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Extended Methods

1 Statistical model

We assume that the read counts follow the negative binomial distribution with the probability distribution function

P (X = x) = Γ(k + x)
x!Γ(k)

(
m

m+ k

)x(
m+ k

k

)−k
, (1)

where m = m(µ, d, . . . , t) is the mean read count expected from the kinetic model and depends on the time point t,
expression level in a steady-state µ, degradation rate δ, and sample normalization, see the next section for details.
The negative binomial distribution imposes a relation between variance and mean via the overdispersion parameter
k, var(X) = m(m+ k)/k. We assume the same k for all the genes in the data set, which is the simplest model, but
more complicated models exist [Anders and Huber, 2012]. In this case, k is a shared parameter, and the model
parameters from different genes must be fitted together in one procedure.

The logarithm of the likelihood function depends on the experimental points X1, . . . , Xn and the vector of all model
parameters θ

logL(θ, X) =
∑
i

logP (θ, Xi). (2)

The maximum likelihood estimator is then

θ̂ = arg max
θ

logL(θ, X). (3)

2 Kinetic model

The solution of the differential equation for the kinetics of synthesis and degradation of the RNA dm
dt = s− δm is

m(t) = m0e
−δt + (1− e−δt)s/δ = µ+ (m0 − µ)e−δt, (4)

where m0 is the initial amount of RNA, µ = s/δ is the expression level in the steady state for synthesis rate s and
degradation rate δ.

For definiteness, consider a pulse experiment. The unlabeled fraction is being only degraded (synthesis rate s = 0 ),
and the initial RNA level is µ

mU(t) = µe−δt. (5)
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The labeled fraction starts from zero and saturates to the steady state:

mL(t) = µ(1− e−δt). (6)

In fact, the mean read count is only proportional to the amount of RNA in samples, so without spike-in fragments
added to measure absolute concentration, we can estimate the amounts only up to unknown coefficient. For
identifiability, we use the read counts in the total samples as a reference (accounting for difference in sequencing
depth, as implemented in the DESeq package [Anders and Huber, 2012]).

If the ratio of fractions is preserved, as, for example, in the SLAMseq protocol, the counts in the labeled XL and the
unlabeled XU fractions are scaled by the same sequencing depth correction x, E(XU +XL) = xµ and

EXU = x · µe−δt (7)

EXL = x · µ(1− e−δt) (8)

Assuming that usually samples are sequenced to approximately the same depth, for theoretical derivations we use
x = 1 for the SLAMseq experiment.

If the fractions were separated by a chemical procedure, the read counts ratio will not coincide with the ratio of
labeled and unlabeled molecules. In the case of negligible cross-contamination,

EXU = x1 · µe−δt

EXL = x2 · µ(1− e−δt).
(9)

2.1 Bias due to cross-contamination

In this work, we do not consider cross-contamination, however it can play a significant role, especially for extreme
rates (very fast or very slow) even if the overall contaminated material amount is low.

Indeed, if there is a cross-contamination level of γ, the mean read count can be modeled as

EXU = x1
(
(1− γ) · µe−δt + γ · µ

(
1− e−δt

))
. (10)

Under the model, which does not accommodate for cross-contamination, the degradation rate estimate δ∗ is biased:

EXU = x∗1µ
∗e−δ

∗t ≈ x1µe
−δ∗t = x1µ

(
e−δt + γ

(
1− 2e−δt

))
δ∗ = −1

t
ln
(
e−δt + γ

(
1− 2e−δt

))
,

(11)

where we assume, that x∗i ≈ xi, µ∗ ≈ µ, in order to simplify our illustration. In general case, however, cross-
contamination may affect normalization coefficients xi and the estimates of the expression level µ. Influence of
contamination is more pronounced for extreme rates, in which case e−δt ≈ 1 or e−δt ≈ 0, and it has minimal effect if
e−δt ≈ 1/2. Let us consider such small values of γ, that, for majority of genes, estimates are negligibly affected. If
xi are derived from the whole pool of genes, we can assume x∗1 ≈ x1.

These derivations are relevant to the SLAMseq method as well, where misclassification of the reads has the same
effect as cross-contamination. In this case, we do not need assumption x∗i ≈ xi, since x1 = x2 ≡ 1. In addition, in
the Poissonian case of the SLAMseq, the total sum of reads XL +XU contains all the information about µ, and the
estimate of µ is not affected by read misclassification, i.e. µ∗ = µ.
For very slow genes (δt� 1) using the Taylor expansion for δt→ 0 it can be simplified as

δ∗

δ
= − 1

δt
ln(1− δt+ o(δt) + γ(1− 2 + 2δt+ o(δt)))

= − 1
δt

ln(1− γ + (2γ − 1)δt+ o(δt))
(12)

For δt� γ,
δ∗

δ
≈ − 1

δt
ln(1− γ)� 1. (13)
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In contrast, for very fast genes, such as δt� 1,

δ∗

δ
≈ − ln γ

δt
� 1 (14)

Hence, the rate estimations are biased to faster rates in the case of slow genes and toward faster values in the case of
fast genes. The same result holds for the labeled fraction.

2.2 Bias due to variation in uridine content

Efficiency of biochemical separation may depend on the uridine content of the RNA species: molecules with higher
uridine number are captured with higher probability. In the SLAMseq case, probability of at least one conversion
event is higher for reads with high uridine content. This difference in uridine content may introduce a bias in rate
estimates. To account for this bias, Eser et al. [2016] and Miller et al. [2011] introduced an additional parameter
into the model.

For illustration, let us consider a labeling experiment with read numbers XL (labeled fraction) available at several
time points. If the probability for a molecule to be captured varies between species, we can describe it with an
additional factor u:

EXL = u · x2µ(1− e−δt). (15)

For RNA species, which have lower probability to be captured, than the majority of the pool (if normalization is
derived from the model fitting), u < 1. If the normalization is done using external spike-in molecules, u < 1 for the
species, which have lower capture probability in comparison to the labeled spike-ins. For RNA species with higher
capture probability, u > 1.

Under the model, which does not account for the bias,

EXL = x2µ
∗(1− e−δ

∗t) = u · x2µ(1− e−δt). (16)

The distribution of the steady state levels in the labeled fraction is different than in the total fraction: the separation
procedure favors species with higher uridine content:

lim
t→∞

µ∗(1− e−δt) = uµ 6= µ. (17)

Let us assume, that x2 is derived using external spike-ins, and does not depend on the model fit. If only the labeled
fraction is measured, accounting for the factor u or shifting expression level by coefficient u, such that µ∗ = uµ,
results in the same model fit and does not affect estimates of the degradation rate.

However, if there is data available, which allows us to better estimate µ (so µ∗ ≈ µ), for example, via measuring the
total fraction, the bias will be introduced to the δ estimates. Indeed, for µ∗ ≈ µ,

EXL = x2µ(1− e−δ
∗t) = u · x2µ(1− e−δt) (18)

(1− e−δ
∗t) = u(1− e−δt), (19)

and δ∗ > δ if u > 1, and δ∗ < δ for u < 1.

This result is not universal, and for the case of chase experiment the relation will be the opposite: species with
u < 1 will have lower read counts, than one would expect without accounting for the uridine bias, which shifts rate
estimates towards faster degradation, i.e. for u < 1, δ∗ > δ.

3 Fisher information matrix derivation

Let m(θ, t) is the expected mean read number at time point t and θ = (µ, d)T is a vector of model parameters.

The observed Fisher information matrix (FIM) is defined as

Iij(θ, X) = −∂
2 logL(θ, X)
∂θi∂θj

(20)
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In the optimal design of experiments, the expected FIM is used

Iij(θ) = EIij = −E∂
2 logL(θ, X)
∂θi∂θj

, (21)

since we may not have any measurements and are interested in the performance of a given design in average. We
refer everywhere only to the expected FIM and name it just FIM, omitting the “expected” term.

We will use here the fact, that the variance of the score function

varθ(S(θ)) = I(θ), (22)

where

S(θ) =

∂ logL/∂θ1
...

∂ logL/∂θp

 . (23)

Si(θ) = x
k

m(m+ k)
∂m

∂θi
+ f(m, k), (24)

where f(m, k) is a term not depending on x. Using the fact that var(X) = m(m+ k)/k,

I(θ) = varθ (S(θ)) = k

m(m+ k)
∂m

∂θi

∂m

∂θj
(25)

In the k →∞ case, when no overdispersion is assumed and the model follows the Poisson distribution,

IPois(θ) = varθ (S(θ)) = 1
m

∂m

∂θi

∂m

∂θj
(26)

By plugging the relations for the RNA amount m(t) = µe−δt (the unlabeled fraction) and m(t) = µ(1− e−δt) (the
labeled fraction) in Equation 25,

(IL(θ))δδ = t2e−2δtµ

1− e−δt
1

1 + µ
k (1− e−δt) (27)

(IU(θ))δδ = t2e−δtµ
1

1 + µ
k e
−δt (28)

To compute and validate the expressions for the elements of the Fisher matrix, we used wxMaxima [2015] interface
to the Maxima [2014] software. The supporting file is provided together with the source code of the experiment
analysis: https://github.com/dieterich-lab/DesignMetabolicRNAlabeling

For the SLAMseq case,

Islam(θ) = IL(θ) + IU(θ)

=


kµt2e−δt

µe−δt + k
+ kµt2e−2δt

(µ (1− e−δt) + k) (1− e−δt)
kte−δt

µ (1− e−δt) + k
− kte−δt

µe−δt + k

kte−δt

µ (1− e−δt) + k
− kte−δt

µe−δt + k

ke−δt

µ (µe−δt + k) +
k
(
1− e−δt

)
µ (µ (1− e−δt) + k)

 (29)

The inverse matrix in the general case is

I−1
slam(θ) =


eδt − 1
µt2

+ 2(1− e−δt)2

kt2
e−2δt (2µ− 3µeδt + µe2δt)

kt

e−2δt (2µ− 3µeδt + µe2δt)
kt

µ+ µ2

k

(
e−2δt +

(
1− e−δt

)2
)
 (30)

4

https://github.com/dieterich-lab/DesignMetabolicRNAlabeling


A model with overdispersion imposes an upper bound on the (I−1
slam(θ))δδ, which cannot be improved by increase of

sequencing depth (i.e. µ) alone. For a fixed t,

lim
µ→∞

(I−1
slam(θ))δδ = 2(1− e−δt)2

kt2
(31)

Although this limit value decreases with t→∞, the depth µ must increase exponentially eδt/µ(t)→ 0 in order to
satisfy

lim
t→∞

eδt − 1
µ(t)t2 = 0. (32)

If the total depth of n repetitions is fixed to some value such, that nµ1 = µ, where µ1 corresponds to the depth in a
single repetition,

lim
n→∞
µ1n=µ

1
n

(
eδt − 1
µ1t2

+ 2(1− e−δt)2

kt2

)
= eδt − 1

µt2
, (33)

which coincides with the FIM term for the Poissonian (non-overdispersed) model, compare to Equation 9 in the
main document. Hence, it might be more beneficial to spread the sequencing capacity over several replicates.

3.1 Poissonian (no overdispersion) case

In the limit case of low overdispersion, k →∞, the FIMs for the labeled and unlabeled parts are

IU(θ) =

µt2e−δt −te−δt
−te−δt e−δt

µ

 (34)

IL(θ) =


µt2

e2δt − eδt
te−δt

te−δt
1− e−δt

µ

 (35)

and the total is

Islam(θ) = IU(θ) + IL(θ) =

 µt2

eδt − 1 0

0 1
µ

 , (36)

and the inverse of the FIM is simplified to

I−1
slam(θ) =

eδt − 1
µt2

0
0 µ

 . (37)

3.2 Optimal time for SLAMseq

One may be interested to minimize the relative variance for the degradation rate estimator, i.e.

var(δ̂)
δ2 ≈ 1

(Islam(θ))δδδ2 (38)

That means, that we are to maximize the denominator (Islam(θ))δδδ2 term. This expression can be simplified by
introducing dimensionless variable α = δt = t/τ, where τ is the characteristic time of the degradation process.

(Islam(θ))δδδ2 = µ(δt)2

eδt − 1 = µα2

eα − 1 (39)
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The optimal value of α, which maximizes the (Islam(θ))δδδ2 can be derived from condition of zero derivative:

(
µα2

eα − 1

)′
= 2µα
eα − 1 −

µα2eα

(eα − 1)2 = 0

(2− α)eα = 2
(40)

The solution can be found numerically:
α∗slam ≈ 1.5936, (41)

and for a given degradation rate δ, the optimal time in the SLAMseq setup and Poissonian assumptions is

tslam ≈ 1.59/δ = 1.59τ. (42)

3.3 Partial conversion case and pulse-chase SLAMseq

If only some fraction of the nascent RNA is classified as labeled, for example, the T → C conversion is not 100%
efficient, the saturation level of the labeled molecules will be less than the mean expression level µ:

pulse
{
mU(t) = µ∗1 + µ∗2e

−δt

mL(t) = µ∗2(1− e−δt).
(43)

In this model, the unlabeled fraction never extincts. In the steady-state, after long enough labeling, the unlabeled
fraction approaches its minimal level µ∗1, and the labeled one reaches its maximum µ∗2, where µ = µ∗1 + µ∗2.

In the case of the pulse-chase design, which we analyze in this work, the labeled fraction degrades starting from
some initial level µ2 6 µ∗2, and if the system is close to the steady state after the pulse-phase, µ2 ≈ µ∗2 and µ1 ≈ µ∗1:

chase
{
mU(t) = µ1 + µ2(1− e−δt)
mL(t) = µ2e

−δt,
(44)

with µ = µ1 + µ2.

If there is only one time point measured, it is not possible to identify uniquely all three parameter (δ, µ1 and µ2) of
the algebraic system. For example, additional measurement at the beginning of the chase phase at t = 0 would
provide direct information on µ1 and µ2, since mU(0) = µ1 and mL(0) = µ2.

Presence of the background level in the unlabeled fraction µ1 negatively affects our estimations. In the limiting case,
when the background level µ1 is very large µ1 � µ2, the unlabeled fraction hardly contributes any information on
our parameter of the interest δ. More formally, considering the pulse-chase design (eq. 44) under the Poissonian
assumptions (eq. 26), the diagonal element

(IU (θ))δδ = 1
m

(
∂m

∂δ

)2
= µ2e

−2δtt2

µ1/µ2 + (1− e−dt) (45)

(IL(θ))δδ = µ2t
2e−δt, (46)

and if the fraction of the molecules with conversion is very small in comparison to the background level µ1,

lim
µ1/µ2→∞

(IU (θ))δδ = 0. (47)

The term for the labeled fraction (IL(θ))δδ does not depend on the level of background counts µ1. Hence, in the
limiting case of high background level µ1/µ2 →∞, the main contribution to the (Islam(θ))δδ = (IU (θ))δδ+(IL(θ))δδ
comes from (IL(θ))δδ. Since (IL(θ))δδ = µ2t

2e−δt has its maximum at t = 2/δ = 2τ , in the limiting case of
µ1/µ2 → ∞, the maximum of the (Islam(θ))δδ is shifted towards t = 2τ . It is to be compared to the pulse-only
experiment or pulse-chase started from a steady state SLAMseq, in which case optimal time is t ≈ 1.59τ (µ1 = 0).

In the result section on the SLAMseq experiment analysis, we illustrate the dependency of the (Islam(θ))δδ on the
labeling time t without Poissonian assumptions. For completeness, we provide here the expression for this case as
well:

(Islam(θ))δδ = kµ2t
2e−δt

µ2e−δt + k
+ kµ2

2t2e−2δt

(µ2 (1− e−δt) + µ1) (µ2 (1− e−δt) + µ1 + k) . (48)
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3.4 On the alternative parametrization

If one considers the logarithm of the degradation rate as a parameter for the statistical model, i.e. η = ln(δ) and
δ(η) = eη, then the Fisher information matrix term

Iηη(θ) = Iδδ(θ)
∣∣∣∣dδ(η)

dη

∣∣∣∣2 = Iδδ(θ)e2η = Iδδ(θ)δ2, (49)

which coincides with the modified term Iδδ(θ)δ2, which we used to optimize the relative variance var(δ̂)/δ2 in the
main text. Although Iηη(θ) alone may look less cumbersome, we avoided introducing additional parameters and
stick to the usage of the initial parameter δ only.

3.5 Asymptotics at extreme labeling times

Here we investigate the behaviour of the relative variance at the times, which are much shorter (α→ 0) and much
longer (α→∞), than the characteristic time τ for a given gene. Since Islam(θ) = IU(θ) + IL(θ),

(IU(θ))δδδ2 = µ(δt)2e−δt = µα2e−α

(IL(θ))δδδ2 = µ(δt)2

e2δt − eδt
= µα2

e2α − eα

(Islam(θ))δδδ2 = µα2

eα − 1

(50)

• α→ 0
Using the Taylor expansion, eα = 1 + α+ o(α), where limα→0 o(α)/α = 0,

(IU(θ))δδδ2 = µα2(1− α+ o(α)) ∼ α2

(IL(θ))δδδ2 = µα2

1 + 2α− 1− α+ o(α) ∼ α

(Islam(θ))δδδ2 = ((IU(θ))δδ + (IL(θ))δδ)δ2 ∼ α

(51)

• α→∞
Since limx→∞ log(x)/x = 0,

(IU(θ))δδδ2 = µe−α(1+2 log(α)/α) ∼ e−α

(IL(θ))δδδ2 = µe−2α+2 log(α)−log(1−e−α) ∼ e−2α

(Islam(θ))δδδ2 = (IU(θ))δδδ2 + (IL(θ))δδδ2 ∼ e−α
(52)

This result shows, that relative variance of the δ̂ estimator increases exponentially at very long labeling times
(t� τ), whereas at short times (t� τ) it behaves as a power function.

4 Normalization in conventional experiments

The situation is different for the case of biochemical purification, when the labeled, unlabeled and total fractions
are sequenced to the approximately same depth. For the next derivation, we assume that samples were normalized
externally, e.g. by synthetic spike-ins or exogenous RNA. In addition, we do not consider uncertainty coming from
fraction normalization.

The sequencing depth for the total sample is
∑
i µi. After labeling for t hr, the concentrations of labeled and

unlabeled molecules changes according to Equation 9, and in the case of same depth, the normalization coefficients
are

xL ≈
∑
i µi∑

i µ (1− e−δit) (53)

xU ≈
∑
i µi∑

i µie
−δit

, (54)
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where we use the total sample as a reference, i.e. with the normalization coefficient 1. At long times, when majority
of genes in the labeled fraction achieve saturation, xL ≈ 1. Similarly, at short times, xU ≈ 1, degradation has a
minor effect on the unlabeled fraction.

In contrast, at short times,

xL ≈
∑
i µi∑
i µδit

= 1
〈δ〉t

, (55)

where 〈δ〉 =
∑
i µiδi/

∑
i µi is average degradation rate weighted by the steady-state expression level. If there is a

small cluster of fast genes i ∈ F , which dominate the pool of labeled molecules at such times, that (1− e−δit)� 1
for other genes (i /∈ F), and (1− e−δit) ≈ 1 for i ∈ F , then

xL ≈
∑
i µi∑

i∈F µi
. (56)

Similar result holds true for the cluster of slow genes S, such that e−δit ≈ 1 for i ∈ S and e−δit � 1 for i /∈ S, and

xU ≈
∑
i µi∑

i∈S µi
. (57)

Such “zooming” effect of normalization can drastically improve inference about fast genes in comparison to the
SLAMseq design, since xL and xU can be interpreted as a corresponding increase in depth in SLAMseq experiment.

Modifying the mean read count in Equations 27 and 28 by the factors xL and xU results in

(IL(θ))δδ = t2e−2δt

(1− e−δt)
1

1
xLµ

+ 1
k (1− e−δt)

(58)

(IU(θ))δδ = t2e−δt
1

1
xUµ

+ 1
ke
−δt (59)

As in the SLAMseq case, the overdispersion imposes limits on the terms of the FIM:

lim
µ→∞

(IL(θ))δδ = t2e−2δtk

(1− e−δt)2 6
k

δ2 (60)

lim
µ→∞

(IU(θ))δδ = t2k. (61)

It is interesting, that in the case of the unlabeled fraction, this upper bound can be improved by using longer labeling
times, which is not true for the labeled one.
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