## **Electronic Supplementary Information for**

Vapor-deposited zeolitic imidazolate frameworks as gap-filling ultra-low-k dielectrics

Mikhail Krishtab et al.



**Supplementary Figure 1.** Glassware reactor used for the conversion of metal oxide films to MOFs. During the conversion process, the glass reactor was evacuated and then placed in a preheated furnace.



**Supplementary Figure 2.** The schematic process flow depicts the preparation of 45nm halfpitch fork-fork capacitors and the subsequent MOF-CVD gap-filling step. The following deposition methods were employed: ALD = atomic layer deposition, PECVD = plasmaenhanced chemical vapor deposition, PVD = physical vapor deposition (magnetron sputtering), PEALD = plasma-enhanced atomic layer deposition, ECD = electrochemical deposition (electroplating).

**Supplementary Table 1.** Comparison of relative atomic concentrations in vapor-phase deposited ZIF-8 and ZIF-67 films measured by XPS with those in ideal ZIF-8/ZIF-67 material determined from the unit cell composition.

| Material                    | C 1s  | N 1s  | O 1s | Co 2p | Zn 2p |
|-----------------------------|-------|-------|------|-------|-------|
| ZIF-67 (film) <sup>a)</sup> | 61.9% | 27.4% | 3.9% | 6.8%  | -     |
| ZIF-67 (ideal)              | 61.5% | 30.7% | -    | 7.7%  | -     |
| ZIF-8 (film) <sup>a)</sup>  | 62.3% | 27.2% | 2.4% | -     | 8.2%  |
| ZIF-8 (ideal)               | 61.5% | 30.7% | -    | -     | 7.7%  |

<sup>a)</sup> The XPS atomic concentrations are presented in angle integrated mode (all angles summed).



**Supplementary Figure 3.** Cross-sectional SEM images of vapor-phase deposited ZIF-8 and ZIF-67 films covered with 70 nm e-beam evaporated Pt. The thicknesses of the MOF coatings extracted from these images were used for calculation of k-values and for estimation of unconverted metal oxide thicknesses. (a) Original cross-sectional SEM images; (b) SEM images containing a contour used for calculation of the MOF layer thickness.





**Supplementary Figure 4.** RBS spectrum (black) and fitting curve (red) recorded on 8.9 nm thick ALD ZnO film deposited on top of a Si/SiO<sub>2</sub> substrate.



**Supplementary Figure 5.** Impact of a residual  $CoO_x$  layer. (a) Dependence of the extracted ZIF-67 k-value on the thickness of the interfacial  $CoO_x$  layer; (b) equivalent circuit scheme for impedance measurements on the MIM stack. During the calculation, k-value of the  $CoO_x$  residue layer was assumed to be equal to that of  $CoO^1$ .



**Supplementary Figure 6.** Temperature dependence of ZIF-8 and ZIF-67 k-value measured on parallel-plate metal-insulator-metal capacitors with 0.03 mm<sup>2</sup> Pt top electrodes. (a) Schematic representation of the experiment; (b) k-values of ZIF films extracted from capacitance recorded on the chuck-heated devices in air.

## a. Before conversion reaction



**Supplementary Figure 7.** EDS-TEM element maps recorded on the cross-section of 45 nm half-pitch fork-fork capacitor composed of passivated copper lines covered with oxidized CVD Co layer. (a) Before and (b) after the MOF-CVD conversion process.



**Supplementary Figure 8.** TEM review images demonstrating the gap-filling performance of ZIF-67 phase on 45 nm half-pitch fork-fork capacitor. (a) Before and (b) after the conversion of oxidized CVD Co into ZIF-67 in vapors of 2-methylimidazole.



**Supplementary Figure 9.** Cross-sectional SEM image of manually cleaved substrate with 45 nm half-pitch fork-fork capacitors.



**Supplementary Figure 10.** Capacitance and dissipation factor measured on six 45nm halfpitch fork-fork capacitors in the frequency range 10 kHz-1MHz before and after MOF-CVD process. The average capacitance at 100 kHz measured on the samples after MOF-CVD reaction was used for extraction of effective k-value of the gap-filling phase.



**Supplementary Figure 11.** Modelled cross-sections of 45 nm half-pitch fork-fork capacitors featuring CoO<sub>x</sub> residues of different size (defect radius  $R_{CoOx}$ ).



**Supplementary Figure 12.** The effect of  $CoO_x$  residues of different size on k-value of MOF-CVD ZIF-67 and on the total interline capacitance of a fork-fork device estimated by 2D capacitance simulations.



**Supplementary Figure 13.** Leakage current measured on 45 nm fork-fork capacitors with different gap-filling media. The ZIF-67 and ZIF-8 phases were formed via vapor phase conversion of oxidized CVD Co and ALD ZnO films, respectively.



**Supplementary Figure 14.** TEM analysis of lamellas cut out from the capacitor device covered with 6 nm ALD ZnO before and after MOF-CVD process. (a) Bright-field TEM images; (b) EDS elemental maps. ALD ZnO is conformally covering the passivated copper lines. The 45 nm wide trenches appear gap-filled with ZIF-8 phase. There is also an evidence of a thin unconverted ZnO underlayer largely present inside the trenches.



**Supplementary Figure 15.** Two metallization routes for the integration of gap-filling MOF-CVD dielectrics. The integration routes differ in the selected planarization approach (step b). In integration route I, chemical-mechanical polishing (CMP) is used to remove the film roughness. Integration route II uses a spin-on dielectric as a planarization coating. This extra dielectric could be a low-k variation of spin-on glass (SOG) material, which is routinely used in photolithography for local planarization before resist deposition. Besides planarization (step b), there are potential compatibility concerns at steps c and f related to deposition-induced damage and infiltration of subsequent layers (or building blocks thereof) into the porous MOF layer. Another question that needs to be addressed is the extent of plasma-induced damage during dry etching of the MOF layer at step e.

## **Supplementary references**

1. Rao, K. V. & Smakula, A. Dielectric Properties of Cobalt Oxide, Nickel Oxide, and Their Mixed Crystals. *J. Appl. Phys.* **36**, 2031–2038 (1965).