) that has deeply examined the

paradoxical relationship between educational attainment

and schizophrenia. Using a proxy-phenotype approach,

these investigators identified two loci, implicating the

FOXO6 (MIM: 611457) and SLITRK1 (MIM: 609678) genes,

with pleiotropic (i.e., ‘‘discordant’’) effects across the two

phenotypes. Using ASSET, we also uncovered those

genes among our 110 loci (one of which was also not iden-

tified in any of the updated single-phenotype GWAS, see
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Table 1). Several other studies18,19,23,31 have employed

other statistical approaches to identify pleiotropy and/or

overlap across cognitive/educational and schizophrenia

GWAS and have uncovered a subset of the loci identified

by ASSET. By utilizing ASSET, we were able to systemati-

cally and powerfully identify concordant and discordant

pleiotropic loci across the genome and to then characterize

underlying biological mechanisms. Future studies could

also apply ASSET and related techniques to further under-

stand other reported polygenic overlaps such as that be-

tween schizophrenia and creativity86 or that between

cognitive ability and smoking status.26

In addition to functional characterization via pathway

analyses, we were able to characterize the concordant

and discordant SNP sets with respect to genetic overlap

with other relevant phenotypes. To our knowledge, this

is the first study to examine genetic correlations with

dimensional sub-sets rather than global correlations with

full GWASs. Although the concordant subset followed

the expected patterns of genetic correlation with several

forms of psychopathology, as well as brain and head size,

results for the discordant subset were somewhat surprising.

For example, we had anticipated that the discordant subset
an Journal of Human Genetics 105, 334–350, August 1, 2019 345



Figure 6. Genetic Correlations for
Concordant and Discordant Subsets with
Other Relevant Phenotypes
Genetic correlation analysis was carried
out with GNOVA. Error bars represent
standard errors. Summary statistics of
selected phenotypes were downloaded
from the LD Hub and Psychiatric Geno-
mics Consortium websites. See Web Re-
sources for further detail.
might be significantly related to personality as a non-

cognitive trait that could promote greater educational

attainment. However, correlations with conscientiousness,

openness, and neuroticism were stronger for the concor-

dant than for the discordant subset.

On the other hand, significant correlations for the

discordant subset were observed with risk for autism,

which has previously been shown to demonstrate a

counter-intuitive positive genetic correlation with cogni-

tion.87 Given that variants within the discordant subset

tend to index regulation of synaptic function and pruning

processes, our results suggest that these mechanisms

should be investigated with respect to their impact on

autism, eating disorders, and bipolar disorder. Moreover,

it is noteworthy that autism, despite being a neurode-

velopmental disorder, did not demonstrate a significant ge-
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netic correlation with the concordant

subset, indicating that it does not

share the specific neurodevelopmen-

tal pathways implicated in the com-

mon variant genetic overlap between

schizophrenia risk and impaired

cognition. It is also intriguing that bi-

polar disorder demonstrated a very

similar pattern of GNOVA results to

schizophrenia, despite prior reports

that bipolar disorder is not signifi-

cantly correlated at the genetic level

with general cognitive ability.87,88

Thus, our approach was able to

refine components of neurodevelop-

ment and synaptic function that

are shared across cognitive pheno-

types, schizophrenia, and bipolar dis-

order. Further research is needed to

identify components of cognition

that differentiate schizophrenia and

bipolar disorder.

One limitation of this study is that

only common SNPs (MAF > 0.01)

were examined. The genetic architec-

ture of cognitive ability and educa-

tional attainment is composed of

causal variants in LD with common

SNPs (cognitive ability h2 ¼ 22.7%,

education h2 ¼ 15.6%) as well as
with causal variants in LD with rare and less-common

SNPs (cognitive ability h2 ¼ 31.3%, education h2 ¼
28.1%); rarer variants make greater contributions to cogni-

tive differences than more common variants do.89 Rare

variants are also known to explain some of the differences

in schizophrenia prevalence.50 However, GNOVA, used in

the identification of genetic correlations across data-inde-

pendent datasets using summary GWAS data, can only

capture the contributions made by common genetic ef-

fects. Future work aiming to investigate the concordant

and discordant effect of rare variants across cognitive abil-

ity, schizophrenia, and education is needed.90 Addition-

ally, the input GWASs for ASSET were of somewhat

different sample sizes and power, and the cognitive

GWAS demonstrated smaller mean effect sizes than those

for schizophrenia and educational attainment; the effects



of such differences on ASSET results are not fully under-

stood, although ASSET has been benchmarked as the best

available approach to handling non-uniform distribution

of effect sizes.39

Now that the utility and validity of the ASSET approach

has been demonstrated, future studies are planned that

can further exploit this method using larger, and more

varied, input GWASs. Recent studies have demonstrated

that genetic correlations exist across seemingly disparate

brain-related phenotypes.91 However, such genetic corre-

lations only describe the average genetic effect between

pairs of traits. As such, they are not informative as to

which variants are associated across traits, nor if a minor-

ity of these variants have effects across traits that are the

opposite of what would be expected on the basis of the

direction of the genetic correlation. The application of

the ASSET approach to these datasets would help re-

searchers to move beyond the analysis of shared genetic

variance and begin to identify shared genetic variants

that, as shown in the current study, might be composed

of variants with different combinations of protective

and deleterious effects. Future studies, employing addi-

tional statistical techniques and incorporating rare vari-

ants and novel annotation resources, are needed to

further decompose the early neurodevelopmental and

adult synaptic pathways highlighted in the present

report.
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Figure S1: Preliminary Analysis and ASSET Meta Analysis Workflow 
Note: Summary statistics data was first consolidated in Stage 1 of the analysis, followed by performing 
preliminary genetic correlations to evaluate global genetic correlations across the traits of interests, i.e. 
cognition, education and schizophrenia. ASSET meta-analysis was carried during Stage 2 of the analysis 
followed by functional characterization of loci, genes and pathways obtained from the ASSET results.  
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pathway analysis, S-Predixcan was carried out to identify eQTL profiles in the brain, driven by ASSET meta-
analysis, and GNOVA was utilized to examine localized genetic correlations of subsets identified by ASSET. A 
myriad of annotation databases were used including, GTEX7, CommonMind Consortium, DLPFC expression, 
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Figure S3: MAGMA Gene property tissue expression results for ASSET Subsets 
Note: Colored bars indicate –log10P values for MAGMA gene property analysis. Both concordant and 
discordant ASSET subsets  include genes highly expressed across brain tissue.  
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