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Methods

Details about DFT Treatment The ground state DFT calculations are performed with

the Vienna Ab initio simulation package (VASP).1 Plane waves are employed as a basis

with an energy cutoff of 400 eV. The pseudo potentials are generated with the projector

augmented wave method (PAW)2 and the exchange-correlation potentials are treated in the

local density approximation (LDA).3 As the system size is relatively large, a 1x1x1 kgrid is

employed in the ground state and relaxation calculations. Lattice constants are chosen such

that they correspond to a lattice constant of 2.512 Angstrom for a 1x1 unit cell of hBN.

During the relaxation, all the atoms are relaxed until the force on each atom is less than

0.01 eV/Angstrom. The VESTA code4 is used for the visualization of the charge density

distributions of the low-energy states of TBBN.

DFT+U calculations The ab initio evaluation of the effective Ueff and the DFT+U

calculations are performed using the Octopus code.5–8 A real-space spacing of 0.45 Bohr is

chosen, and we employ norm-conserving pseudopotentials. The LDA is used for describing

the local DFT part, and we utilize the ACBN0 functional to evaluate self consistently the

effective Ueff of DFT+U . The vacuum size, atomic coordinates and lattice constant are taken

to be the same as for the DFT treatment, as described above. Again, only the Gamma point

is considered here.

The localized subspace is constructed as a single-shot Wannier states, taking the flat bands

from LDA calculations. As the flat bands are energetically separated from the other occupied

bands, this implies that the Wannier states reduce to the LDA states at the Gamma point.
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The Hubbard-Kanamori parameters U , U ′ and J are commonly defined from the expression

U =
1

N

∑
m

〈mm|Vee|mm〉 ,

J =
1

N(N − 1)

∑
m6=m′

〈mm′|Vee|m′m〉 ,

U ′ =
1

N(N − 1)

∑
m 6=m′

〈mm|Vee|m′m′〉 ,

where Vee denotes the screened Coulomb interaction. To evaluate these parameters, we

extended the definition of the ACBN0 function which yields

Ū =

∑
m

∑
σ P̄

σ
mmP̄

−σ
mm(mm|mm)∑

m

∑
σ n

σ
mmn

−σ
mm

,

Ū ′ =

∑∗
{m}
∑

σσ′ P̄ σ
mm′P̄ σ′

m′m′′(mm′|m′′m′′′)∑
m 6=m′

∑
σ[nσmmn

σ
m′m′ + nσmmn

−σ
m′m′ ]

,

J̄ =

∑∗
{m}
∑

σ P̄
σ
mm′P̄ σ

m′m′′(mm′′′|m′′m′)∑
m 6=m′

∑
σ n

σ
mmn

σ
m′m′

,

where nσmm′ denotes the density matrix of the localized subspace, P̄ σ
mm′ is the the renor-

malization density matrix (see Ref. 8 for details), and (mm′|m′′m′′′) refers to the Coulomb

integrals computed from the bare Coulomb interaction. In the sum over the orbitals
∑∗
{m},

the asterisk means that the sum goes over all the orbitals (two here) except for the case in

which m = m′ = m′′ = m′′′. Importantly, we do not use any symmetry for computing the

Coulomb integrals, and evaluate them directly on the real space grid, in order to analyze if

the relation Ū − Ū ′ = 2J̄ is fulfilled or not.

We tested both the fully-localized-limit and the around-mean-field double counting terms,

and found no sizable change in the value of Ueff .

Treating Correlations To treat correlations we introduce a tight binding model moti-

vated from the DFT analysis. We want to concentrate on the bands labeled by 3 and 7

in Fig. 2 in the main text. These can be approximated very well by a two band nearest
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neighbor tight binding model on a triangular lattice

H0 = −t
∑
〈i,j〉

2∑
b=1

∑
σ=↑,↓

c†i,b,σcj,b,σ − 2t
∑
i

2∑
b=1

∑
σ=↑,↓

ni,b,σ, (1)

where c(†)
i,b,σ annihilates (creates) a particle on site i in the band b and with spin σ and

ni,b,σ = c†i,b,σci,b,σ. The second term (energy-shift) ensures that we measure the chemical

potential with respect to van Hove filling for convenience.

We add local Coulomb repulsion and Hund’s coupling to this by including

HU
i =U

2∑
b=1

ni,b,↑ni,b,↓ + U ′
∑
σ=↑,↓

ni,1,σni,2,−σ + (U ′ − J)
∑
σ=↑,↓

ni,1,σni,2,σ

− J ′
(
c†i,1,↓c

†
i,2,↑ci,2,↓ci,1,↑ + c†i,2,↑c

†
i,2,↓ci,1,↑ci,1,↓ + H.c.

)
(2)

in the full Hamiltonian H = H0 +
∑

iH
U
i . To reduce the number of parameters we set J = J ′

and U ′ = U − 2J (which strictly can be shown to hold for d-orbitals in free space9). From

our DFT+U estimates we find that this relation is also approximately fulfilled for twisted

boron nitride although there seems to be no symmetry argument why this has to be the case.

We choose U and J as the two independent parameters to vary in the following, which fixes

U ′.

The equilibrium phases of the Hamiltonian H can be analyzed in the regime of small to

intermediate interaction strength by the well-established functional renormalization group

approach (FRG).10 Similar in spirit to other renormalization groups schemes within this

method high-energy degrees of freedom are successively integrated out, resulting in a renor-

malized, effective low-energy theory of the problem. In our approach we monitor the behavior

of the effective two-particle interaction over the flow, which addressed the successive inclusion

of high-energy processes into an appropriate effective low energy model. Precursors to or-

dering tendencies are then indicated by a divergence of the effective two-particle interaction,

signaling an instability of the Fermi-surface and a flow to strong coupling.
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It is a particular advantage of the functional renormalization group that the method solely

takes the Hamiltonian as an input and no a priori identification of dominant interaction

channel (e.g. magnetic, superconducting, ...) needs to be made by hand. This allows to

treat these different channels on equal footing and thus analyze their competition in an

unbiased fashion. As energy scales are successively integrated out over the flow, approaching

the chemical potential µ the effective two-particle interaction acquires a strong momentum

dependence. It is this momentum dependence combined with the analysis of the diverging

channel that allows to draw conclusions about the dominant ordering in the system (varying

the parameters of the Hamiltonian). Within the implementation of the FRG we use the

implementation of Refs.10,11 we start the renormalization group flow from the bare two-

particle interaction of the Hamiltonian HU , which shows no momentum dependence (owed

to its locality). Therefore, initially (Λi denoting the start of the flow) the effective two particle

interaction ΓΛi(k1, k2, k3, ω1, ω2, ω3), which in general depends on three independent momenta

and frequencies, is momentum and frequency independent. The functional renormalization

group approach then provides a recipe of how ΓΛ(k1, k2, k3, ω1, ω2, ω3) at a different value

of the flow parameter Λ can be obtained along the line from Λi all the way to Λe, which

is the end of the flow where the effective low-energy theory of the initial model can be

extracted. This is done in terms of rather cumbersome differential equation given in Ref.10

When an ordering tendency is encountered during this successive flow the effective two-

particle interaction ΓΛ(k1, k2, k3, ω1, ω2, ω3) diverges at a finite Λc and the flow needs to be

stopped. This Λc can roughly be identified with the critical temperature Tc associated with

the ordering tendencies.

During the flow (employing momentum and frequency conservation) the effective two-

particle interaction depends on three independent momenta as well as three independent

frequencies (it is associated with four Fermionic operators, like the bare two-particle in-

teraction). To make the numerical calculation feasible we have to reduce these degrees of

freedoms. Since we are interested in the low-energy (equilibrium) physics of the model we
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project all frequencies to the chemical potential and all momenta to the Fermi-surface, but

keeping their angle dependence, which we discretize in 18 uniform steps from 0 to 2π. For

the equilibrium low-energy physics of a system, processes far away from the Fermi-surface

are irrelevant, while the angle dependence of the on-shell processes are relevant; justifying

this approximation. Therefore in our formulation of the functional renormalization group

the low-energy effective two-particle interaction on the Fermi surface is parametrized by

the three angles φ1, φ2, φ3 of momenta k1, k2, k3 and thus it can be equivalently written as

Γ(φ1, φ2, φ3).

When a divergence is encountered in a particular ordering channel of the effective two-

particle interaction, with corresponding order parameter ∆̂k, one can employ a mean-field

decomposition ∑
k,q

= Γ̃ΛC (k, q)[∆̂k, ∆̂q] (3)

of the dominant contribution to the vertex after the flow. The prefactor Γ̃ΛC (k, q) can then

be decomposed into the irreducible representation of the underlying lattice model to find the

symmetry (e.g. s,p,d,...) of the dominant ordering.

Twisted bilayer system with massive Dirac Hamiltonian

For a twisted bilayer system with each layer being described by a massive Dirac Hamiltonian

and a gap of 2m, we can obtain insights into the evolution of the low-energy band structures

by truncating the interlayer hoping matrix and retaining only the leading Fourier compo-

nents. This truncation implies that we only consider the coupling between the states of the

Dirac cone of one layer with the states in the three nearest Dirac cones of the other layer (as
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shown in Fig. 1(b)), yielding the following eight-band Hamiltonian:

H(k) =



h0(k) T1 T2 T3

T †1 h1(k1) 0 0

T †2 0 h2(k2) 0

T †3 0 0 h3(k3)


, (4)

where k is a small vector within the supercell Brillouin zone and ki = k+qi (i = 1, 2, 3), and

the h0 and hi are the intralayer Hamiltonians of the first and the second layers, respectively,

given by:

h0(k) =

 m vkei(θk)

vke−i(θk) −m

 ,

hi(k) =

 m vkei(θk−θ)

vke−i(θk−θ) −m

 ,

(5)

and Ti is the interlayer coupling matrix:

T1 = w

 1 1

1 1

 , T2 = w

 e−iφ 1

eiφ e−iφ

 ,

T3 = w

 eiφ 1

e−iφ eiφ

 ,

(6)

where w is the interlayer hopping energy and φ = 2π/3. The eigenstates can be written as

four two-component spinors Ψ = (ψ0, ψ1, ψ2, ψ3), where ψ0 is located in the subspace of one

layer while ψi is located in the other.

We can solve the Hamiltonian by treating the momentum as a small perturbation and

rewrite H(k) as H(k) = H(0) + H(1)(k), where H(0) = H(0) and H(1)(k) = H(k) − H(0).

In zeroth order k = 0, and we find H(0)Ψ(0) = ε(0)Ψ(0). The eigenstates must satisfy the
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following equations:

h0(0)ψ
(0)
0 + T1ψ

(0)
1 + T2ψ

(0)
2 + T3ψ

(0)
3 = ε(0)ψ

(0)
0 , (7)

T †1ψ
(0)
0 + h1(q1)ψ

(0)
1 = ε(0)ψ

(0)
1 , (8)

T †2ψ
(0)
0 + h2(q2)ψ

(0)
2 = ε(0)ψ

(0)
2 , (9)

T †3ψ
(0)
0 + h3(q3)ψ

(0)
3 = ε(0)ψ

(0)
3 . (10)

From Eqs. (5-7), we find

ψ
(0)
i = h′−1

i T †i ψ
(0)
0 , (11)

where h′i = ε(0) − hi(qi). By substituting Eqs. (5),(6) and (11) into Eqn. (4), we can finally

show that the eigenenergies for k = 0 must satisfy:

(ε(0) − 6ε(0)w2

(ε(0))2 −m2 − v2q2
0

)2 −m2 = 0, (12)

where q0 = |qi| = |Kt −Kb| = 2|K|sin(θ/2).

When m << w, by neglecting all the higher order term of m, the two lowest-energy

solutions to Eq. (12) are reduced to:

ε
(0)
± = ±m 1

(1 + 6α2)
, (13)

where α2 = w2/v2q2
0. Therefore, the band gap of the twisted bilayer system Etb

gap = 2|ε(0)
± | is

reduced to that of the monolayer 1/(1 + 6α2). With large twist angle when vq0 >> w, the

band gap Etb
gap is approaching the monolayer value; while in the limit θ → 0, α2 →∞, thus

Etb
gap → 0, which indicates that the band gap could be closed at small twist angle.

When m >> w and m >> vq0 (twist angle is small), the lowest eigenenergies can be
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Figure 1: (a) Brillouin zones of the top layer (in red), the bottom layer (in blue) and the
twisted system in a supercell (in green). (b) Reciprocal geometry of the K point of the bootom
layer and the three nearest K points of the top layers in the supercell Brillouin zone. The three
correponding vectors that connect the K points are: q1 = (0,−1)q0, q2 = (

√
3/2,−1/2)q0,

and q3 = (
√

3/2, 1/2)q0.

approximately reduced as:

ε
(0)
± = ±(m+ v2q2

0/4m−
√

3w). (14)

In the small angle limit when θ → 0, the band gap is approaching the limit of 2m− 2
√

3w,

which means that the band gap will never be closed in this case.

For k 6= 0, the correction to the eigenenergies up to the first order in k can be obtained

by:

〈Ψ(0)|H(1)(k)|Ψ(0)〉

=
v

N2
ψ

(0)†
0 [σ · k +

∑
i

Tih
′−1†
i σ · kh′−1

i T †i ]ψ
(0)
0

= (v∗1 − v∗2iσz)ψ
(0)†
0 σ · kψ(0)

0 ,

(15)

where N2 is the normalization factor

N2 = 〈Ψ(0)|Ψ(0)〉

= 1 +
6(ε2 +m2 + v2q2

0)w2

(ε2 −m2 − v2q2
0)2

,
(16)
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and
v∗1 =

v

N2
[1 +

3w2

(ε(0))2 −m2 − v2q2
0

],

v∗2 =
v

N2

6w2ε(0)vq0

((ε(0))2 −m2 − v2q2
0)2

.

(17)

The first term v∗1 in the Eq. (15) denotes the Dirac velocity renormalization and the second

term −v∗2iσz is a small correction related to a 90◦ rotation of the momentum k. When

m = 0, ε(0)
± = 0 according to Eq. (13), then we have v∗2 = 0 and v∗1 = 1−3α2

1+6α2v, which is

the well-known Fermi velocity renormalization behavior in twisted bilayer graphene. The

condition of 1− 3α2 = 0 signals the changing of sign of Dirac velocity v∗1 and gives the value

of the first magic angle.

For the lowest energy eigenstates, we can further reduced v∗1 to the following form using

the relation in Eq. (12):

v∗1 =
v

2N2
(3∓ m

ε
(0)
±

). (18)

When m << w, we can substitute Eq. (13) into Eq. (18) yielding

v∗1 = v(1− 3α2)/N2. (19)

Therefore, v∗1 changes sign also at 1− 3α2 = 0 and the twisted bilayer massive Dirac system

shares the same first magic angle as twisted bilayer graphene. Whenm >> w, from Eqs. (14)

and (18), we obtain

v∗1 =
v

2N2
(3− 1/(1 +

v2q2
0

4m2
−
√

3w

m
)). (20)

From the above expression, we see that v∗1 is always larger than 0 as long as w/m <

2/(3
√

3) ≈ 0.38. There is no magic angle when the size of the monolayer gap (2m) is

much larger than twice the interlayer coupling energy (2w).

In TBBN, the size of the band gap of monolayer is calculated to be 4.7 eV in LDA, which

is much larger than twice of interlayer coupling energy (less than 0.6 eV), so it is expected

that the Dirac velocities at the band edges will not change sign as twist angle decreases and
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(a) (b) (c)bilayer (5.08°) bilayer (3.89°) bilayer (2.64°)

1

2
3

Figure 2: Evolution of the band structure of unrelax TBBN with different twist angles: (a)
5.08◦, (b) 3.89◦, and (c) 2.64◦.

there are no magic angles in TBBN.

Doping density required to achieve half-filling in TBBN

The general relation between the Moire period D and the lattice constant a0 of the original

lattice is:

D = a0/(2sin(
α

2
)) ≈ a0/α, (21)

where a0 = 2.512 in the DFT calculation for hBN, α is the twist angle. The top valence flat

bands can host up to 4 electrons per Moire supercell. Therefore, the doping density required

to achieve half-filling for the first flat band is (see also Fig. 4):

n =
2

A
=

2
√

3D2

2

=
4α2

√
3a0

2
, (22)

where A is the area of the supercell. When the twist angle α decreases, the doping density

required to achieve half-filling in TBBN will be significantly decreased.
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