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Measuring the bimolecular elementary rates 

As described in the main text, the effective bimolecular rate constant can be extracted from the effective 

collision frequency 𝑧𝑧𝐴𝐴,𝐵𝐵 between two species, A and B. This collision frequency is estimated as the 

number of collisions between A and B in an integrated time interval 𝑐𝑐𝐴𝐴,𝐵𝐵(𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) per time step 𝛥𝛥𝑡𝑡: 

𝑧𝑧𝐴𝐴,𝐵𝐵(𝑡𝑡, 𝑡𝑡 + 𝛥𝛥𝑡𝑡) = 𝑐𝑐𝐴𝐴,𝐵𝐵(𝑡𝑡,𝑡𝑡+𝛥𝛥𝑡𝑡)
𝛥𝛥𝑡𝑡

. (S1) 

In Supporting Figure (1) two examples for time traces of collisions per time interval for a reaction limited 

association of 𝑆𝑆 and 𝐸𝐸 are presented. From the running mean, it can be seen that the there is no obvious 

time dependency of the collision frequency observable. This results is enforced by the fact the 
distribution of the collisions at the beginning, the end and over the complete measurement intervall 

follow a similar distribution. 

Supporting Figure 1: Left column 
time traces of collision events 

between 𝐸𝐸 and 𝑆𝑆 as a function of 

time and the running mean over 
100 time intervals. Right column 

histograms of all data point of the 

collisions time trace (All), the first 
(Beginning) and the last (End) 100 

data points compared with a 

binomial distribution where 𝑝𝑝 =
〈𝑐𝑐𝐸𝐸,𝑆𝑆〉/ 𝑁𝑁𝐸𝐸𝑁𝑁𝑆𝑆 and 𝑛𝑛 = 𝑁𝑁𝐸𝐸𝑁𝑁𝑆𝑆 . The 

upper row show the results with 

𝜙𝜙 =  0 % the lower row for 

𝜙𝜙 =  40 % for the E. Coli as 

described in the main text.  



Regression for GEEK parameters 

When investigating the measured relative rate constants for pgm as a function of the individual rate 

constants it can be seen that there is no dependency of the rate constants with respect to the individual 

concentration. Only an increase in the conditional variance towards smaller concentrations can be seen, 

see Supporting Figure (3). Thus ordinary least squares (OLS) fitting cannot be applied as the data exhibits 
heteroscedasticity. We show that we obtain normally distributed residuals by weighting the data points 

by the inverse of the conditional standard deviation �𝑉𝑉(𝑅𝑅|𝑋𝑋), where 𝑋𝑋 is the n-dimensional input 

variable of the regression model and 𝑅𝑅 are the residuals of the OLS output variable. In Supporting 

Figure (2) it can be clearly seen that the weighted residuals resemble a normal distribution. 

 

Supporting Figure 2: Model results for OLS and WLS for the model output 𝑌𝑌𝑖𝑖 =  log (𝑘𝑘1,𝑓𝑓,𝑒𝑒𝑓𝑓𝑓𝑓,𝑖𝑖 / 𝑘𝑘1,𝑓𝑓,0). 

Left column: Residuals vs. fitted output values 𝑌𝑌𝑖𝑖′. Right column: Probability density of the residuals. 

Upper row: Residuals of the OLS model. Lower row: Effective residuals of the WLS model 



 

Supporting Figure 3: Projection of the simulated data points onto the respective concentration axis for 

(blue) 𝜙𝜙 = 0%  (orange) 𝜙𝜙 = 30% and (green) 𝜙𝜙 = 50% inert volume fraction with the E. Coli size 

distribution. The black line denoted the conditional mean and the dashed line denoted the conditional 

5% and 95% percentiles at the corresponding concentration value for 𝜙𝜙 = 50% inert volume fraction. 

 

  



Validation of GEEK  

In the following section, we first validated whether the results of the GEEK approximation are in 

agreement with detailed openbread simulations as described in the main text. Second, we validated 

whether geek is also able to capture the results of the crowder free Cichocki-Hinsen algorithm (1). To 

perform these comparisons, we used a simple association-dissociation model with two different 

parameter sets: 

𝐴𝐴 + 𝐵𝐵
𝑘𝑘𝑓𝑓
⇌

𝑘𝑘𝑓𝑓𝐾𝐾𝐷𝐷
𝐶𝐶 (S2) 

Computational details of the validation simulations 

The two parameter sets only differ in their association rate the remaining model parameters considered 

a diffusion coefficient 𝐷𝐷𝐴𝐴/𝐵𝐵 = 500 μm2s−1 a mass 𝑚𝑚𝐴𝐴/𝐵𝐵 = 10 kDa and collision radius 𝑟𝑟𝐴𝐴/𝐵𝐵 =  2 nm for 

the species 𝐴𝐴 and 𝐵𝐵, a diffusion coefficient 𝐷𝐷𝐶𝐶 = 350 μm2s−1, a mass 𝑚𝑚𝐶𝐶 = 20 kDa and collision radius 

𝑟𝑟𝐶𝐶 =  3 nm for the species 𝐶𝐶 and a cubic simulation volume 𝑉𝑉 = 10−18 L. For the reaction parameters 

we consider a dissociation constant 𝐾𝐾𝐷𝐷 = 50 μM and an association rate constant 

𝑘𝑘𝑓𝑓,𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓 =  5 ×  109M−1s−1 (𝑘𝑘𝑓𝑓,𝑑𝑑𝑖𝑖𝑓𝑓𝑓𝑓/𝛾𝛾𝐴𝐴,𝐵𝐵  ≈ 5) for the diffusion controlled case. Whereas for the 

reaction controlled case we consider an association rate constant 𝑘𝑘𝑓𝑓,𝑟𝑟𝑒𝑒𝑟𝑟𝑐𝑐𝑡𝑡 =  5 ×  107M−1s−1 

(𝑘𝑘𝑓𝑓,𝑟𝑟𝑒𝑒𝑟𝑟𝑐𝑐𝑡𝑡/𝛾𝛾𝐴𝐴,𝐵𝐵 ≈ 500). To simulate crowding we introduced inert molecules of the size 2.6 nm at 

different volume fractions. As in the case presented in the main text, the dynamics viscosity of the liquid 

between the particles was assumed to be water with 0.7 Pa s at the 𝑇𝑇 = 310.15 K. The system is 

considered to be isothermal 𝑇𝑇 = const. To compare the methods we simulate ten independent time 

traces for an initial rate experiment with the initial concentrations [𝐴𝐴] =  [𝐵𝐵] =  50 μM and 
[𝐶𝐶] =  0 μM. 

To apply the GEEK framework each timestep all possible first-order reactions are attempted 𝐿𝐿 = 100 

times. For the regression input space, all combinations of substrate and product concentrations that 

were 𝑛𝑛𝑖𝑖-fold increased and 𝑛𝑛𝑑𝑑-fold decreased with respect to the reference concentrations [𝐴𝐴]0 =
[𝐵𝐵]0 =  [𝐶𝐶]0 =  50 μM were used, with 𝑛𝑛𝑖𝑖 ∈ [1,2] and 𝑛𝑛𝑢𝑢 ∈ [1,2,4]. Each sampled concertation state is 
simulated 1 μs where the first 0.5 μs are discarded Furthermore, ten independent realizations of the 

crowding population were used for every concentration sample to capture the variability that comes 

from differently sized crowding-agents drawn from the size distribution. 

  



Validation of GEEK based on hard sphere Brownian reaction dynamics 

In a first step we compare the time traces for GEEK and openbread for the dilute case, i.e. without any 

inert molecules, see Supporting Figure 5 left column. The results show that for the reaction controlled 

case GEEK is able to capture the mean dynamics of the detailed openbread very well, for the diffusion 

controlled case the mean dynamics of the initial rate is captured very well but a slight deviation of the 

equilibrium concentration [𝐴𝐴] is visibel.  

In a next step we characterized the distribution of [A] close to equilibrium, i.e 𝑡𝑡 ≥ 500 𝜇𝜇𝜇𝜇 in the reaction 

controlled and 𝑡𝑡 ≥ 5 𝜇𝜇𝜇𝜇 in the diffsion controlled case, for different inert volume fraction 𝜙𝜙, see 

Supporting Figure 5 right column. It can be seen that for higher volume fractions of inert modelcules 

both the GEEK and the openbread resuts show that the equilirbium is shifted towards the production 

of [𝐶𝐶], i.e. the equlibrium concentration [𝐴𝐴] drops with increasing volume fraction. We also observe that 

for higher volume fractions the difference between the mean of [𝐴𝐴] in openbread and GEEK is reduced. 

 

Supporting Figure 4: Concentration of [𝐴𝐴] as a function of time 𝑡𝑡 for 𝜙𝜙 = 0 for GEEK (blue) and 

openbread (red) (left column) and concentration in equilibrium for different 𝜙𝜙 (right column). For the 

reaction controlled case (upper row) and the diffusion controlled case (lower row). *A hard sphere 

Brownian reaction dynamics simulation of these data points was not feasible within the time frame of 

this review. 

Finally, we compared the initial reaction rate characterized as the mean change of the reactant [A] over 
an initial time interval [0, 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡], where 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = 0.5 μs for the diffusion limited case and 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = 50 μs for 

the reaction limited case (see Supporting Figure 5). Similar to the equilibrium properties we see that the 

GEEK model is able to capture the mean initial rate of the hard-sphere Brownian reaction dynamics 



model. It also can be seen that in the reaction limited case the GEEK approximation is in close agreement 

to the detailed simulation. In both cases does geek capture the increase of the initial rate visible in the 

hard-sphere Brownian reaction dynamics. 

 

Supporting Figure 5: Initial reaction rate measured as the mean change of [𝐴𝐴] for GEEK (blue) and 

openbread (red) measured for different 𝜙𝜙, for the reaction controlled case (left) and the diffusion 

controlled case (right). *A hard sphere Brownian reaction dynamics simulation of these data points was 
not feasible within the time frame of this review. 

Validation of GEEK based on the crowder free Cichocki-Hinsen algorithm 

To provide further evidence that GEEK is able to approximate the behavior of high-cost simulations based 
on the first physical principle we simulate the association-dissociation system described above using the 

crowder free Cichoki-Hinsen algorithm (1). As described above we compare the concentrations for 

𝑡𝑡 ≥  500 𝜇𝜇𝜇𝜇 in the reaction controlled and 𝑡𝑡 ≥ 5 𝜇𝜇𝜇𝜇 in the diffsion controlled case as well as the initial 
reaction for 𝑡𝑡 ≤ 0.5 μs in the diffusion limited case and 𝑡𝑡 ≤ 50 μs in the reaction limited case. We again 

show that the GEEK models are able to approximate the dynamics of the high cost model. More 

importantly, GEEK models are able to approximate the effects crowding has on the initial rate 

experiment. For both cases, GEEK is able to capture the trends of approximation for the equilibrium 

concentrations (see Supporting Figure 6) and the initial reaction rates (see Supporting Figure 7). When 

comparing the initial reaction rates we observe that the estimated reaction limited initial reactions rates 

are in better agreement with the GEEK approximation then the corresponding diffusion limited initial 

reaction rates (see Supporting Figure 7). 



 

Supporting Figure 6: Concentration of [𝐴𝐴] as function of time 𝑡𝑡 for 𝜙𝜙 = 0 for GEEK-CFCH (blue) and CFCH 
(red) (left column) and concentration in equilibrium for different 𝜙𝜙 (right column). For the reaction 

controlled case (upper row) and the diffusion controlled case (lower row). 

 

Supporting Figure 7: Initial reaction rate measured as the mean change of [𝐴𝐴] for GEEK- CFCH (blue) and 

CFCH (red) measured for different 𝜙𝜙, for the reaction controlled case (left) and the diffusion controlled 

case (right).  

Discussion on the results of the HSBRD and CFCH simulations 

A comparison between figures S4 and S6 as well as S5 and S7 show that the hard-sphere Brownian 

dynamics algorithm and the crowder free Cichoki-Hinsen algorithm are not yielding the same results for 

the same crowding conditions. We suspect that the difference in the crowding sensitivity originates from 

the difference in the collision model of the two algorithms. The hard-sphere Brownian dynamics 

algorithm models every non-reactive collision as an explicit elastic hard sphere collision (see Supporting 

Figure 8 b) ) both the Cichoki-Hinsen algorithm and the crowder-free Cichoki-Hinsen algorithm are 



rejecting the propagation moves that would lead to overlap. In this work, we used the hard-sphere 

Brownian dynamics algorithm as described by Strating as it was successfully applied his algorithm to non-

equilibrium systems of hard-spheres (2). The algorithm presented by Cichoki and Hinsen (3) is only valid 

to obtain the correct radial distribution functions in equilibrium systems. They show that for non-

equilibrium systems an additional non-overlap correction has to be implemented (3). This correction is 

not implemented in the crowder-free Cichoki-Hinsen algorithm (1). Therefore, we acknowledge that the 

model predictions for these simulations strongly depend on the microscopic model. Nevertheless, we 

showed that independent of the microscopic simulation method GEEK models are able to approximate 

the dynamic behavior of the complex particle simulation. Thus GEEK can be used as a reliable method to 

capture the dynamics of crowed enzyme kinetics and incorporate crowded behavior into larger scale 

kinetic models. 

Supporting Figure 8: Comparison of different propagation schemes. a) Brownian motion where the 

propagation is simply determined by the velocity 𝑣𝑣 drawn from the respective velocity distribution 
function. b) Explicit elastic hard sphere collision, particles are moved with the initial velocity 𝑣𝑣 until time 

𝑡𝑡 + Δ𝑡𝑡1 when the collision occurs. The velocities are updated according to the law of momentum 

conservation then propagated for remaining part of the time step Δ𝑡𝑡2 = Δ𝑡𝑡 − Δ𝑡𝑡1. c) Propagation 

according to the Cichoki-Hinsen algorithm where the collision is simply rejected if the hypothetical 

positions after the time Δ𝑡𝑡 lead to an overlap with another particle.  

  



 

Supporting Figure 9: Eadie–Hofstee diagrams of the quasi-steady state flux 𝑣𝑣 for inert volume fractions  
of (left) 𝜙𝜙 = 0 % and (right) 𝜙𝜙 = 50 %. The dotted lines represent the respective result of a linear 

regression.  

  



 

Supporting Figure 10: Sampled state space of [𝑆𝑆] and [𝑃𝑃] compared to the equilibrium concentrations 

𝐾𝐾𝑒𝑒𝑒𝑒 =  𝑃𝑃𝑒𝑒𝑒𝑒/𝑆𝑆𝑒𝑒𝑒𝑒.  
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