Evaluation of the role of STAP1 in Familial Hypercholesterolemia

Magdalena Danyel^{1,2}, Claus-Eric Ott², Thomas Grenkowitz¹, Bastian Salewsky¹, Andrew Hicks³, Christian Fuchsberger³, Elisabeth Steinhagen-Thiessen¹, Thomas Bobbert¹, Ursula Kassner¹, Ilja Demuth^{1,4}

- ¹ Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
- ² Institute of Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- ³ Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC), affiliated to the University of Lübeck, Via Galvani 31, Bolzano 39100, Italy
- ⁴ BCRT Berlin Institute of Health Center for Regenerative Therapies, Charité University Medicine Berlin

Corresponding author:

Ilja Demuth (PhD) Charité - Universitätsmedizin Berlin Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Group Augustenburger Platz 1 13353 Berlin Email: ilja.demuth@charite.de Phone: +49 30 450 569 143 Fax: +49 30 450 566 904

Contents

Supplementary Table S1	Berlin FH cohort. Identified variants in STAP1.					
Supplementary Fig. S1	Berlin FH cohort. Lipid parameters vs. sex					
Supplementary Fig. S2	Berlin FH cohort. Lipid parameters vs. age					
Supplementary Fig. S3	CHRIS cohort. Lipid parameters vs. carrier status					
Supplementary Table S2	Lipid parameters vs. STAP1 rare variant carrier status in the					
	CHRIS cohort					
Supplementary Table S3	Frequency of abnormal lipid parameters in STAP1 variant					
	carriers vs. non-carriers					
Supplementary Fig. S4	CHRIS cohort. Abnormality of lipid parameters vs. carrier status.					
Supplementary Fig. S5	CHRIS cohort. Lipid parameters vs. sex					
Supplementary Fig. S6	CHRIS cohort. Lipid parameters vs. age					

STAP1 variant	Location (hg19)	A1	A2	MAF	DNA changes	AA changes	Mutation taster	PolyPhen
rs11556614	4:68442968	A	G	0.5180	c.354A>G	p.Thr118Thr	polymorphism	benign
rs11556615	4:68447040	С	Т	0.1923	c.381C>T	p.Asn127Asn	polymorphism	benign
rs199787258	4:68447185	С	Т	0.0003	c.526C>T	p.Pro176Ser	disease causing	Probably damaging

Supplementary Table 1. Berlin FH cohort. Identified variants in STAP1. Listed are variants within the coding sequence of *STAP1*. Given are the dbSNP IDs, chromosomal coordinates according to human genome GRCh37 (hg19), the effective allele A1, the alternative allele A2 on the forward strand, the minor allele frequency (MAF), the change on DNA level where position 1 of the "c" coordinate is the A of the ATG start (NM_012108). AA changes describes the estimated change on amino acid level, and the columns MutationTaster and PolyPhen give the prediction of the corresponding tools.

Supplementary Figure S1: Berlin FH cohort. Lipid parameters versus sex. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) were not significantly different in males versus females of the Berlin cohort of total of 76 FH patients, who were tested negative for mutations in *LDLR*, *APOB*, and *PCSK9*. In contrast, high-density lipoprotein cholesterol was significantly higher in females (p < 0.05). Association of factor variable and metric parameters was estimated using unpaired two-sided Mann-Whitney U test.

Supplementary Figure S2: Berlin FH cohort. Lipid parameters versus age. Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are significantly and positively associated with age (slope 1.542 (TC), 1.273 (LDL-C); each p < 0.05). However, with increasing age variance of LDL-C increases, too. In contrast, there was no significant association of triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) with age. Association between two metric variables was estimated using nonparametric two-sided Mann-Whitney U test. Dots indicate individual values. Linear regression lines are plotted in black.

Supplementary Figure S3: CHRIS cohort. Lipid parameters versus carrier status. We found no statistical association of carrier status of rare variants in *STAP1* with lipid parameters total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and high-density lipoprotein cholesterol (HDL-C). Association of factor variable and metric parameters was estimated using unpaired two-sided Mann-Whitney U test. Carriers are depicted in red, non-carriers in green.

Supplementary Table S2

Parameter	Carriers (<i>n</i> =20)	Non-carriers (<i>n</i> =100)	<i>p</i> -value (Mann-Whitney U test)
TC in mg/dl			<i>p</i> =0.706
Median (IQR) Range	225 (182-243) 136-334	206 (185-233) 110-328	
LDL-C in mg/dl			p =0.503
Median (IQR) Range	120 (105-156) 70-261	130 (109-153) 37-247	
TG in mg/dl			p =0.432
Median (IQR) Range	83 (69-150) 29-585	83 (65-118) 32-556	
HDL-C in mg/dl			p =0.893
Median (IQR) Range	66 (57-72) 32-93	62 (53-76) 29-123	

Supplementary Table S2. Lipid parameters vs. *STAP1* rare variant carrier status in the CHRIS **cohort.** A nonparametric two-sided Mann-Whitney U test was performed to estimate significance. Corresponding plots are shown in Supplementary Fig. S3.

Supplementary Table S3

Parameter	Normal in	Abnormal in	Normal in non-	Abnormal in	Chi-squared
	carriers	carriers	carriers	non-carriers	<i>p</i> -value
TC	8	12	43	57	<i>p</i> =0.804
LDL-C	10	10	33	67	<i>p</i> =0.148
TG	15	5	84	16	<i>p</i> =0.334
HDL-C	18	2	94	6	NA

Supplementary Table S3. Frequency of abnormal lipid parameters in STAP1 variant carriers

vs. non-carriers. For analysis of the CHRIS dataset we used the following reference values: TC <200 mg/dl, LDL-C <115 mg/dl, TG 30-150 mg/dl, HDL-C in females >45 mg/dl, in males >40 mg/dl. Shown are lipid parameters and numbers of individuals. Chi-square test was performed to estimate significance. Since the total number of carriers with reduced HDL-C levels is <5, calculation of chi-square test should not be performed. Corresponding mosaic plots are shown in Supplementary Fig. S4.

carrier

normal

elevated

eve

Supplementary Figure S4: CHRIS cohort. Abnormality of lipid parameters versus carrier status. Chi-square tests revealed no statistically significant preponderance of lipid parameter abnormalities in carriers of rare *STAP1* variants. The data are visualized using mosaic diagrams to examine the relationship among categorical variables carrier vs. non-carrier and lipid parameter above or below the reference threshold.

Elevated LDL-C in carriers vs. noncarriers

LDL-C, p = 0.183

Supplementary Figure S5: CHRIS cohort. Lipid parameters versus sex. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) are not significantly different in males versus females of the CHRIS cohort of total of 120 participants. In contrast, high-density lipoprotein cholesterol is significantly higher in females (p < 0.0001). Association of factor variable and metric parameters was estimated using unpaired two-sided Mann-Whitney U test.

Supplementary Figure S6: CHRIS cohort. Lipid parameters versus age. Increasing total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG) are significantly associated with increasing age (slope 0.995 (TC), slope 0.864 (LDL-C), slope 1.242 (TG); each p <0.05). In contrast, there was no significant association of high-density lipoprotein cholesterol (HDL-C) with age. Association between two metric variables was estimated using nonparametric two-sided Mann-Whitney U test. Dots indicate individual values. Regression lines are plotted in black.