Supplementary Information

Blockade of α4 integrins reduces leukocyte–endothelial interactions in cerebral vessels and improves memory in a mouse model of Alzheimer's disease

Enrica Pietronigro^{1*}, Elena Zenaro^{1*}, Vittorina Della Bianca¹, Silvia Dusi¹, Eleonora Terrabuio¹, Giulia Iannoto¹, Anna Slanzi¹, Somayehsadat Ghasemi¹, Rajasekar Nagarajan¹, Gennj Piacentino¹, Gabriele Tosadori^{1,2}, Barbara Rossi¹, Gabriela Constantin^{1, 2, 3}

¹Department of Medicine, University of Verona, 37134 Verona, Italy ²The Center for Biomedical Computing (CBMC), University of Verona, 37134 Verona, Italy *These authors equally contributed to this work

³Address correspondence to: Prof. Gabriela Constantin, Department of Medicine, Section of General Pathology, University of Verona, Strada le Grazie 8, Verona 37134, Italy; Phone: +39-045-8027102; Email: gabriela.constantin@univr.it

Running title: Role of α_4 *integrins in Alzheimer's disease*

Keywords: leukocyte trafficking, Alzheimer's disease, $\alpha 4$ integrins, in vivo imaging, therapeutic approaches

Supplementary Figure 1. Gating strategies for flow cytometry experiments.

Representative gating strategy used during FACS analysis for the identification of (**a**) braininfiltrating CD45⁺ cells and (**b**) peripheral leukocytes in wild-type control (WT ctrl) and 3xTg-AD mice by simultaneous labeling with antibodies recognizing lymphocyte and neutrophil markers. Doublets were removed from the analysis by the sub-gate identification of singlets using FSC-A and FSC-H. **a**) Dead cells were removed from the analysis using Viobility 405/520 fixable dye. CD45^{high} cells were sub-gated using FSC-A plus a CD4 double gate to define CD4⁺ T cells, and FSC-A plus a CD8 double gate to define CD8⁺ T cells. **b**) Dead cells were removed from the analysis using 7AAD. CD4⁺ and CD8⁺ T cells were identified by gating on CD45⁺ cells, whereas Ly6G⁺ neutrophils were detected by gating CD11b/Ly6G on CD45⁺ leukocytes. The α 4 integrin expression in each population (CD8⁺ T cells, CD4⁺ T cells and Ly6G⁺ neutrophils) is shown in the histograms.

Supplementary Table I. Effect size statistics

FACS analysis (WT ctrl vs 3xTg-AD)	Cohen's d	Magnitude
Brain		
% of CD4 ⁺ cells on CD45 ^{high} (6 months)	-0.3924413	Small
% of CD4 ⁺ cells on CD45 ^{high} (9 months)	-1.938403	Large
% of CD8 ⁺ cells on CD45 ^{high} (6 months)	-0.05060928	Negligible
% of CD8 ⁺ cells on CD45 ^{high} (9 months)	2.790802	Large
Blood		
% α 4 integrin ⁺ CD4 ⁺ cells (6 months)	-2.75399	Large
% α4 integrin ⁺ CD4 ⁺ cells (9 months)	-2.195376	Large
MFI α4 integrin ⁺ expression on CD4 ⁺ cells (6 months)	0.2582844	Small
MFI α4 integrin ⁺ expression on CD4 ⁺ cells (9 months)	-6.414628	Large
% α4 integrin ⁺ CD8 ⁺ cells (6 months)	1.356608	Large
% α4 integrin ⁺ CD8 ⁺ cells (9 months)	1.175441	Large
MFI α4 integrin ⁺ expression on CD8 ⁺ cells (6 months)	0.6933269	Medium
MFI α4 integrin ⁺ expression on CD8 ⁺ cells (9 months)	0.3108755	Small
% α 4 integrin ⁺ Ly6G ⁺ cells (6 months)	0.1284168	Negligible
% α 4 integrin ⁺ Ly6G ⁺ cells (9 months)	-0.1840141	Negligible
MFI α4 integrin ⁺ expression on Ly6G ⁺ cells (6 months)	0.9542835	Large
MFI α4 integrin ⁺ expression on Ly6G ⁺ cells (9 months)	1.210988	Large

IVM studies	Cohen's d	Magnitude
Digital		
Number of interacting cells ≤ Vcrit (WT ctrl vs 3xTg-AD)	-2.835166	Large
% of interacting cells \leq Vcrit	1.582386	Large
(Untreated vs Anti-α4)		Large
% of interacting cells \leq Vcrit	-0.2805429	Small
(Untreated vs Isotype)		Sinun
Analog		
% of leukocyte rolling (Untreated vs Anti- α 4)	1.283774	Large
% of leukocyte rolling (Untreated vs Isotype)	0.5024471	Medium

Behavioral tests	Cohen's d	Magnitude
Y maze		
% Alternation (WT ctrl vs 3xTg-AD	1.507574	Large

Isotype)		
% Alternation	1 200122	Large
(3xTg-AD Isotype vs 3xTg-AD Anti-α4)	-1.209133	Large
CFC		
% Freezing (WT ctrl vs 3xTg-AD Isotype)	1.343395	Large
% Freezing	-1.058881	Larga
(3xTg-AD Isotype vs 3xTg-AD Anti-α4)		Large
MWM		
Escape latency (WT ctrl vs 3xTg-AD	0.7383913	
Isotype)		Medium
Escape latency	1.307888	Largo
(3xTg-AD Isotype vs 3xTg-AD Anti-α4)		Large
Platform location crossing	1.487006	Large
(WT ctrl vs 3xTg-AD Isotype)		
Platform location crossing	-1.553772	Large
(3xTg-AD Isotype vs 3xTg-AD Anti-α4)		
Latency to cross platform location	-2.243153	Large
(WT ctrl vs 3xTg-AD Isotype)		
Latency to cross platform location	1.247004	Large
(3xTg-AD Isotype vs 3xTg-AD Anti-α4)		Large

Neuropathology (Isotype vs Anti-α4)	Cohen's d	Magnitude
Treatment at 6 months		
Area Cortex Iba-1	0.1447865	Negligible
Area CA1 Iba-1	0.2103128	Small
Area CA1 6E10	0.9596423	Large
Area CA1 HT7	0.2634473	Small
Area CA1 AT180	1.321709	Large
Treatment at 9 months		
Area Cortex Iba-1	0.647467	Medium
Area Cortex 6E10	0.9800084	Large
Area CA1 HT7	-0.2208119	Small
Area CA1 AT180	1.408082	Large

The magnitude was assessed using the thresholds provided by Cohen $(1992)^1$, i.e. d < 0.2 negligible, d < 0.5 small, d < 0.8 medium, otherwise large

Supplementary Methods

Isolation of brain leukocytes and flow-cytometry analysis

Mice were anesthetized and perfused through the left cardiac ventricle by injecting cold PBS. The brain was digested with 20 U/ml of DNaseI and 1 mg/ml collagenase at 37°C for 45 min. Cells were isolated by passing the digested tissue through a 70-µm cell strainer. They were then resuspended in 30% Percoll and loaded onto 70% Percoll. The tubes were centrifuged at 1300 × g for 20 min at 4°C. Cells were removed from the interphase, washed and labeled with the following anti-mouse antibodies: anti-CD45-PE, anti-CD11b-PE-Vio770, anti-Ly6G-APC-Vio770, anti-CD3 PerCP-Vio700, anti-CD8a VioBright-FITC, and anti-CD4 VioBlue. Cells were acquired by flow cytometry with MACSQuant Analyzer (Miltenyi Biotec). Data were analyzed using FlowJo software.

Supplementary Reference

1. Cohen, J. A power primer. *Psychol Bull.* **112**, 155-159 (1992).