Supplemental information for CHAP: A
versatile tool for the structural and
functional annotation of ion channel pores

Molecular Dynamics Simulation Protocol

Equilibrium molecular dynamics simulations of the 5-HT3 receptor were performed using
GROMACS 2018. Starting structures were generated from the original crystal structure
(PDB ID: 4PIR) with missing atoms being added by the WHAT IF tool [1]. This
starting structure was embedded in a DOPC bilayer using an established serial multiscale
protocol [2]. The resulting protein-bilayer system was converted back to an atomistic
representation and solvated in 150 mmol L~ NaCl solution. The CHARMM36 all-atom
force field [3] was used together with the TIP3P model of water [4]. Simulations of the
TRPV4 channel (PDB ID: 6BBJ) followed the same protocol.

Long-range electrostatic interactions are treated using the particle mesh Ewald (PME)
method [1, 5] employing a short range cutoff of 1nm and a Fourier spacing of 0.12 nm.
To permit subsequent determination of the Gibbs free energy from the water molecule
distribution, the system is simulated in the isothermal-isobaric (NPT) ensemble at a
temperature of 310 K and a pressure of 1 bar. A v-rescale thermostat [6] with a coupling
constant of 0.1ps is used for temperature control and a pressure is maintained semi-
isotropically using the method of [7] with a coupling constant of 1 ps.

The canonical leapfrog method with a time step of 2fs is used to integrate three
independent copies of the system for 100 ns with bonds constrained through the linear
constraints solver algorithm LINCS [8]. Additionally, the Cav atoms of all protein residues
are placed under a harmonic restraint with a force constant of 1000 kJ /mol/nm? to ensure
that the configuration of the simulated channel does not deviate from the experimentally
determined structure. A simulation length of 100 ns likely exceeds that required, since
the largest permitted protein motions are side chain reorientations, which typically occur
on a time scale of ~ 10ns and most pore dewetting events appear to occur even more
rapidly. For the examples described in this study, analysis of three 30 ns long simulations
would produce similar results.



B-Spline Curves

Formally, a spline curve of degree p along some parameter s can be written as the linear
combination
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with By o(5) = 1if t < § < tg41 and By (5) = 0 otherwise are the recursively de-
fined B-spline basis functions. Here {c}X_, denotes the spline curve control points and
{tk}ivjlp *1is referred to as knot vector. Note that a zero division in the above equations
is treated as 0/0 = 0.

In order to find the spline curve that interpolates the centre line points P; from the
pore finding algorithm, one demands

Sp(8:) =P, (3)

which requires a parameterisation of the discrete point set. Ideally, this should be the
distance between the points along the arc of the spline curve, but unfortunately this dis-
tance is not known a priori. Instead, the commonly applied chord length approximation
is used here, in which points are parameterised by their Euclidean distance according
to:

Sit1 =5 + |[Piy1 — Pi| (4)

Importantly, it has been also shown that this choice of parameterisation guarantees full
approximation order for spline curves up to third degree [9].

For a cubic spline curve S(§), where the subscript p = 3 has been dropped for clarity,
Equation 3 together with the knot vector

(b} P = (51,51, 51,81, 89,83, ., 5N_1,3N, 3N, 5N, 5N )} (5)

and hermite boundary conditions then leads to a tridiagonal linear system, from which
the control points can be determined efficiently through the Thomas algorithm. The
choice of cubic splines is motivated by the fact that cubic splines are twice continuously
differentiable so that the curvature of the resulting spline curve is guaranteed to be
continuous. At the same time, cubic splines are known to minimise overall curvature,
preventing undue variation of the interpolant between the given centre line points.

The resulting spline curve is subsequently re-parameterised by arc length using a
three-step procedure proposed by [10]. In a first step, the arc length in each interval is
computed according to
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from which the overall length of the spline curve between the two openings of the pore

can be calculated as:
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The integral in the expression for [ is solved numerically through sixth-order accurate
Newton-Cotes quadrature (Boole’s rule).

The second step comprises calculating the chord length parameter values §,, corre-
sponding to the equidistant arc length parameter values s,, = mAs = mL/M with
m € [0, M]. This is equivalent to finding the root of

mAs — (Z Ik +[m IS’ (3)]| d§> =0 (8)
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where ¢ € [1, N] is the index of the spline interval for which
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The root-finding problem is solved through the algorithm of [11], which is known to be
the asymptotically most efficient root-finding method.
In the final step, the interpolation problem

S(sm) = S(5m) (10)

is solved to obtain a new spline curve, S(s), that approximates the original curve, but is
parametrized by arc length rather than chord length. This curve is then used to describe
the centre line of the channel pore.
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Figure S1: A hydrophobic gate in TRPV4. (A) Permeation pathway through
the transmembrane domain of the TRPV4 channel. The pathway was calculated on
a snapshot from a simulation based on the PDB structure 6BBJ. Pore-facing residues
are shown in licorice representation and are coloured according to their hydrophobicity.
(B) Time-averaged radius profile of the permeation pathway determined from three
independent MD simulations. (C) Corresponding water number density profiles.
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Figure S2: Convergence of the Nelder-Mead algorithm. The error of the radius
profile calculated for nine different channel structures using three different values for the
probe step is shown. Convergence to within 0.001 nm is typically reached within 100
iterations.
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Figure S3: Comparison of the radius at the narrowest constriction between
CHAP and HOLE. Calculated for nine representative ion channel structures using
the five different van der Waals radius datasets available in HOLE. In all cases the radii
agree to within 0.01 nm.
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Figure S4: Comparison of amino acid hydrophobicity scales available in
CHAP. The amino acids are listed in order of increasing hydrophobicity according
to the Wimley-White scale, which is the default scale used by CHAP.



