
Supplementary Table 1: GA4GH recommendations for best practices for germline 
variant call benchmarking 

Benchmark 
sets 

Use benchmark sets with both high-confidence variant calls as well as high-confidence regions (e.g., 
from GIAB or Platinum Genomes). Record versions of the benchmark sets. 

Stringency 
of variant 
comparison 

Determine whether it is important that the genotypes match exactly, only the alleles match, or the call 
just needs to be near the true variant.  For example, if you confirm and/or manually curate all variants 
to ensure you have the correct allele and genotype, then local matching may be sufficient. While the 
default TP, FP and FN require genotype and allele matching, the additional metrics FP.GT and FP.AL 
output by the GA4GH tools enable users to calculate performance at different stringencies. 

Variant 
comparison 
tools 

Use sophisticated variant comparison tools such as vcfeval,10 xcmp,20 or varmatch11 that are able to 
determine if different representations of the same variant are consistent with the benchmark call 
(examples in Fig. 1; comparison tools in Supplementary Note 2).  Subsetting by high-confidence 
regions and, if desired, targeted regions, should only be done after comparison to avoid problems 
comparing variants with different representations. 

Manual 
curation 

Manually curate alignments, ideally from multiple data types, around at least a subset of putative false 
positive and false negative calls in order to ensure they are truly errors in the user’s callset and to 
understand the cause(s) of errors.  Report back to benchmark set developers any potential errors 
found in the benchmark set (e.g., using https://goo.gl/forms/ECbjHY7nhz0hrCR52 for GIAB or 
https://github.com/Illumina/PlatinumGenomes/issues/new for PG). 

Interpret-
ation of 
metrics 

All performance metrics should only be interpreted with respect to the limitations of the variants and 
regions in the benchmark set.  Variant types not present in the benchmark set, and variants detected 
outside of high-confident regions, such as those in repetitive or difficult-to-map regions, will remain 
unassessed. Hence, when comparing methods, note that method A may perform better in the high-
confidence regions, but method B may perform better for more difficult variants outside of these 
regions. To aid in the accurate interpretation of results, report the type and number of variants covered 
by the benchmarking set, the size of the confident regions, and the fraction of “not assessed” query 
calls that fall outside of these regions. Performance metrics are likely to be lower for more difficult 
variant types and regions that are not fully represented in the benchmark set, such as those in 
repetitive or difficult-to-map regions. We recommend limiting the reportable range to variants and 
regions that can be confidently assessed with a given truth set, because accuracy will often be lower 
for the more challenging variants not included in the high-confidence variants and regions. 

Stratifi-
cation 

Performance results should be stratified by variant type. Stratification by genomic region should also 
be considered to gain additional insights into strengths and limitations of the sequencing pipeline, as it 
can highlight regions that are not sufficiently represented. Stratification should only be done after 
comparison to avoid problems comparing variants with different representations. 

Confidence 
Intervals 

Confidence (or credible) intervals for performance metrics such as precision and recall should be 
calculated (e.g., using https://github.com/Illumina/happyCompare or R binconf).  This is particularly 
critical for the smaller numbers of variants found when benchmarking targeted assays and/or less 
common stratified variant types and regions. 

Additional 
bench-
marking 
approaches 

We recommend using other benchmarking approaches in addition to those discussed in this paper to 
understand performance of a pipeline, including: 
● Confirming results found in samples over time 
● Synthetic DNA spike-ins with challenging and common clinically relevant variants  
● Engineering variants into cell lines 
● Finding existing samples with challenging and common clinically relevant variants 
● Simulation methods, such as read simulators, adding variants into real reads, and modifying the 

reference 
● Run-specific metrics such as base quality score distributions, coverage distributions, etc. can also 

be useful to identify outlier runs 

 



Supplementary Table 2: Definitions and formulas for performance metrics output 
by GA4GH tools.  Bold metrics are “Tier 1” metrics displayed by default, and others 
are “Tier 2” metrics output but optionally displayed. 

Metric Common 
Name(s) 

Definition Formula 

TRUTH.TP True positives 
(Truth) 

Number of truth calls for which there is a query 
call that is consistent with the truth call and its 
genotype 

 

QUERY.TP True positives 
(Query) 

Number of query calls for which there is a truth 
call that is consistent with the query call and 
its genotype. This can differ from TRUTH.TP if 
complex changes are represented as a single 
change in TRUTH.TP and as multiple primitive 
SNVs and indels in QUERY.TP, or vice versa. 

 

TRUTH.FN False 
negatives 

Number of truth calls for which there is no 
query call that is consistent with the truth call 
and its genotype 

 

QUERY.FP False positives Number of query calls for which there is no 
truth call that is consistent with the query call 
and its genotype. 

 

QUERY. 
UNK 

Number of 
unknown variant 
calls 

The number of query variant calls not inside 
confident regions of the truth dataset 

 

QUERY. 
TOTAL 

 Total number of query calls QUERY.TP + 
QUERY.FP + 
QUERY.UNK 

TRUTH. 
TOTAL 

 Total number of truth calls TRUTH.TP + 
TRUTH.FN 

METRIC. 
Recall 
 

Recall, 
Sensitivity 

Fraction of truth calls that are consistent with a 
query allele and genotype call within the 
confident regions 

TRUTH.TP / 
(TRUTH.TP + 
TRUTH.FN)  

METRIC. 
Precision 
 

Precision, 
Positive 
predictive 
value 

Fraction of query calls that are consistent with 
a truth allele and genotype call within the 
confident regions 

QUERY.TP / 
(QUERY.TP + 
QUERY.FP) 

METRIC. 
Frac_NA 

Fraction not 
assessed 

Fraction of query calls that are outside the 
confident regions of the truthset (and which 
could not be assessed in this benchmarking 
run) 

QUERY.UNK / 
QUERY.TOTAL 

F-Score F1 Score The harmonic mean between recall and 
precision 

2 * METRIC.Recall* 
METRIC.Precision / 
(METRIC.Recall + 
METRIC.Precision) 

FP.GT Genotype errors This is the number of query variants with an 
incorrect genotype, but the correct allele (e.g., 
when the query GT is 1/1 and truth GT is 0/1) 

 

FP.AL Allele errors The number of query variant calls which could not 
be matched by genotype or by alleles, but which 
have a truth variant call within a specified distance 

 



 

Supplementary Note 1: Variant Representation Challenges 
Variant representation differences broadly fall into the following categories.  

1. Reference-trimming of alleles: Variant alleles may include reference bases at the 
beginning or at the end. This is required to represent insertions in a VCF file, which always 
include a single padding base (the reference base just before the insertion), and is also 
used by most variant calling methods to represent deletions. Some methods add reference 
padding to explicitly assert surrounding bases have been observed to be homozygous 
reference.  

2. Left-shifting and right-shifting of alleles: variant calls in repetitive sequence may have 
different possible starting positions after trimming. The simplest example of this scenario 
is change in length in a homopolymer: this can be represented as an insertion/deletion 
which may be anchored at any position within the homopolymer (Fig 2a). Interestingly, the 
unstated convention for VCF is that variants are left-aligned, whereas HGVS guidelines 
state that variants should be right-aligned in the context of the transcript (i.e., represent 
the 3’ most possibility), which may be either left or right aligned in the genomic context 
depending on which strand the gene is encoded on. More complex repeats lead to 
additional complexity.9–11 

3. Allele decomposition and phasing: Complex alleles may be represented as a single VCF 
record, or split into multiple records with different starting positions.  An insertion can often 
be represented as one large insertion or multiple smaller insertions (Fig 2b). Similarly, 
multi-nucleotide polymorphisms (MNPs) can be represented either as a single MNP 
record, or alternatively as separate SNVs (Fig 2c). The MNP representation may be 
chosen since it explicitly encodes variant phasing and makes it clear that two SNVs have 
occurred on the same haplotype, which can have a significant impact on clinical 
interpretation, as illustrated in Supplementary Figure 1. In the SNV representation the 
same information may be encoded using the PS format field in the VCF file, but the 
practical implementation varies between different variant calling methods. Also, although 
including local phasing is strongly encouraged, phasing information may not be present in 
the VCF file, in which case we can match the MNP to the SNVs by decomposing it, but 
we cannot recompose the SNVs into the MNP if they are unphased and heterozygous.  

4. Generic ambiguous alignment: Cases 1 and 2 are specific examples for ambiguous 
alignments between reference sequence and the observed haplotype in a sample. 
However, these are not the only case where different sequence alignments with the same 
maximum score may exist. In low-complexity sequence, more difficult scenarios may 
arise. One example is the case where we have a SNV adjacent to a deletion. The SNV 
may be called either at the start or at the end of the deletion, and the choice is up to the 
variant caller or the aligner. An example is shown in Fig. 2d.  Complex variants in repetitive 
regions often cannot be “normalized” (i.e., converted into a standard representation) by 
any existing tools, so that sophisticated variant comparison tools like those developed in 
this work are necessary. 

 
  



Supplementary Note 2: Comparison tools 
The matching methods have been implemented in different variant comparison engines which 
can be used as part of the GA4GH benchmarking workflow. These methods are: 

● scmp-distancebased: this will match variants by location only. Any variant in the query that 
has a truth variant nearby within a specified distance. 

● scmp-somatic: this mode is intended to be used with Tumor/Normal VCF files. Variants in 
the query will be matched to truth variants if the same normalized alleles are found nearby. 
Genotypes are ignored, and multi-sample VCF files will be collapsed into a single column 
with a pre-specified genotype. Alleles are split out into one allele per VCF line. 

● RTG Tools vcfeval (see below for more detailed instructions): this is a comparison that is 
similar to xcmp, but which uses an optimization method to determine TP/FP status on a 
per-variant level (rather than xcmp's per-superlocus level). This method does not use 
phasing information when it is present in the input VCF file and produces genotype 
matches. Vcfeval can also perform allele matching when using the --squash-ploidy option, 
dealing appropriately with variant representation issues, which is useful for somatic callset 
benchmarking. 

● xcmp (hap.py's default comparison engine): this method will assume that both input 
samples are diploid / human samples. Matching is performed on a haplotype level: xcmp 
enumerates all possible haplotypes that may be described by truth and query within a 
small superlocus. If matching pairs of haplotype sequences are found, xcmp will convert 
all variants within the surrounding superlocus into TPs. Xcmp also recognizes direct 
genotype or allele matches / mismatches. Global phasing information is used to restrict 
haplotype enumeration for phased genotype matching, but PS phasing is not supported. 

 
When benchmarking, these variant representation differences can also give rise to different 
notions of giving partial credit for variant calls, such as when a method calls only one SNV in a 
multi-nucleotide variant (MNV, defined as multiple, adjacent SNVs). When assigning TP/FP/FN 
status on a per-VCF-record basis, a variant caller that chooses to represent calls using single 
MNP records would not get credit for calling this SNV correctly since the overall MNP record 
does not reproduce the correct haplotype. Another example would be phasing switch-errors: a 
choice needs to be made whether to use phasing-aware benchmarking for a particular 
evaluation. Handling these cases is important since adding phasing information provides 
additional information to the users of a variant caller, but may lead to FPs / FNs when running a 
benchmarking comparison when comparing to a method which does not provide phasing 
information and outputs all alleles in decomposed form for maximum credit in the benchmarking 
comparison. Our tools attempt to give partial credit when possible, and we generally 
recommend using vcfeval as the comparator to provide the most partial matches. 
 
  



Supplementary Note 3: Benchmarking VCF file formats 

Intermediate VCF Files 

The intermediate VCF file is produced by a comparison engine (like xcmp / vcfeval / xcmp in 
hap.py). 

A comparison engine should 

● assess for each call in the truth and in the query whether this call is considered a match 
or mismatch, and ideally output if the allele matches but the genotype does not (FP.GT) 
or if the wrong allele is called near a true allele (FP.AL) 

● output corresponding labels: 
○ True Positive / TP: present in both truth and query 
○ False Positive / FP: present only in the query 
○ False Negative / FN: present only in the truth 
○ Not-assessed / N: call was not assigned a match status 

● (optionally) output additional information about each decision 
Note that the comparison engine should output the FP/TP/FN/N labels separately for truth and for 
query variants. For simple comparison types which do not attempt to reconcile different variant 
representations, the assigned type for truth and query might be the same. However, more 
sophisticated methods (e.g. vcfeval) will be able to type truth and query variants separately. 

The N label may be applied for a variety of reasons, which may be specific to the comparison 
engine. For example, a comparison engine might not assess input calls which had non-PASS 
FILTER fields, or may choose to ignore half-calls. Alternatively an engine may find that some call 
regions are too complex to confidently assess. Additional information may be included in the BI 
annotation. 

A comparison engine should also preserve input INFO / FORMAT annotations to the largest 
degree possible (depending on the variant processing it does). 

 

Required VCF Fields 

The intermediate VCF must have two columns named TRUTH and QUERY, with these FORMAT 
annotations: 

##FORMAT=<ID=BK,Number=1,Type=String,Description="Sub-type for decision 

(match/mismatch type)"> 

The value of BK specifies the class of match for each variant record: 

1. .: missing = no match at any level tested by the comparison tool 
2. lm: local match = the truth/query variant is nearby a variant in the query/truth -- if the tool 

outputs such match types, it should annotate the VCF header with the definition of local 
matches (e.g. match within a fixed window, or within the same superlocus). 



3. am: almatch = the variant forms (part of) an allele match (independent of representation, 
i.e. one-sided haplotype match) 

4. gm: gtmatch = diploid haplotypes (and genotypes) were resolved to be the same 
(independent of representation) 

Based on the values in BK, comparison tools must assign a decision for each variant call that 
assigns true/false positive/negative status. This status is output in the BD format field: 

##FORMAT=<ID=BD,Number=1,Type=String,Description="Decision for call (TP/FP/FN/N)"> 

 

The mapping of combinations of BK values to BD could vary for different comparison 
stringencies, as discussed in the Variant Counting section.  Our current tools require genotypes 
to match for TP to be in the BD field.  

Local Matching 

Find all variants in the query where another variant was seen nearby in the truth. 

BK BD (Truth) BD (Query) 

. FN FP 

lm/am/gm TP TP 

 

Allele Matching 

Test allele-level concordance between truth and query. 

BK BD (Truth) BD (Query) 

./lm FN FP 

am/gm TP TP 

 

  



Genotype Matching 

Test genotype concordance between truth and query. 

BK BD (Truth) BD (Query) 

./lm FN FP 

am FN FP (and FP.GT) 

gm TP TP 

 

Additional VCF Fields 

Comparison engines may have engine-specific status information that is useful to present in the 
output (for example, error status, specific match sub-algorithm used, etc). This can be recorded 
in the optional BI annotation: 

##FORMAT=<ID=BI,Number=1,Type=String,Description="Additional match status 

information"> 

We allow for comparison engines to transform the input variants for more granular accounting / 
comparison. To facilitate ROC creation based on such a processed variant file, we define the 
following FORMAT annotation to pass on a variant quality score obtained from the input variants: 

##FORMAT=<ID=QQ,Number=1,Type=Float,Description="Variant quality for ROC creation."> 

Since we aim to benchmark variant calls independently of their representation, we also define 
superloci. A superlocus is a set of variant calls that intends to fully describe the variation within a 
contiguous reference  region that may contain complex variation with different representations. In 
order to group variants into blocks by superlocus, we introduce the following INFO annotation that 
allows us to assign a benchmarking superlocus ID to each variant record. 

##INFO=<ID=BS,Number=1,Type=Integer,Description="Benchmarking superlocus ID for these 

variants."> 

In downstream tools, this may e.g. be used to count with superlocus granularity. 
  



Final Output VCF Files 

The output VCF file is similar to the intermediate VCF file. We add one additional variant 
classification: in addition to FP/FN/TP, each variant call can also be assigned the status UNK for 
unknown / outside the regions which the truthset covers. 

A simple definition for UNK variants is as follows: We call any variant unknown if it BD == FP and BK 
== miss and if the variant is outside the confident call regions of the truth set. If the truthset does 
not give confident call regions, no UNK variants are output. 

We introduce the following additional fields: 

##INFO=<ID=Regions,Number=.,Type=String,Description="Tags for confident / 

stratification regions."> 

##FORMAT=<ID=BVT,Number=1,Type=String,Description="High-level variant type in 

truth/query (SNV|INDEL|COMPLEX)."> 

##FORMAT=<ID=BLT,Number=1,Type=String,Description="High-level location type in 

truth/query (het|hom|hetalt|halfcall|multiallelic|nocall)."> 

 

Optional: variant types seen and counted for this record. 

##INFO=<ID=VTC,Number=.,Type=String,Description="Variant types used for counting."> 

  



Supplementary Note 4: Variant types for stratification 
Counts and statistics are calculated for the following subsets of variants: 

Type Description 

SNV SNV or MNP variants. We count single nucleotides that have changed 

INDEL Indels and complex variants 

Hap.py (and qfy.py, which is the part of the hap.py that counts variants) also computes 
counts for subtypes and observed genotypes in the above two categories. 

Subtype Description 

* Aggregate numbers for all subtypes 

ti or tv Transitions and transversions for SNVs 

I1_5 Insertions of length 1-5 

I6_15 Insertions of length 6-15 

I16_PLUS Insertions of length 16 or more 

D1_5 Deletions of length 1-5 

D6_15 Deletions of length 6-15 

D16_PLUS Deletions of length 16 or more 

C1_5 Complex variants of length 1-5 

C6_15 Complex variants of length 6-15 

C16_PLUS Complex variants of length 16 or more 

 
 

Genotype Description 

* Aggregate numbers for all genotypes 

het only heterozygous variant calls (0/1 or similar genotypes) 

homalt only homozygous alternative variant calls (1/1 or similar genotypes) 

hetalt only heterozygous alternative variant calls (1/2 or similar genotypes) 

 

Note that currently the granularity of counting is on a per-VCF-record level. In 
complex/high-variability regions, the classifications above might become inaccurate due 
to nearby variants (e.g. an insertion with a close-by SNV would be more accurately 
classified as "complex" if the SNV and the insertion occur on the same haplotype).  



 
For each variant stratification subset, the GA4GH benchmarking workflow outputs a set 
of stratification columns, followed by metrics columns. Stratification columns may contain 
the placeholder "*" value, which indicates that values in this row are aggregated over all 
possible values of the column. In case of a subtype, this means that the counts have been 
summed across all subtypes. In case of QQ, it means that the counts correspond to all 
variants rather than only ones below a QQ threshold. 

Stratification 
Column 

Description 

Type Variant type (SNV / INDEL) 

Subtype Variant Subtype (ti/tv/indel length, see above) 

Subset Subset of the genome/stratification region 

Filter Variant filters: PASS, SEL, ALL, or a particular filter from the query VCF 

Genotype Genotype of benchmarked variants (het / homalt / hetalt) 

QQ.Field Which field from the original VCF was used to produce QQ values in truth and query 

QQ QQ threshold for ROC values 

 
  



Metric Column Description 

METRIC.Recall Recall for truth variant representation = TRUTH.TP / (TRUTH.TP + TRUTH.FN) 

METRIC.Precision Precision of query variants = QUERY.TP / (QUERY.TP + QUERY.FP) 

METRIC.Frac_NA Fraction of non-assessed query calls = QUERY.UNK / QUERY.TOTAL 

METRIC.F1_Score Harmonic mean of precision and recall = 
2*METRIC.Recall*Metric.Precision/(METRIC.Recall + METRIC.Precision) 

TRUTH.TOTAL Total number of truth variants 

TRUTH.TP Number of true-positive calls in truth representation  

TRUTH.FN Number of false-negative calls = calls in truth without matching query call 

QUERY.TOTAL Total number of query calls 

QUERY.TP Number of true-positive calls in query representation  

QUERY.FP Number of false-positive calls in the query file (extra query calls in truth bed file) 

QUERY.UNK Number of query calls outside the confident regions 

FP.gt Number of genotype mismatches (alleles match, but different zygosity) 

FP.al Number of allele mismatches (variants matched locally but not by alleles) 

TRUTH.TOTAL.TiTv_ratio Transition / Transversion ratio for all truth variants 

TRUTH.TOTAL.het_hom_ratio Het/Hom ratio for all truth variants 

TRUTH.FN.TiTv_ratio Transition / Transversion ratio for false-negative variants 

TRUTH.FN.het_hom_ratio Het/Hom ratio for false-negative variants 

TRUTH.TP.TiTv_ratio Transition / Transversion ratio for true positive variants 

TRUTH.TP.het_hom_ratio Het/Hom ratio for true positive variants 

QUERY.FP.TiTv_ratio Transition / Transversion ratio for false positive variants 

QUERY.FP.het_hom_ratio Het/Hom ratio for false-positive variants 

QUERY.TOTAL.TiTv_ratio Transition / Transversion ratio for all query variants 

QUERY.TOTAL.het_hom_ratio Het/Hom ratio for all query variants 

QUERY.TP.TiTv_ratio Transition / Transversion ratio for true positive variants (query representation) 

QUERY.TP.het_hom_ratio Het/Hom ratio for true positive variants (query representation) 

QUERY.UNK.TiTv_ratio Transition / Transversion ratio for unknown variants 

QUERY.UNK.het_hom_ratio Het/Hom ratio for unknown variants 

Subset.Size When using stratification regions, the number of nucleotides in the region 

Subset.IS_CONF.Size This gives the number of confident bases (-f regions) in the region 



Supplementary Note 5: Merging GIAB and PG Truth Calls for NA12878 
Platinum Genomes v2016.1 (PG) and NIST Genome in a Bottle v3.3.2 (GIAB) calls were 
combined through a k-mer validation process adapted from that used in [PG 2017]. The steps in 
this procedure are as follows: 

1. Use hap.py to compare both NA12878 truth set VCFs and identify those records 
exclusive to GIAB (i.e. ‘false positives’ in the GIAB query) 

2. Merge these GIAB-exclusive calls with the PG set to produce a combined VCF of 
candidate records for validation 

3. For fully-phased loci: 
a. Induce k-mers containing local haplotype sequence of 51 bp centered on each 

record of the merged VCF 
b. Count exact k-mer matches in aligned reads in the region (+/- 400 bp) of the VCF 

record for each haplotype sequence 
c. For each haplotype, sum the counts over expected inherited haplotypes in the 

lower pedigree and divide by the number of expected inheritances to get a 
normalised k-mer score (KM) 

d. Take the minimum KM of both NA12878 haplotypes in the phased record and 
filter those where the minimum KM is less than 1 

4. For loci spanning one or more unphased records: 
a. Generate all possible k-mer sequences considering any phased or unphased 

records in the merged VCF within the 51 bp window 
b. Count exact matches in aligned sequence reads for all k-mers, again in the 

aligned reads surrounding the site (+/- 400 bp). Those k-mers with >=2 counts in 
NA12878 are taken forward as candidate haplotypes 

c. Assign a k-mer to a PG haplotype label (relative to NA12878) based on which 
assignment maximises the normalised k-mer score (KM, see above) and 
subsequently filter any haplotype with KM < 1 

d. If a single pair of haplotypes are able to form a complementary diplotype, this is a 
validated and phased record. If there are more than one valid haplotype pairs (as 
may happen at short tandem repeats) the record cannot be validated and is 
discarded 

5. Newly-validated calls are added to the PG confidence tracks 
 
Steps 1 and 2 in the above procedure sidestep the problem of conflicting sites between the two 
call sets. An improved approach would be to consolidate and arbitrate conflicts, else filtering 
ambiguous sites where the true state cannot be determined. 
 
The k-mer validation method could also be applied so as to graft PG-exclusive calls onto the 
GIAB truth set, however many of these PG exclusive calls will fall outside GIAB confident 
regions and as such would benefit from a more sophisticated method capable of integrating 
confident regions. 
 
 


