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Supporting information 

Table S1. Statistics of the SV and SL interactions from other studies 

Source (PMID) SL SV 

27438146 107  

26427375 843  

27453043 5065  

24025726 98  

23728082 100  

26516187 19952  

24104479 200  

26227665 23 40 

28319113 168 10 

26451775 1309  

Boettcher et al. 57 80 

28481362 95 178 

26781748 846  

27557495 464  

23563794 211 199 

28319085 30  

Table S2. Quantitative scores assigned to SV and SL according to the 

experimental methods annotated by evidence sources 



Method Score 

Mutant & Mutant 0.9 

CRISPR 0.9 

Low-throughput 0.8 

RNA interference & Mutant 0.75 

Bi-specifie RNA interference 0.5 

RNA  interference & Drug inhibition 0.5 

High-throughput 0.5 

 



 

Figure S1. Distribution of drug sensitivity scores among tissues from CCLE, 

GDSC and CTRP. 

Analysis of Variance(ANOVA) was used to test whether the the drug sensitivity 

score are different among kinds of tissue specific cells. 

 

 

 



 

Figure S2. Statistics of the SV and SL interactions in tissue-specific cell lines. (A) 

Statistics of SV interactions related to drug resistance in 20 tissues. (B) Statistics 

of SV interactions identified by GDSC (AUC) and GDSC (LN_IC50). Red 

asterisks represent significant overlapping of SV interactions between GDSC 

(AUC) and GDSC (LN_IC50) (P <0.001, hypergeometric test). (C) Statistics of 



SL interactions related to drug sensitivity in 22 tissues. (D) Statistics of SL 

interactions identified by GDSC (AUC) and GDSC (LN_IC50). Red asterisks 

represent significant overlapping of SL interactions between GDSC (AUC) and 

GDSC (LN_IC50) (P <0.001, hypergeometric test). 

 

 

Figure S3. BRCA2 alterations were related to olaparib sensitivity in cancer cell 

lines. (A) Cell lines with BRCA2 mutations are sensitive to olaparib in GDSC. 

The difference of AUC between the cell lines with or without mutations in 

BRCA2 was tested by one-sided Wilcoxon rank sum test (P=0.026). (B) Cell lines 

with BRCA2 mutations are sensitive to olaparib in CTRP (P=0.018, Wilcoxon 

rank sum test). 



 

Figure S4. PSEN1 deletions were related to paclitaxel resistance in CCLE 

(P=0.028, Wilcoxon rank sum test). 

 



Figure S5.  HDAC1 subnetwork derived from the SV network.  

Dark pink node represents HDAC1 and light pink nodes represent the partner 

genes of HDAC1 in SV network.  

 

Figure S6. Distribution of NOTCH1 expression values in liver hepatocellular 

carcinoma (LIHC). Red points represent the samples with both deletions of 

DVL1 and HDAC1. Green points represent the samples with no deletion of 

DVL1 and HDAC1. The difference of expression between the samples with or 

without deletion in DVL1 and HDAC1 was tested by T-test (P=0.001). 



 

Figure S7. AKT1 subnetwork derived from the SL network. Dark green node 

represents AKT1 and light pink nodes represent the partner genes of AKT1 in SL 

network. 

  



 

Supplementary methods 

Information for other studies  

SV or SL interactions were integrated from 16 studies (Table S1). The first main 

source of data was manually curated SV and SL interactions from a CRISPR 

screen.1-4 SV and SL interactions identified from other high-throughput screening 

experiments, such as shRNA, bispecific shRNA, and combinatorial RNAi/drug 

screens, were also utilized.5, 6 Second, several SV and SL interactions were obtained 

using bioinformatics statistical methods, such as permutation and t-test statistics.7, 8 Ye 

et al. ranked novel cancer-driving synthetic lethal gene pairs using the Chi-square test 
9, and Kranthi et al. 10 applied network information centrality . Third, additional SV 

and SL interactions were identified by applying the DAISY algorithm. DAISY 

combines multiple approaches into a single screen to identify SL interactions.11 

Several studies have identified SL interactions based on mutual exclusivity of gene 

alterations accompanied by high-throughput screening experiments, such as shRNA 

screens.12, 13 In addition, previous studies have generated strategies to identify SV and 

SL interactions from other species relying on genetic homology or structure.14, 15 

Finally, SL interactions from SLDB were included in the present study.16 

 

Integrative confidence scores 

The SV and SL interactions analyzed in the present study were obtained from 

different types of sources, including computational predictions, biochemical assays, 

and text mining results. In addition, biochemical assays were based on different 

experimental technologies and platforms, such as shRNA, CRISPR and drug 

inhibition. Because multiple types of evidence are conducive to the identification of 

SV (SL) interactions, an integrative confidence score combining scores from these 

evidence sources can provide an overall estimation of the reliability of a SV (SL) 



interaction. In principle, we supposed that (i) the contribution of experimental 

evidence to the confidence score is more significant than the contribution of 

predictive algorithms or text mining and that (ii) the SV (SL) interactions supported 

by more evidence sources should be beneficial to the confidence score. The scoring 

procedures were divided into two steps, i.e., quantification and integration. A large 

number of SV (SL) interactions collected from other studies had only qualitative 

annotation evidence (such as “high-throughput” or “low-throughput”), or 

technological descriptions of wet-lab experiments (such as “CRISPR screening” or 

“shRNA screening”). Thus, it was necessary to assign quantitative scores to these SV 

(SL) interactions before the calculation of integrative scores. Similar to the scoring 

scheme from SLDB, the quantitative scores were assigned based on the experimental 

methods (Table S2). For instance, “Mutant & Mutant” indicated that the pair of SV 

(SL) genes were disturbed by transgenic or genetic deletions. Moreover, “RNA 

interference & Mutant” indicated that one gene was perturbed by RNAi and that the 

other was perturbed via mutation. In summary, the SV (SL) interactions obtained from 

low-throughput experiments were considered to be more reliable than the results from 

high-throughput experiments due to the lower false positive rate. Therefore, a higher 

confidence score was assigned to low-throughput evidence than high-throughput 

evidence. Compared to other RNA interference experiments (such as shRNA, siRNA 

and dsRNA), the CRISPR screen had lower off-target effects, which were assigned 

higher confidence scores similar to mutation and transfection experiments (Table S2). 

The following formula was utilized to combine the individual scores: 

 

where s represents the integrative score corresponding to the experimental evidence; 

pi is the individual score; and n is the total number of experimental supporting 

evidence. 



 

 

Database guide  

The URL of the database is http://www.medsysbio.org/CGIdb. 

1. Search 

In the Search page, users can key in gene ID or symbol to perform a search of 

corresponding genetic interactions (1), which can be further screened by advance 

options (2-3). 

 

2. Search Results 

When user queries the genes to the database, the CGIdb will provide search results on 

this page. The search results are divided into two main parts: (i) information box, 

which includes the basic information of your selected gene, and the external link to 

NCBI for more detail (1); (ii) The SL/SV pairs list is provided on the bottom of page 

(2). And user can click the button (3) to view the details of the gene pairs, including 

drugs effect and protein-protein interaction network. The results can be exported as 

CSV format (4).  

http://www.medsysbio.org/CGIdb


 

3. Search Details 

The details of results are divided in three parts. (i) Distribution of gene alteration in 

TCGA data are provided. CGIdb shows the altered samples (mutation and copy 

number alteration) of genes and statistic of analysis results (1-2). (ii) In the middle of 

page, user can get results of the drug effect. In cell lines with drug targeting the 

searching gene, a one-sided Wilcoxon rank sum test is used to test whether the drug 

response measures, such as IC50, are significantly higher or lower in cells lines with 

and without alterations of the partner genes in the genetic interaction (3). Detailed 

information about the pharmacodynamic data are shown in the right table (4-5). (iii) 

On the bottom of the detail page, CGIdb provides the visualized network of 

protein-protein interactions derived from PathwayCommon. User can export network 

as jpg or png file (6-7).  



 

 

 

 

4. Browse 

In the Browse page, users can easily filter SV and SL pairs classified by tissue types. 

The human body on the left includes optional tissue types (1). Click on the tissue on 

the model to filter the genetic interactions of the tissue. The detailed results are 



showed in the right table (2). 

 

 

5. Data 

In the data page, users can download or upload data, We provide all SV and SL pairs, 

which are classified by different sources and tissue types (1-3). 
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