

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

# **BMJ Open**

## The efficacy of Computerized Cognitive Training on cognitive outcomes in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis

| Journal:                      | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                 | bmjopen-2018-027062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Article Type:                 | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date Submitted by the Author: | 05-Oct-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Complete List of Authors:     | Zhang, Haifeng; University College London Division of Psychiatry; Peking<br>University Institute of Mental Health (Sixth Hospital); National Clinical<br>Research Center for Mental Disorders & Key Laboratory of Mental Health,<br>Ministry of Health, Peking University; Beijing Dementia Key Lab<br>Huntley, Jonathan; University College London, Division of Psychiatry<br>Cahill, Jack; Institute of Psychiatry, Psychology and Neuroscience. King's<br>College London<br>Holmes, Benjamin; University College London Division of Psychiatry<br>Bhome, Rohan; University College London, Division of Psychiatry<br>Gould, Rebecca; University College London, Division of Psychiatry<br>Wang, Huali; Peking University Institute of Mental Health (Sixth<br>Hospital); National Clinical Research Center for Mental Disorders & Key<br>Laboratory of Mental Health, Ministry of Health, Peking University;<br>Beijing Dementia Key Lab<br>Yu, Xin; Peking University Institute of Mental Health (Sixth Hospital);<br>National Clinical Research Center for Mental Disorders & Key Laboratory<br>of Mental Health, Ministry of Health, Peking University;<br>Beijing Dementia Key Lab<br>Yu, Xin; Peking University Institute of Mental Disorders & Key Laboratory<br>of Mental Health, Ministry of Health, Peking University; Beijing Dementia<br>Key Lab<br>Howard, R; University College London Division of Psychiatry, |
| Keywords:                     | Mild cognitive training (MCI), computerised, cognitive training, cognitive outcomes, meta-analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

×

**BMJ** Open

| 2        |    |                                                                                                                                                                                              |
|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | 1  | The efficacy of Computerized Cognitive Training on cognitive                                                                                                                                 |
| 4        | 1  | The enfracy of computerized cognitive training on cognitive                                                                                                                                  |
| 5        | 0  | outcomes in Mild Cognitive Impairments A Systematic Poview and                                                                                                                               |
| 6<br>7   | 2  | outcomes in Mild Cognitive Impairment: A Systematic Review and                                                                                                                               |
| 7<br>8   |    | Mata Analysia                                                                                                                                                                                |
| 9        | 3  | Meta-Analysis                                                                                                                                                                                |
| 10       |    |                                                                                                                                                                                              |
| 11       | 4  | Haifeng Zhang <sup>1, 3</sup> , J. D. Huntley <sup>1</sup> , R. Bhome <sup>1</sup> , B. Holmes <sup>1</sup> , J.T. Cahill <sup>2</sup> , R.L. Gould <sup>2</sup> , Huali Wang <sup>3</sup> , |
| 12       |    |                                                                                                                                                                                              |
| 13       | 5  | Xin Yu <sup>3</sup> and R. J. Howard <sup>1</sup>                                                                                                                                            |
| 14       | 0  |                                                                                                                                                                                              |
| 15       | 6  | 1. Division of Psychiatry, University College London, London W1T 7NF, United Kingdom                                                                                                         |
| 16       | 0  | 1. Division of Fsychiatry, oniversity conege condon, condon with 7M, onited kingdom                                                                                                          |
| 17       | 7  | 2 Institute of Development Development Neuroscience King's College London London                                                                                                             |
| 18       | 7  | 2. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London                                                                                                       |
| 19<br>20 |    |                                                                                                                                                                                              |
| 20<br>21 | 8  | SE5 8AF, United Kingdom                                                                                                                                                                      |
| 22       |    |                                                                                                                                                                                              |
| 23       | 9  | 3. Peking University Institute of Mental Health (Sixth Hospital); National Clinical                                                                                                          |
| 24       |    |                                                                                                                                                                                              |
| 25       | 10 | Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry                                                                                                             |
| 26       |    |                                                                                                                                                                                              |
| 27       | 11 | of Health, Peking University; Beijing Dementia Key Lab, Beijing 100191, China                                                                                                                |
| 28       |    |                                                                                                                                                                                              |
| 29       | 12 | * Address correspondence                                                                                                                                                                     |
| 30       | 14 |                                                                                                                                                                                              |
| 31       |    |                                                                                                                                                                                              |
| 32<br>33 | 13 | Dr. Huntley: j.huntley@ucl.ac.uk                                                                                                                                                             |
| 33<br>34 |    |                                                                                                                                                                                              |
| 35       | 14 | 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF,                                                                                                                             |
| 36       |    |                                                                                                                                                                                              |
| 37       |    |                                                                                                                                                                                              |
| 38       | 15 | University College London, United Kingdom.                                                                                                                                                   |
| 39       |    |                                                                                                                                                                                              |
| 40       | 16 |                                                                                                                                                                                              |
| 41       | 17 | Running title: A meta-analysis of computerised cognitive training on MCI                                                                                                                     |
| 42       | 17 | Running title. A meta-analysis of computensed cognitive training off Mich                                                                                                                    |
| 43<br>44 | 18 | Key words: Mild cognitive training (MCI), computerised, cognitive training, cognitive                                                                                                        |
| 45       | 10 | key words. While cognitive training (MCI), computerised, cognitive training, cognitive                                                                                                       |
| 46       | 19 | outcomes, meta-analysis.                                                                                                                                                                     |
| 47       |    |                                                                                                                                                                                              |
| 48       | 20 | Word count: 4050                                                                                                                                                                             |
| 49       | 20 |                                                                                                                                                                                              |
| 50       | 21 |                                                                                                                                                                                              |
| 51       |    |                                                                                                                                                                                              |
| 52       |    |                                                                                                                                                                                              |
| 53       |    |                                                                                                                                                                                              |
| 54<br>55 |    |                                                                                                                                                                                              |
| 55<br>56 |    |                                                                                                                                                                                              |
| 57       |    |                                                                                                                                                                                              |
|          |    |                                                                                                                                                                                              |

| 22 | The efficacy of Computerized Cognitive Training on cognitive outcomes in                                                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 | Mild Cognitive Impairment: A Systematic Review and Meta-Analysis                                                                                                                             |
| 24 |                                                                                                                                                                                              |
| 25 | Haifeng Zhang <sup>1, 3</sup> , J. D. Huntley <sup>1</sup> , R. Bhome <sup>1</sup> , B. Holmes <sup>1</sup> , J.T. Cahill <sup>2</sup> , R.L. Gould <sup>2</sup> , Huali Wang <sup>3</sup> , |
| 26 | Xin Yu <sup>3</sup> and R. J. Howard <sup>1</sup>                                                                                                                                            |
| 27 | 1. Division of Psychiatry, University College London, London W1T 7NF, United Kingdom                                                                                                         |
| 28 | 2. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London                                                                                                       |
| 29 | SE5 8AF, United Kingdom                                                                                                                                                                      |
| 30 | 3. Peking University Institute of Mental Health (Sixth Hospital); National Clinical                                                                                                          |
| 31 | Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry                                                                                                             |
| 32 | of Health, Peking University; Beijing Dementia Key Lab, Beijing 100191, China                                                                                                                |
| 33 | * Address correspondence to Dr. Huntley: j.huntley@ucl.ac.uk                                                                                                                                 |
| 34 |                                                                                                                                                                                              |
| 35 | Running title: A meta-analysis of computerised cognitive training on MCI                                                                                                                     |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |
|    |                                                                                                                                                                                              |

| 36 <b>A</b> | bstract: |
|-------------|----------|
|-------------|----------|

Objectives To determine the efficacy of CCT in improving cognitive function for older adults with
 MCI.

Methods Literature searches were performed using three online databases. Randomised controlled trials (RCTs) comparing CCT with control conditions in those with MCI aged 55+ were included. Data were extracted regarding participants, CCT and control interventions, trial quality and for all reported cognitive outcomes. A random-effects meta-analysis was conducted to estimate overall efficacy on cognitive function.

Results 18 studies met the inclusion criteria and were included in the analyses, involving 690 participants. Meta-analysis revealed small to moderate positive treatment effects compared to controls intervention in 4 domains as follows: Global Cognitive Function (g = 0.23, 95% CI = 0.03, 0.44), Memory (g = 0.30, 95% CI = 0.11, 0.50), Working Memory (g = 0.39, 95% CI = 0.12, 0.66) and Executive function (g = 0.20, 95% CI = -0.03, 0.43). Statistical significance was reached in all domains apart from executive function.

**Conclusion** This meta-analysis provides evidence that CCT improves cognitive function in older 51 people with MCI. However, the long-term transfer of these improvements and potential to reduce 52 dementia prevalence remains unknown. Various methodological issues such as heterogeneity in 53 outcome measures, interventions and MCI symptoms and lack of intention-to-treat (ITT) analyses 54 limit the quality of the literature and represent areas for future research to improve in the future.

|    | BMJ Open                                                                                       |
|----|------------------------------------------------------------------------------------------------|
| 56 | Strengths and limitations of this study                                                        |
| 57 | 1. This is a comprehensive systematic review and meta-analysis evaluating the evidence for the |
| 58 | efficacy of computerised cognitive training in old adults with mild cognitive impairment on    |
| 59 | cognitive outcomes.                                                                            |
| 60 | 2. Data for four main cognitive domains were extracted from individual studies (global cognit  |
| 61 | function, episodic memory, working memory and executive function) and where appropria          |
| 62 | composite measures were calculated for meta-analyses.                                          |
| 63 | 3. The studies included in the systematic review are generally of a moderate quality and seve  |
| 64 | methodological issues, particularly a lack of follow up data makes it impossible to draw       |
| 65 | conclusions regarding long term effects or impact on prevalence of dementia.                   |
| 66 |                                                                                                |
| 67 |                                                                                                |
|    |                                                                                                |
|    |                                                                                                |
|    | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                      |

#### **BMJ** Open

#### **INTRODUCTION**

There are currently estimated to be over 46 million people worldwide living with dementia. This number is expected to grow to approximately 131.5 million by 2050.<sup>1</sup> There is therefore an urgent need to develop therapeutic treatments that may delay or prevent dementia in population groups considered 'at risk'.<sup>2</sup> Interventions that delay the onset of AD by an average of two years would decrease the worldwide prevalence rate by 22.8 million cases,<sup>3</sup> which in turn, would ease the huge burden placed on individuals, families and society. For these reasons, evidence-based interventions that reduce the risk of dementia are urgently required.

Mild Cognitive Impairment (MCI) refers to an intermediate stage between normal age-related cognitive decline (ARCD) and dementia.<sup>4</sup> Although many older adults experience a degree of deterioration in cognitive performance, MCI is described as a greater than expected cognitive decline for an individual's age and education, but without notable interference in everyday functioning.<sup>5</sup> Within the older adult population, the estimated prevalence rate of MCI ranges from 15-20%.<sup>6</sup> Although MCI can present with a variety of symptoms, when memory loss is the predominant symptom it is termed "amnestic MCI" and is frequently seen as a prodromal stage of Alzheimer's disease.<sup>6</sup> When individuals have impairments in domains other than memory it is classified as non-amnestic single- or multiple-domain MCI and these individuals are believed to be more likely to convert to other types of dementia.<sup>6</sup> 

The lack of therapeutic benefit or delay in progression from MCI to AD with pharmacological interventions has meant that the focus has shifted towards non-pharmacological interventions.<sup>7</sup> Cognitive remediation is the term used for interventions designed to mediate cognitive decline and can be typically identified as involving one of three different approaches: cognitive stimulation (CS), cognitive rehabilitation (CR) and cognitive training (CT). Interventions based on CS and CR are more focused on individuals with established dementia, often with the aim of overcoming specific difficulties with daily living and improving general quality of life. In comparison, CT can be used for

subjects without significant cognitive or functional difficulties, and is therefore well suited for
 individuals with MCI.

CT refers to interventions that aim to improve cognitive domains through repeated practice on theoretically driven skills and strategies.<sup>8</sup> Each CT exercise aims to target one or two specific domains in an adaptive manner with a possibility of transfer effects whereby performance in other untrained cognitive domains is also improved<sup>9</sup>.

Computerised cognitive training (CCT) utilises computers for the delivery of the intervention and differs from traditional CT, which usually incorporates face-to-face contact with a professional and paper-and-pencil paradigms.<sup>8</sup> CCT has several advantages including cost-effectiveness, increased accessibility and ability to customise the content and difficulty of the training.<sup>10-12</sup> Research involving older adults has found that CCT programs are associated with high satisfaction levels, and that they are also a feasible option for individuals with MCI, with equal or better adherence rates when compared to traditional CT.<sup>10 13</sup> In addition, evidence suggests that studies utilising CCT show a pattern of stronger effect sizes and enhanced generalisation of benefits compared to traditional strategy training in MCI.<sup>14</sup> A previous meta-analysis found that CT is not effective in people with established dementia.<sup>15</sup> However, there is growing interest as to whether CCT has the potential to prevent or slow the progression from MCI to dementia particularly given the association between higher participation in mental activity and reduced dementia risk.<sup>16</sup>

Studies investigating the effectiveness of CT in improving cognitive performance in people with MCI have demonstrated small to moderate improvement but existing research suffers from methodological concerns and limitations.<sup>14 17-19</sup> CT research in individuals with MCI has been criticised for the failure to include an appropriate control group,<sup>20-22</sup> use of subsets of participants from previous studies,<sup>23</sup> and pooling of MCI data with that from non-impaired adults<sup>24</sup> as well as those with probable AD.<sup>25-27</sup> Another issue raised in treatment studies has been the use of ecologically valid outcome measures. For example, the inclusion of functional outcome measures is important to monitor progression from MCI to dementia but given that individuals with MCI are, by

**BMJ** Open

| 119 | definition, not significantly impaired in functioning, it is a challenge to measure the functional effects       |
|-----|------------------------------------------------------------------------------------------------------------------|
| 120 | of the intervention. <sup>17</sup>                                                                               |
| 121 |                                                                                                                  |
| 122 | CCT is far from a single construct and factors such as the content, platform, context and dose of                |
| 123 | training may differ. <sup>28</sup> Unfortunately, despite increasing scientific scrutiny, there is a limited     |
| 124 | understanding as to which, if any, dimensions are associated with cognitive benefit. Critical analysis           |
| 125 | of research using CCT for MCI should reveal insight into any effective components of CCT, however,               |
| 126 | it is important to establish the overall efficacy of CCT in individuals with MCI.                                |
| 127 | Systematic reviews and meta-analysis of cognitive intervention in MCI have reported mixed results, <sup>19</sup> |
| 128 | <sup>29-34</sup> and when exploring the efficacy of cognitive training in MCI have largely not distinguished     |
| 129 | between studies evaluating computerised and non-computerised training. This makes it difficult to                |
| 130 | draw conclusions specifically on the efficacy of CCT in MCI. One previous meta-analysis by Hill et al            |
| 131 | specially explored the effectiveness of CCT in MCI on cognition and behavioural outcomes, <sup>32</sup>          |
| 132 | however, further relevant studies have been published subsequently. <sup>32 35-37</sup>                          |
| 133 | This paper investigates the efficacy of CCT on improving cognitive outcomes in individuals diagnosed             |
| 134 | with MCI using random effects meta-analyses. To address some of the problems identified in the                   |
| 135 | literature, only peer-reviewed RCTs were selected and all cognitive outcome measures were                        |
| 136 | extracted for analysis. Variables that may moderate the efficacy of CCT, such as the type of                     |
| 137 | programme or dose of the intervention, were reviewed. The purpose of the current review was to: a)               |
| 138 | evaluate the efficacy of CCT in older adults with MCI on cognitive outcomes; b) evaluate the content             |
| 139 | and methodological quality of the intervention studies; and c) suggest future directions in CCT                  |
| 140 | research in this group based on findings.                                                                        |
| 141 |                                                                                                                  |

## 142 MATERIALS AND METHODS

## 143 Search strategy and selection criteria

A literature search was completed during January 2018 of three online literature databases and trial registers: Embase, Web of Science and Cochrane library. The search terms are shown in supplementary table 1. Previous meta-analyses and systematic reviews of cognitive interventions in MCI were also searched. Furthermore, reference lists of included studies were manually scanned for additional relevant papers.

## 149 Inclusion and exclusion criteria

Types of studies: Published, peer-reviewed studies with a RCT design investigating the use of CCT interventions in older people with MCI were considered for inclusion. Studies were included if sufficient data were available for calculation of effect sizes in each treatment arm (unavailable information was requested from authors and included if obtained). The date of publication was not limited, but only studies published in English were included.

Participants: Inclusion criteria were a mean age of participants greater than 55 years, a diagnosis of MCI using core criteria according to Petersen<sup>4</sup> and no other psychiatric diagnosis or neurological disorder. The number of participants in each arm needed to be at least five. Studies with non-impaired older people or those with probable AD were excluded unless separate data for participants with MCI was provided.

160 Types of interventions: Studies were included if they compared any CCT intervention, administered 161 on a personal computer or gaming console, to an active or non-active control. Computerised training 162 had to represent the primary intervention, not simply one of multiple broader non-computerised 163 cognitive interventions, in order to be included. Active controls were classified as interventions that 164 controlled for non-specific therapeutic effects, whereas non-active control groups included waiting 165 list conditions, treatment as usual (TAU) or a non-matched minimal intervention. Each study was

**BMJ** Open

166 independently screened, selected for inclusion and its data extracted by independent researchers.

167 Any disagreements were resolved through discussion with another author.

Types of outcome measures: All primary and secondary outcomes that measured objective cognitive performance were included, and were categorised into 4 domains: episodic memory (referred to as memory), working memory, executive function, and global cognitive functioning.

**Risk of bias assessment** 

The Cochrane Collaboration Risk of Bias tool was used to assess study methodological quality<sup>38</sup>. Risk of bias was assessed in multiple domains: sequence generation, allocation concealment, blinding of participants and investigators, incomplete outcome data and selective reporting of outcomes. In each of these categories, the methodological quality of each assessed domain was rated as 'low risk', 'unclear' or 'high risk'. Studies were excluded if unsure or high risk in all assessed domains.

## 177 Statistical analysis

Intervention and control groups' post-intervention score were compared using Review manager (RevMan) software version 5.3. The programme uses Hedges' adjusted g<sup>39</sup> to calculate a standardised mean difference (SMD) which is adjusted for small sample bias. Pooling of standardized mean Hedges' g estimates of <0.30,  $\ge 0.30$  and < 0.60, and  $\ge 0.60$  were considered small, moderate, and large, respectively. Meta-analyses were performed where three or more studies investigated a comparable intervention and outcome using a random effects model. Heterogeneity was quantified using the I<sup>2</sup> statistic, considered as low, moderate, or large when at 25%, 50%, or 75%, respectively.<sup>40</sup> Where a study reported multiple outcome measures for one cognitive domain (e.g., within memory function), a composite measure was calculated to provide a single quantitative measure for meta-analysis.<sup>41</sup> Publication bias was examined using funnel plots. We also performed subgroup analysis, for example we compared the effectiveness of single and multi-domain training. Furthermore, we subgrouped studies with the training dose less than 10 hours and more than 30

- 190 hours to see if there is a dose-response correlation. Sensitivity analyses was performed to identify
  - 191 potential sources of heterogeneity. Further details of statistical methods are found in the

for oper terrer only

192 supplementary material (see supplementary appendix 1).

#### **Patient and public involvement**

- 194 There was no direct patient or public involvement in this review.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 1        |     |                                                                                                          |
|----------|-----|----------------------------------------------------------------------------------------------------------|
| 2<br>3   | 196 |                                                                                                          |
| 3<br>4   | 150 |                                                                                                          |
| 5        |     |                                                                                                          |
| 6        | 197 | RESULTS                                                                                                  |
| 7        |     |                                                                                                          |
| 8        | 198 | Description of studies                                                                                   |
| 9        |     |                                                                                                          |
| 10       | 100 |                                                                                                          |
| 11       | 199 | The PRISMA checklist was used to guide reporting of results. <sup>42</sup>                               |
| 12<br>13 |     |                                                                                                          |
| 13       | 200 | Following the initial literature review a total of 691 studies were found. Of these 673 were excluded    |
| 15       |     |                                                                                                          |
| 16       | 201 | and 18 studies met inclusion criteria. Figure 1 presents a flowchart of study selection. The total       |
| 17       |     |                                                                                                          |
| 18       | 202 | number of participants included was 690 and the summary characteristics of each study are                |
| 19       |     |                                                                                                          |
| 20       | 203 | presented in table 1. Sample sizes ranged from 12 to 106, and dropout rates ranged from 0% to 32%.       |
| 21       |     |                                                                                                          |
| 22<br>23 | 204 | One study was excluded from the meta-analysis because of suspected inclusion of participants with        |
| 23<br>24 |     |                                                                                                          |
| 25       | 205 | probable AD based on the reported average Mini-Mental State Examination (MMSE) score. <sup>43</sup>      |
| 26       | 206 | Another two studies were evaluated from the mote analysis as next intervention cognitive data could      |
| 27       | 206 | Another two studies were excluded from the meta-analysis as post-intervention cognitive data could       |
| 28       | 207 | not be obtained. <sup>44 45</sup>                                                                        |
| 29       | 201 |                                                                                                          |
| 30       |     |                                                                                                          |
| 31       | 208 | 13 studies reported outcomes assessing memory, 5 studies reported outcomes assessing working             |
| 32<br>33 |     |                                                                                                          |
| 34       | 209 | memory, 11 studies reported outcomes assessing executive function, and 11 studies reported global        |
| 35       | 010 |                                                                                                          |
| 36       | 210 | cognitive functioning outcomes (see table 2.).                                                           |
| 37       |     |                                                                                                          |
| 38       | 211 | Quality of studies                                                                                       |
| 39       |     |                                                                                                          |
| 40       | 212 | The quality of each study was evaluated in regard to certain methodological aspects and                  |
| 41<br>42 | 212 | The quality of each study was evaluated in regard to certain methodological aspects and                  |
| 43       | 213 | summarised in supplementary figure 1. 11 of the 18 studies did not report blinding of participants.      |
| 44       |     |                                                                                                          |
| 45       |     |                                                                                                          |
| 46       | 214 | Participant characteristics                                                                              |
| 47       |     |                                                                                                          |
| 48       | 215 | The total amount of participants from all studies included was 690 (CCT: n=351, mean group size:         |
| 49<br>50 |     |                                                                                                          |
| 50       | 216 | n=20, control: n=339, mean group size: n=19). The average age of participants in both conditions         |
| 52       |     |                                                                                                          |
| 53       | 217 | was 73.4 years. 52.5% of all participants were male. The disparity and lack of reporting of the ratio of |
| 54       |     |                                                                                                          |
| 55       | 218 | participants' years of education precluded mean calculations, although the available data suggests       |
| 56       |     |                                                                                                          |
| 57       |     |                                                                                                          |

219 most participants had at least secondary school education. The pooled average baseline score for 220 the MMSE was 26.9 in both groups, although the range of scores indicated heterogeneity within 221 participants.

### 222 Cognitive Training Interventions

Interventions were mostly delivered on a personal computer (PC), using commercially available or purpose built CT packages, with two studies utilising a video game on a games console.<sup>13 37</sup> All interventions were specifically designed to improve various aspects of cognition. The most common type of intervention used was multi-domain (11/18 studies), where the programme targeted two or more cognitive domains. In the seven single domain intervention studies, three evaluated memory training and executive function training while one used working memory training. The dose and duration of the CT intervention was variable, with the total length of training ranging from 4 hours<sup>46</sup> to 80 hours<sup>47</sup> and the duration of training from 2 weeks<sup>48</sup> to 26 weeks.<sup>47</sup> 

#### **Outcome Measures**

Supplementary Table 2 summarises the 60 different cognitive outcome measures used by studies included in the meta-analyses. A considerable variability in measures reported was also noted; only three outcome measures were reported three or more times; seven studies used the MMSE as a measure of global cognition, three studies used Paired-associates learning (PAL) to measure memory and in four studies used the Trail Making Test (TMT) as a measure of executive function.

#### 237 Meta-analysis of specific outcomes

238 Separate meta-analyses were conducted on four different cognitive domains. The most commonly 239 tested domains were memory, with thirteen studies exploring this domain. The results of the 240 meta-analyses are presented in table 2.

241 Global Cognition function

#### **BMJ** Open

Overall, there was a significant benefit of CCT on global cognition compared to the control group. The meta-analysis revealed a small but statistically significant pooled effect size of 0.23 (95% CI [0.03, 0.44], z= 2.22, p = 0.03) with low heterogeneity between studies (I<sup>2</sup> = 6%) (see figure 2.). The funnel plot did not reveal significant asymmetry (see supplementary figure 2.). The effect size across active-controlled trials (n=7, g=0.23, 95% CI [-0.05, 0.51], I<sup>2</sup>=27%) was smaller than that of trials with non-active control groups (n=4, g=0.31, 95% CI [-0.06, 0.68], I<sup>2</sup>=0%) (see supplementary figure 3-4.), but was non-significant in both analyses.

250 Memory

The pooled effect size of CCT on memory outcomes, when compared with control conditions, was moderate and statistically significant (g = 0.30, 95% Cl = [0.11, 0.50], z = 3.03, p = 0.002), with moderate heterogeneity between studies ( $I^2$  = 46%) (see figure 3.). The funnel plot did not reveal significant asymmetry (see supplementary figure 5.). The effect size across active-controlled trials (n=8, g=0.36, 95% CI [0.11, 0.61], I<sup>2</sup>=52%) was statistically significant and was larger than that of trials with passive control groups (n=5, g=0.20, 95% CI [-0.14, 0.54],  $l^2=43\%$ ) (see supplementary figure 6-7.). However, there was moderate heterogeneity between studies in both analyses. Due to the moderate heterogeneity between studies, a sensitivity analysis was also conducted, in

which one study at a time was removed and the others analysed to estimate whether the results could have been markedly affected by a single study. The combined Hedges' g were consistent and without apparent fluctuation, with a range from 0.23 [0.07, 0.39] to 0.35[0.15, 0.55].

263 Working Memory

The meta-analysis revealed a statistically significant moderate effect size of 0.39 in favour of CCT compared with controls (95% CI [0.12, 0.66], z = 2.85, p = 0.004) with low heterogeneity between studies ( $I^2 = 0\%$ ) (see figure 3.). The funnel plot did not reveal significant asymmetry (see

| 267                                                                       | supplementary figure 5.). Due to there being fewer than three non-active we did not compare the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 268                                                                       | effect size between active-controlled trials and non-active trials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 269                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 270                                                                       | Executive function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 271                                                                       | The overall effect of CCT on executive function compared with control conditions was small and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 272                                                                       | non-significant. The meta-analysis revealed a pooled effect size of 0.20 (95% CI [-0.03, 0.43], z= 1.74,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 273                                                                       | $p = 0.08$ ) with high heterogeneity between studies ( $I^2 = 51\%$ ) (see figure 3.). The funnel plot did not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 274                                                                       | reveal significant asymmetry (see supplementary figure 5.). The effect size across active-controlled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 275                                                                       | trials (n=7, g=0.13, 95% CI [-0.08, 0.35], $I^2$ =20%) was smaller than for the non-active control groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 276                                                                       | (n=4, g=0.32, 95% CI [-0.23, 0.87], $I^2$ =74%), but was non-significant in both analyses (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 277                                                                       | supplementary figure 8-9.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 278                                                                       | Considering the large heterogeneity between studies ( $I^2 = 51\%$ ), a sensitivity analysis was also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 279                                                                       | conducted as described above. The combined Hedges' g were consistent and without apparent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 280                                                                       | fluctuation, with a range from 0.12 [-0.05, 0.28] to 0.35 [0.03, 0.48].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 280<br>281                                                                | fluctuation, with a range from 0.12 [-0.05, 0.28] to 0.35 [0.03, 0.48].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           | fluctuation, with a range from 0.12 [-0.05, 0.28] to 0.35 [0.03, 0.48].<br>Subgroup analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 281                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 281<br>282                                                                | Subgroup analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 281<br>282<br>283                                                         | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 281<br>282<br>283<br>284                                                  | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 281<br>282<br>283<br>284<br>285                                           | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain<br>memory training. Similarly, only global cognition could be used for subgroup analysis to compare the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 281<br>282<br>283<br>284<br>285<br>286                                    | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain<br>memory training. Similarly, only global cognition could be used for subgroup analysis to compare the<br>training interventions less than ten hours and more than thirty hours. Our subgroup analyses                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 281<br>282<br>283<br>284<br>285<br>286<br>287                             | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain<br>memory training. Similarly, only global cognition could be used for subgroup analysis to compare the<br>training interventions less than ten hours and more than thirty hours. Our subgroup analyses<br>suggested that multi-domain CCT remains more efficacious than single-domain CCT as the former                                                                                                                                                                                                                                                                                                                |
| 281<br>282<br>283<br>284<br>285<br>286<br>286<br>287<br>288               | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain<br>memory training. Similarly, only global cognition could be used for subgroup analysis to compare the<br>training interventions less than ten hours and more than thirty hours. Our subgroup analyses<br>suggested that multi-domain CCT remains more efficacious than single-domain CCT as the former<br>had a significant effect (g = 0.30, 95% CI (0.08, 0.53)) while the later was non-significant (g = 0.31,                                                                                                                                                                                                     |
| 281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>288<br>289        | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain<br>memory training. Similarly, only global cognition could be used for subgroup analysis to compare the<br>training interventions less than ten hours and more than thirty hours. Our subgroup analyses<br>suggested that multi-domain CCT remains more efficacious than single-domain CCT as the former<br>had a significant effect (g = 0.30, 95% CI (0.08, 0.53)) while the later was non-significant (g = 0.31,<br>95% CI (-0.19, 0.81)) (see supplementary figure 10-11). There is also no clear evidence for a                                                                                                    |
| 281<br>282<br>283<br>284<br>285<br>286<br>286<br>287<br>288<br>289<br>290 | Subgroup analysis<br>A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes<br>in the same cognitive domain and so subgroup analysis could only compare single and multi-domain<br>memory training. Similarly, only global cognition could be used for subgroup analysis to compare the<br>training interventions less than ten hours and more than thirty hours. Our subgroup analyses<br>suggested that multi-domain CCT remains more efficacious than single-domain CCT as the former<br>had a significant effect (g = 0.30, 95% CI (0.08, 0.53)) while the later was non-significant (g = 0.31,<br>95% CI (-0.19, 0.81)) (see supplementary figure 10-11). There is also no clear evidence for a<br>dose-response relationship. Our subgroup analysis found that studies that provided more than 30 |

| 1        |     |                                                                                                        |
|----------|-----|--------------------------------------------------------------------------------------------------------|
| 2<br>3   | 293 | supplementary figure 12-13). The subgroup analyses need to be interpreted with caution due to the      |
| 4<br>5   | 294 | small number of studies and heterogeneity, however, they illustrate the lack of clear factors that are |
| 6<br>7   | 295 | associated with efficacy.                                                                              |
| 8<br>9   |     |                                                                                                        |
| 9<br>10  |     |                                                                                                        |
| 11       |     |                                                                                                        |
| 12<br>13 |     |                                                                                                        |
| 14       |     |                                                                                                        |
| 15<br>16 |     |                                                                                                        |
| 17       |     |                                                                                                        |
| 18       |     |                                                                                                        |
| 19<br>20 |     |                                                                                                        |
| 21       |     |                                                                                                        |
| 22<br>23 |     |                                                                                                        |
| 23       |     |                                                                                                        |
| 25       |     |                                                                                                        |
| 26<br>27 |     |                                                                                                        |
| 28       |     |                                                                                                        |
| 29<br>30 |     |                                                                                                        |
| 31       |     |                                                                                                        |
| 32<br>33 |     |                                                                                                        |
| 34       |     |                                                                                                        |
| 35       |     |                                                                                                        |
| 36<br>37 |     |                                                                                                        |
| 38       |     |                                                                                                        |
| 39<br>40 |     |                                                                                                        |
| 41       |     |                                                                                                        |
| 42<br>43 |     |                                                                                                        |
| 44       |     |                                                                                                        |
| 45<br>46 |     |                                                                                                        |
| 40       |     |                                                                                                        |
| 48       |     |                                                                                                        |
| 49<br>50 |     |                                                                                                        |
| 51       |     |                                                                                                        |
| 52<br>53 |     |                                                                                                        |
| 54       |     |                                                                                                        |
| 55<br>56 |     |                                                                                                        |
| 56<br>57 |     |                                                                                                        |
| 58       |     |                                                                                                        |
| 59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 15                           |

### **DISCUSSION**

#### 297 Main findings

Based on results from 18 RCTs, it is likely that CCT is a viable intervention for improving cognition in older people with MCI. There were small to moderate positive effect sizes found in all domains, with statistical significance reached for global cognitive function (g=0.23, 95% CI = [0.03, 0.44]), memory (g=0.30, 95% CI=[0.11, 0.50]) and working memory (g=0.39, 95% CI=[0.12, 0.66]), but not executive function (g=0.20, 95% CI=[-0.03, 0.43]). The largest effect sizes were found for working memory and memory (although statistically significant heterogeneity was found for the latter domain). This is unsurprising given its central focus in most interventions and promising given this is the primary complaint in most cases of MCI.

The findings from our meta-analyses are largely in keeping with the results of previous research that has examined CCT<sup>32</sup> or combined computerised and non-computerised studies and demonstrated positive effect sizes for global cognition, memory, working memory and executive function<sup>33</sup>. The current meta-analysis employed strict eligibility criteria to overcome the methodological issues reported in the literature<sup>49 50</sup> such as inappropriate control groups and CCT being combined with other interventions. The combination of an overall large sample size (N=690) and stringent eligibility criteria make this meta-analysis a useful contribution to the growing evidence for the efficacy of CCT in MCI. Nevertheless, various methodological issues were identified that limit the ability to make recommendations for the optimal format, frequency or intensity of CCT. Further, the lack of longitudinal studies make it unclear whether observed post-intervention benefits contribute in any way to the goal of delaying or preventing the progression from MCI to dementia.

317 Validity of observations and limitations

318 Sources of bias

#### **BMJ** Open

Several methodological issues were identified. Studies were rarely double-blinded, and whilst it may be considered impractical to blind therapists and participants given the nature of the intervention, this nevertheless introduces the risk of expectation bias and exaggerated results. In addition, data concerning dropouts were rarely included in the analyses and ITT analysis was only used in two studies.<sup>4651</sup> Whilst most of the remaining studies reported no significant differences at baseline for those who dropped out, these differences may have only become apparent post-intervention, and baseline differences may have been more obvious with the large number of participants in the meta-analysis. Thus, the absence of ITT may have introduced an attrition bias.

Further bias may have arisen due to the decision in this study not to differentiate between amnestic and non-amnestic forms of MCI. This classification is an example of the heterogeneity of MCI symptoms. This heterogeneity is supported in descriptions by Petersen<sup>52</sup> and in the results of a study revealing MCI as a highly nuanced and complex clinical entity.<sup>53</sup> This may lead to considerably different intervention effects between participants and render it difficult to evaluate the efficacy of the cognitive intervention and the generalisability of the current results.

This meta-analysis calculated composite effect sizes when multiple outcome measures were provided for the same domain in each study. Whilst this method maximises the amount of data drawn from the reviewed studies, it also has certain limitations. Firstly, this approach necessitated an arbitrary measure of correlation between outcome measures, in this case set at 0.5. This may be inaccurate, with outcome measures being more or less heterogeneous. Unfortunately, data on composite heterogeneity was not available, however, choosing between outcome measures to decide which best represents a particular domain would have posed a significant risk of selection bias. This partly stems from the fact that 'gold standard' tests for the different cognitive domains have not been identified.

342 The literature suggests multiple factors may influence the efficacy of cognitive interventions.<sup>54</sup> An 343 aim of the current analysis was to provide insight regarding CCT design choices and training

outcomes to inform decisions on interventions to use both clinically and in future studies. Due to the
 limited number of studies and heterogeneity of interventions and outcome measures, it is difficult to
 make clear recommendations for the optimal form of CCT.

This meta-analysis has demonstrated efficacy of CCT in MCI patients for a very specific outcome: performance on a neuropsychological test immediately post-intervention. Whilst promising, this is far removed from the goal of slowing progression to or preventing dementia in MCI patients. There was a lack of follow-up data, with only three studies<sup>47 55 56</sup> including long-term outcome measures, so no conclusions can be drawn regarding the longevity of the small to moderate effects or the transfer of immediate effects. In addition, benefits on neuropsychological testing may not translate to clinically meaningful benefits in everyday function. Barnett and Ceci<sup>57</sup> describe the immediate outcomes measured here as 'near transfer' and the long-term transfer to untrained cognitive abilities as 'far transfer'. If there is any possibility of dementia being prevented or delayed using CCT then 'far transfer' of some sort is likely necessary. A review by Zelinski<sup>58</sup> outlines how 'far transfer' from cognitive training has been observed in aging population, though this is not specific to CCT or MCI. Demonstration of 'far transfer' as a result of cognitive training in healthy adults is very rare and there is increasing evidence that even 'near transfer' is difficult to demonstrate convincingly.<sup>59</sup> More research into long-term transfer effects of CCT in patients with MCI is vital in determining its potential to reduce the dementia burden.

#### 362 Suggestions for future research

The discussion highlights factors limiting the reliability and transferability of the results of the meta-analysis. These limitations may be potentially overcome by more RCTs examining long-term cognitive outcomes to assess transfer of CCT to everyday life and provide more insight on whether CCT can influence progression to dementia. It is feasible to conduct large and longitudinal studies of CCT, as it can be delivered online and therefore be easily and widely available. The standardization

## **BMJ** Open

| 2                                |  |
|----------------------------------|--|
| 4                                |  |
| 5                                |  |
| 6                                |  |
| 7                                |  |
| 8                                |  |
| 9                                |  |
| 10                               |  |
| 11                               |  |
| 12                               |  |
| 13                               |  |
| 14                               |  |
| 14                               |  |
| 15                               |  |
| 12<br>13<br>14<br>15<br>16<br>17 |  |
| 17                               |  |
| 18                               |  |
| 19                               |  |
| 20                               |  |
| 21                               |  |
| 22<br>23                         |  |
| 23                               |  |
| 24                               |  |
| 24<br>25                         |  |
| 26                               |  |
| 27                               |  |
| 28                               |  |
| 28<br>29                         |  |
| 29                               |  |
| 30                               |  |
| 31                               |  |
| 32                               |  |
| 33                               |  |
| 34                               |  |
| 35                               |  |
| 36                               |  |
| 37                               |  |
| 38                               |  |
| 39                               |  |
| 40                               |  |
| 41                               |  |
| 41                               |  |
| 42<br>43                         |  |
|                                  |  |
| 44                               |  |
| 45                               |  |
| 46                               |  |
| 47                               |  |
| 48                               |  |
| 49                               |  |
| 50                               |  |
| 51                               |  |
| 52                               |  |
| 53                               |  |
| 54                               |  |
| 54<br>55                         |  |
|                                  |  |
| 56                               |  |
| 57                               |  |
| 58                               |  |

59

60

377

368 of outcome measures between RCTs would also avoid problems associated with heterogeneity and 369 overall higher methodological quality of RCTs would reduce bias.

#### 370 Conclusion

371 This meta-analysis has demonstrated support for the hypothesis that CCT improves cognitive 372 function in older people with MCI. However, the long-term transfer of these improvements and 373 relevance to reducing dementia prevalence remains unknown. Various methodological issues such 374 as heterogeneity in outcome measures, interventions and MCI symptoms and lack of ITT analyses .. Lon<sub>b</sub> 375 are significant limitations of the literature. Long-term outcomes are the next priority for CCT in MCI 376 patients to further explore its efficacy with respect to influencing dementia progression.

#### Contributors

HZ, RB, JDH, RG, HW, XY and RJH all contributed to the conception and design of the review. HZ, BH, CJT, JDH read and screened abstracts and titles of potentially relevant studies. HZ, RB, and JDH read the retained papers and were responsible for extracting data and rating their quality independently. HZ drafted the paper with all the authors critically reviewing it and suggesting amendments prior to submission. All the authors had access to all the data in the study and can take responsibility for the integrity of the reported findings.

#### Funding

Haifeng Zhang is supported by the China Scholarship Council (CSC) (No. 201706010329) to be a visiting Ph.D. student at University College London, UK. RB is supported by a NIHR Academic Clinical Fellowship. JH and RH are supported by the NIHR UCLH BRC.

#### **Competing interests**

None declared.

#### Patient consent

Not required.

#### Provenance and peer review

Not commissioned; externally peer reviewed.

#### Data sharing statement

- Details of excluded papers are available from the first author on request.

| 1              |     |                                                                                                          |
|----------------|-----|----------------------------------------------------------------------------------------------------------|
| 2<br>3<br>4    | 400 | REFERENCES                                                                                               |
| 5<br>6         | 401 | 1. Alzheimer's Disease International. World Alzheimer Report 2015. 2015                                  |
| 7<br>8         | 402 | 2. Huckans M, Hutson L, Twamley E, et al. Efficacy of cognitive rehabilitation therapies for mild        |
| 9<br>10<br>11  | 403 | cognitive impairment (MCI) in older adults: working toward a theoretical model and                       |
| 11<br>12<br>13 | 404 | evidence-based interventions. Neuropsychol Rev 2013;23(1):63-80. doi:                                    |
| 14<br>15       | 405 | 10.1007/s11065-013-9230-9                                                                                |
| 16<br>17       | 406 | 3. Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's        |
| 18<br>19       | 407 | disease. Alzheimer's & dementia : the journal of the Alzheimer's Association                             |
| 20<br>21       | 408 | 2007;3(3):186-91. doi: 10.1016/j.jalz.2007.04.381                                                        |
| 22<br>23       | 409 | 4. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and     |
| 24<br>25       | 410 | outcome. Archives of neurology 1999;56(3):303-8.                                                         |
| 26<br>27       | 411 | 5. Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. Lancet                            |
| 28<br>29<br>30 | 412 | 2006;367(9518):1262-70. doi: 10.1016/s0140-6736(06)68542-5                                               |
| 30<br>31<br>32 | 413 | 6. Petersen RC. Mild Cognitive Impairment. Continuum (Minneap Minn) 2016;22(2                            |
| 33<br>34       | 414 | Dementia):404-18. doi: 10.1212/CON.000000000000313                                                       |
| 35<br>36       | 415 | 7. Karakaya T, Fusser F, Schroder J, et al. Pharmacological Treatment of Mild Cognitive Impairment       |
| 37<br>38       | 416 | as a Prodromal Syndrome of Alzheimer s Disease. Curr Neuropharmacol 2013;11(1):102-8.                    |
| 39<br>40       | 417 | doi: 10.2174/157015913804999487                                                                          |
| 41<br>42       | 418 | 8. Gates N, Valenzuela M. Cognitive Exercise and Its Role in Cognitive Function in Older Adults.         |
| 43<br>44       | 419 | Current Psychiatry Reports 2010;12(1):20-27. doi: 10.1007/s11920-009-0085-y                              |
| 45<br>46       | 420 | 9. Ball K, Berch DB, Helmers KF, et al. Effects of cognitive training interventions with older adults: a |
| 47<br>48<br>49 | 421 | randomized controlled trial. Jama 2002;288(18):2271-81.                                                  |
| 49<br>50<br>51 | 422 | 10. Kueider AM, Parisi JM, Gross AL, et al. Computerized cognitive training with older adults: a         |
| 52<br>53       | 423 | systematic review. PloS one 2012;7(7):e40588. doi: 10.1371/journal.pone.0040588                          |
| 54<br>55       | 424 | 11. Jak AJ, Seelye AM, Jurick SM. Crosswords to computers: a critical review of popular approaches       |
| 56<br>57       | 425 | to cognitive enhancement. Neuropsychology review 2013;23(1):13-26.                                       |
| 58<br>59<br>60 |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                |

| 426 | 12. Owen AM, Hampshire A, Grahn JA, et al. Putting brain training to the test. Nature                   |
|-----|---------------------------------------------------------------------------------------------------------|
| 427 | 2010;465(7299):775-78. doi: 10.1038/nature09042                                                         |
| 428 | 13. Hughes TF, Flatt JD, Fu B, et al. Interactive video gaming compared with health education in older  |
| 429 | adults with mild cognitive impairment: a feasibility study. International journal of geriatric          |
| 430 | psychiatry 2014;29(9):890-8. doi: 10.1002/gps.4075                                                      |
| 431 | 14. Gates NJ, Sachdev PS, Singh MAF, et al. Cognitive and memory training in adults at risk of          |
| 432 | dementia: A Systematic Review. BMC geriatrics 2011;11 doi: Artn 55                                      |
| 433 | 10.1186/1471-2318-11-55                                                                                 |
| 434 | 15. Huntley JD, Gould RL, Liu K, et al. Do cognitive interventions improve general cognition in         |
| 435 | dementia? A meta-analysis and meta-regression. Bmj Open 2015;5(4) doi: ARTN e005247                     |
| 436 | 10.1136/bmjopen-2014-005247                                                                             |
| 437 | 16. Wilson RS, Mendes De Leon CF, Barnes LL, et al. Participation in cognitively stimulating activities |
| 438 | and risk of incident Alzheimer disease. Jama 2002;287(6):742-8.                                         |
| 439 | 17. Belleville S. Cognitive training for persons with mild cognitive impairment. International          |
| 440 | Psychogeriatrics 2008;20(01) doi: 10.1017/s104161020700631x                                             |
| 441 | 18. Mowszowski L, Hermens DF, Diamond K, et al. Cognitive training enhances pre-attentive               |
| 442 | neurophysiological responses in older adults 'at risk' of dementia. Journal of Alzheimer's              |
| 443 | disease : JAD 2014;41(4):1095-108. doi: <u>https://dx.doi.org/10.3233/JAD-131985</u>                    |
| 444 | 19. Reijnders J, van Heugten C, van Boxtel M. Cognitive interventions in healthy older adults and       |
| 445 | people with mild cognitive impairment: a systematic review. Ageing Res Rev                              |
| 446 | 2013;12(1):263-75. doi: 10.1016/j.arr.2012.07.003                                                       |
| 447 | 20. Gunther VK, Schafer P, Holzner BJ, et al. Long-term improvements in cognitive performance           |
| 448 | through computer-assisted cognitive training: a pilot study in a residential home for older             |
| 449 | people. Aging & mental health 2003;7(3):200-06. doi: 10.1080/1360786031000101175                        |
|     |                                                                                                         |
|     |                                                                                                         |
|     |                                                                                                         |

## BMJ Open

| 3              | 450 | 21. Cipriani G, Bianchetti A, Trabucchi M. Outcomes of a computer-based cognitive rehabilitation    |
|----------------|-----|-----------------------------------------------------------------------------------------------------|
| 4<br>5         | 451 | program on Alzheimer's disease patients compared with those on patients affected by mild            |
| 6<br>7<br>8    | 452 | cognitive impairment. Archives of gerontology and geriatrics 2006;43(3):327-35. doi:                |
| 8<br>9<br>10   | 453 | 10.1016/j.archger.2005.12.003                                                                       |
| 10<br>11<br>12 | 454 | 22. Gonzalez-Palau F, Franco M, Bamidis P, et al. The effects of a computer-based cognitive and     |
| 13<br>14       | 455 | physical training program in a healthy and mildly cognitive impaired aging sample. Aging $\&$       |
| 15<br>16       | 456 | mental health 2014;18(7):838-46. doi: 10.1080/13607863.2014.899972                                  |
| 17<br>18       | 457 | 23. Rosen AC, Sugiura L, Kramer JH, et al. Cognitive training changes hippocampal function in mild  |
| 19<br>20       | 458 | cognitive impairment: a pilot study. Journal of Alzheimer's disease : JAD 2011;26 Suppl             |
| 21<br>22       | 459 | 3:349-57. doi: 10.3233/jad-2011-0009                                                                |
| 23<br>24       | 460 | 24. Eckroth-Bucher M, Siberski J. Preserving cognition through an integrated cognitive stimulation  |
| 25<br>26<br>27 | 461 | and training program. Am J Alzheimers Dis Other Demen 2009;24(3):234-45. doi:                       |
| 27<br>28<br>20 | 462 | 10.1177/1533317509332624                                                                            |
| 29<br>30<br>31 | 463 | 25. Galante E, Venturini G, Fiaccadori C. Computer-based cognitive intervention for dementia:       |
| 32<br>33       | 464 | preliminary results of a randomized clinical trial. G Ital Med Lav Ergon 2007;29(3 Suppl            |
| 34<br>35       | 465 | B):B26-32.                                                                                          |
| 36<br>37       | 466 | 26. Gaitan A, Garolera M, Cerulla N, et al. Efficacy of an adjunctive computer-based cognitive      |
| 38<br>39       | 467 | training program in amnestic mild cognitive impairment and Alzheimer's disease: a                   |
| 40<br>41       | 468 | single-blind, randomized clinical trial. International journal of geriatric psychiatry              |
| 42<br>43       | 469 | 2013;28(1):91-9. doi: <u>https://dx.doi.org/10.1002/gps.3794</u>                                    |
| 44<br>45       | 470 | 27. Zhuang JP, Fang R, Feng X, et al. The impact of human-computer interaction-based                |
| 46<br>47       | 471 | comprehensive training on the cognitive functions of cognitive impairment elderly                   |
| 48<br>49       | 472 | individuals in a nursing home. Journal of Alzheimer's disease : JAD 2013;36(2):245-51. doi:         |
| 50<br>51<br>52 | 473 | 10.3233/jad-130158                                                                                  |
| 52<br>53<br>54 | 474 | 28. Bavelier D, Green CS, Han DH, et al. Brains on video games. Nat Rev Neurosci 2011;12(12):763-8. |
| 55<br>56       | 475 | doi: 10.1038/nrn3135                                                                                |
| 57<br>58       |     |                                                                                                     |
| 59<br>60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml $^{23}$                   |

Page 24 of 66

#### **BMJ** Open

| 476 | 29. Li H, Li J, Li N, et al. Cognitive intervention for persons with mild cognitive impairment: A      |
|-----|--------------------------------------------------------------------------------------------------------|
| 477 | meta-analysis. Ageing research reviews 2011;10(2):285-96. doi: 10.1016/j.arr.2010.11.003               |
| 478 | 30. Martin M, Clare L, Altgassen AM, et al. Cognition-based interventions for healthy older people     |
| 479 | and people with mild cognitive impairment. The Cochrane database of systematic reviews                 |
| 480 | 2011(1):CD006220. doi: 10.1002/14651858.CD006220.pub2                                                  |
| 481 | 31. Simon SS, Yokomizo JE, Bottino CM. Cognitive intervention in amnestic Mild Cognitive               |
| 482 | Impairment: a systematic review. Neurosci Biobehav Rev 2012;36(4):1163-78. doi:                        |
| 483 | 10.1016/j.neubiorev.2012.01.007                                                                        |
| 484 | 32. Hill NT, Mowszowski L, Naismith SL, et al. Computerized Cognitive Training in Older Adults With    |
| 485 | Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J                     |
| 486 | Psychiatry 2016:appiajp201616030360. doi: 10.1176/appi.ajp.2016.16030360                               |
| 487 | 33. Sherman DS, Mauser J, Nuno M, et al. The Efficacy of Cognitive Intervention in Mild Cognitive      |
| 488 | Impairment (MCI): a Meta-Analysis of Outcomes on Neuropsychological Measures.                          |
| 489 | Neuropsychol Rev 2017;27(4):440-84. doi: 10.1007/s11065-017-9363-3                                     |
| 490 | 34. Coyle H, Traynor V, Solowij N. Computerized and virtual reality cognitive training for individuals |
| 491 | at high risk of cognitive decline: systematic review of the literature. The American journal of        |
| 492 | geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry           |
| 493 | 2015;23(4):335-59. doi: 10.1016/j.jagp.2014.04.009                                                     |
| 494 | 35. Djabelkhir L, Wu YH, Vidal JS, et al. Computerized cognitive stimulation and engagement            |
| 495 | programs in older adults with mild cognitive impairment: comparing feasibility, acceptability,         |
| 496 | and cognitive and psychosocial effects. Clinical interventions in aging 2017;12:1967-75. doi:          |
| 497 | 10.2147/cia.s145769                                                                                    |
| 498 | 36. Han JW, Son KL, Byun HJ, et al. Efficacy of the Ubiquitous Spaced Retrieval-based Memory           |
| 499 | Advancement and Rehabilitation Training (USMART) program among patients with mild                      |
| 500 | cognitive impairment: a randomized controlled crossover trial. Alzheimers Res Ther 2017;9:8.           |
| 501 | doi: 10.1186/s13195-017-0264-8                                                                         |
|     |                                                                                                        |
| 1   | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                              |
|     |                                                                                                        |

# BMJ Open

| 2              |     |                                                                                                        |
|----------------|-----|--------------------------------------------------------------------------------------------------------|
| 3              | 502 | 37. Savulich G, Piercy T, Fox C, et al. Cognitive Training Using a Novel Memory Game on an iPad in     |
| 4<br>5         | 503 | Patients with Amnestic Mild Cognitive Impairment (aMCI). Int J Neuropsychopharmacol 2017               |
| 6<br>7         | 504 | doi: 10.1093/ijnp/pyx040                                                                               |
| 8<br>9         | 505 | 38. Higgins JPT GS, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version       |
| 10<br>11       | 506 | 5.1.0 [updated March 2011]. : The Cochrane Collaboration 2011.                                         |
| 12<br>13       | 507 | 39. Hedges LV OI. Statistical Methods for Meta-Analysis: New York: Academic Press 1985.                |
| 14<br>15       | 508 | 40. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ            |
| 16<br>17       | 509 | 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557                                                   |
| 18<br>19<br>20 | 510 | 41. Borenstein M. Introduction to meta-analysis2009.                                                   |
| 20<br>21       | 511 | 42. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and       |
| 22<br>23       |     |                                                                                                        |
| 24<br>25       | 512 | meta-analyses: the PRISMA statement. BMJ 2009;339:b2535. doi: 10.1136/bmj.b2535                        |
| 25<br>26<br>27 | 513 | 43. Optale G, Urgesi C, Busato V, et al. Controlling memory impairment in elderly adults using virtual |
| 27<br>28<br>29 | 514 | reality memory training: a randomized controlled pilot study. Neurorehabilitation and neural           |
| 30<br>31       | 515 | repair 2010;24(4):348-57. doi: 10.1177/1545968309353328                                                |
| 32<br>33       | 516 | 44. Barnes DE, Yaffe K, Belfor N, et al. Computer-based cognitive training for mild cognitive          |
| 34<br>35       | 517 | impairment: results from a pilot randomized, controlled trial. Alzheimer disease and                   |
| 36<br>37       | 518 | associated disorders 2009;23(3):205-10. doi: 10.1097/WAD.0b013e31819c6137                              |
| 38<br>39       | 519 | 45. Chandler MJ, Locke DEC, Duncan NL, et al. Computer versus Compensatory Calendar Training in        |
| 40<br>41       | 520 | Individuals with Mild Cognitive Impairment: Functional Impact in a Pilot Study. Brain                  |
| 42<br>43       | 521 | sciences 2017;7(9):10. doi: 10.3390/brainsci7090112                                                    |
| 43<br>44       | 021 | Secreces 2017,7 (5).10. doi: 10.5550/5101150/7050112                                                   |
| 45<br>46       | 522 | 46. Han JW, Lee H, Hong JW, et al. Multimodal cognitive enhancement therapy for patients with mild     |
| 47<br>48       | 523 | cognitive impairment and mild dementia: A multi- center, randomized, controlled,                       |
| 49<br>50       | 524 | double-blind, crossover trial. Journal of Alzheimer's Disease 2017;55(2):787-96. doi:                  |
| 50<br>51<br>52 | 525 | http://dx.doi.org/10.3233/JAD-160619                                                                   |
| 52<br>53<br>54 | 526 | 47. Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training          |
| 54<br>55<br>56 | 527 | (SMART) study-resistance training and/or cognitive training in mild cognitive impairment: a            |
| 57<br>58       |     |                                                                                                        |

Page 26 of 66

#### **BMJ** Open

| 2<br>3         | 528 | randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc                                |
|----------------|-----|-----------------------------------------------------------------------------------------------------------|
| 4<br>5         | 529 | 2014;15(12):873-80. doi: 10.1016/j.jamda.2014.09.010                                                      |
| 6<br>7<br>8    | 530 | 48. Gagnon LG, Belleville S. Training of attentional control in mild cognitive impairment with            |
| 9<br>10        | 531 | executive deficits: results from a double-blind randomised controlled study.                              |
| 11<br>12       | 532 | Neuropsychological rehabilitation 2012;22(6):809-35. doi:                                                 |
| 13<br>14       | 533 | https://dx.doi.org/10.1080/09602011.2012.691044                                                           |
| 15<br>16       | 534 | 49. Papp KV WS, Snyder PJ. Immediate and delayed effects of cognitive interventions in healthy            |
| 17<br>18       | 535 | elderly: a review of current literature and future directions 2009                                        |
| 19<br>20       | 536 | 50. Martin M CL, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy           |
| 21<br>22       | 537 | older people and people with mild cognitive impairment 2011                                               |
| 23<br>24       | 538 | 51. Vidovich MR, Lautenschlager NT, Flicker L, et al. The PACE study: A randomized clinical trial of      |
| 25<br>26       | 539 | cognitive activity strategy training for older people with mild cognitive impairment.                     |
| 27<br>28<br>20 | 540 | American Journal of Geriatric Psychiatry 2015;23(4):360-72. doi:                                          |
| 29<br>30<br>31 | 541 | http://dx.doi.org/10.1016/j.jagp.2014.04.002                                                              |
| 32<br>33       | 542 | 52. Petersen RC. Mild cognitive impairment clinical trials. 2003                                          |
| 34<br>35       | 543 | 53. Libon DJ XS, Eppig J, Wicas G, Lamar M, Lippa C, Bettcher BM, Price CC, Giovannetti T, Swenson R,     |
| 36<br>37       | 544 | Wambach DM. The heterogeneity of mild cognitive impairment: a neuropsychological                          |
| 38<br>39       | 545 | analysis. 2009                                                                                            |
| 40<br>41       | 546 | 54. V. Solfrizzi FP, A.M. Colacicco, A. D'Introno, C. Capurso, F. Torres, F. Grigoletto, S. Maggi, A. Del |
| 42<br>43       | 547 | Parigi, E.M. Reiman, R.J. Caselli, E. Scafato, G. Farchi, A. Capurso. Vascular risk factors,              |
| 44<br>45       | 548 | incidence of MCI, and rates of progression to dementia. 2004                                              |
| 46<br>47       | 549 | 55. Herrera C, Chambon C, Michel BF, et al. Positive effects of computer-based cognitive training in      |
| 48<br>49<br>50 | 550 | adults with mild cognitive impairment. Neuropsychologia 2012;50(8):1871-81. doi:                          |
| 51<br>52       | 551 | 10.1016/j.neuropsychologia.2012.04.012                                                                    |
| 53<br>54       |     |                                                                                                           |
| 55<br>56       |     |                                                                                                           |
| 57<br>58       |     |                                                                                                           |
| 59<br>60       |     | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml 26                              |

#### **BMJ** Open

| 2  |
|----|
| 3  |
|    |
| 4  |
| 5  |
| 6  |
| 7  |
| /  |
| 8  |
| 9  |
| 10 |
|    |
| 11 |
| 12 |
| 13 |
| 14 |
|    |
| 15 |
| 16 |
| 17 |
|    |
| 18 |
| 19 |
| 20 |
| 20 |
|    |
| 22 |
| 23 |
| 24 |
| 25 |
|    |
| 26 |
| 27 |
| 28 |
|    |
| 29 |
| 30 |
| 31 |
|    |
|    |
| 33 |
| 34 |
| 35 |
|    |
| 36 |
| 37 |
| 38 |
| 39 |
|    |
| 40 |
| 41 |
| 42 |
| 43 |
|    |
| 44 |
| 45 |
| 46 |
|    |
| 47 |
| 48 |
| 49 |
| 50 |
|    |
| 51 |
| 52 |
| 53 |
|    |
| 54 |
| 55 |
| 56 |

57 58 59

60

552 56. Hyer L, Scott C, Atkinson MM, et al. Cognitive Training Program to Improve Working Memory in 553 Older Adults with MCI. Clin Gerontologist 2016;39(5):410-27. doi: 55410.1080/07317115.2015.1120257 555 57. Barnett SM CS. When and where do we apply what we learn? A taxonomy for far transfer. 2002 556 58. Meta-Analysis CCTiOAWMCIoDASRa. Far transfer in cognitive training of older adults. 2014 557 59. Stojanoski B, Lyons KM, Pearce AAA, et al. Targeted training: Converging evidence against the 558 transferable benefits of online brain training on cognitive function. Neuropsychologia 2018 559 doi: 10.1016/j.neuropsychologia.2018.07.013

560

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Table 1.
 Characteristics of studies using computerised cognitive training in persons with MCI

| Author<br>and Year     | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)              | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD)       | CCT type<br>for EC and<br>type of CC                                                          | Frequency, duration<br>and total hours                                          | Drop-out<br>(%)                  | Cognitive Training<br>Intervention                                                                                                                                                                                                        | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>) | Include<br>d for<br>meta-a<br>nalysis |
|------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------|
| Barban et<br>al 2016   | N = 46<br>Ratio = 54.3%<br>Age = 74.4 (5.7)<br>Edu = 9<br>MMSE = 27.3<br>(2.1)          | N = 60<br>Ratio = 51.7%<br>Age = 72.9 (6.0)<br>Edu = 11<br>MMSE = 28.1<br>(1.4)       | EC: multi<br>domain<br>training.<br>CC:<br>passive(rest<br>)                                  | 60 minute sessions, 2<br>sessions per week<br>for 3 months.<br>Total = 24 hours | n/s                              | ,                                                                                                                                                                                                                                         | Before and<br>after<br>training,<br>follow-up<br>(n/s)#             | Yes                                   |
| Chandler<br>et al 2017 | N = 27<br>Ratio = 73.3%<br>Age = 77.4 (7.2)<br>Edu = 16.2 (2.6)<br>MMSE = 26.7<br>(3.0) | N = 30<br>Ratio = 50.0 %<br>Age = 76.2 (7.0)<br>Edu = 16.0 (2.4)<br>MMSE = 25.8 (3.2) | EC:<br>Auditory<br>memory<br>training<br>CC: Active(<br>Memory<br>Support<br>System<br>(MSS)) | Frequency: n/s<br>Duration: n/s<br>Total = 10 hours                             | EC:4<br>CC:3<br>Total:10.9<br>4% | "Auditory Brain Training"<br>software: 6 adaptive<br>modules exercises to<br>recognize and<br>differentiate sounds,<br>match or repeat sounds,<br>remember increasingly<br>difficult directions, and<br>remember details from<br>stories. | n/s                                                                 | No*                                   |
|                        |                                                                                         |                                                                                       |                                                                                               |                                                                                 |                                  |                                                                                                                                                                                                                                           | 28                                                                  |                                       |

| Author<br>and Year           | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                                    | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD)                            | CCT type<br>for EC and<br>type of CC                                                                | Frequency, duration<br>and total hours                                       | Drop-out<br>(%)             | Cognitive Training<br>Intervention                                                                                                                                                                                        | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>) | Included for method naly |
|------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|
| Ciarmiello<br>et al.<br>2015 | N = 15<br>Ratio = 35.7%<br>Age = 71.2 (7.7)<br>Edu = 9.3 (3.02)<br>MMSE = 27.9<br>(1.8)                       | N = 15<br>Ratio = 46.7%<br>Age = 72.0 (7.1)<br>Edu = 7.8 (2.6)<br>MMSE = 27.8(1.9)                         | EC: multi<br>domain<br>CC:<br>semi-active<br>(meeting<br>with<br>psychologis<br>t – no<br>computer) | 45 minute sessions, 2<br>days per week for 4<br>months.<br>Total = 24 hours. | EC: 0<br>CC: 0<br>0%        | Computerised training<br>with multiple difficulty<br>levels. Includes dual-task<br>training, executive<br>function training,<br>working memory<br>updating, visual<br>exploration, spatial<br>orienting tasks.            | Before and<br>after training<br>follow-up<br>(n/s)                  | Yes                      |
| Djabelkhjr<br>et al 2017     | N = 10<br>Ratio = 30.0 %<br>Age = 75.2 (6.4)<br>Edu = 60.0% (6)<br>(of college level)<br>MMSE = 27.7<br>(1.9) | N = 10<br>Ratio = 40.0 %<br>Age = 78.2 (7.0)<br>Edu = 44.4% (4)<br>(of college level)<br>MMSE = 27.4 (2.0) | EC:<br>multi-domai<br>n<br>CC:<br>Active(multi<br>-component<br>)                                   | 90 mins per session<br>1 sessions/week, 12<br>weeks.<br>Total = 18 hours.    | EC: 1<br>CC: 0<br>Total: 5% | 'KODRO' (Altera-Group,<br>Paris, France), a<br>web-based platform with<br>several applications (ie,<br>appointment and event<br>reminding, cognitive<br>games, communication,<br>entertainment, videos<br>and a library). | Before and<br>after<br>training.<br>Follow-up<br>(n/s)              | Yes                      |
|                              |                                                                                                               |                                                                                                            |                                                                                                     |                                                                              |                             |                                                                                                                                                                                                                           | 29                                                                  |                          |

| 1                    |  |
|----------------------|--|
| 2<br>3               |  |
| 4<br>5               |  |
| 6                    |  |
| 7<br>8               |  |
| 9<br>10              |  |
| 11                   |  |
| 12<br>13             |  |
| 14                   |  |
| 15<br>16             |  |
| 17<br>18             |  |
| 19<br>20             |  |
| 21                   |  |
| 21<br>22<br>23       |  |
| 24<br>25             |  |
| 26                   |  |
| 27<br>28             |  |
| 29                   |  |
| 30<br>31             |  |
| 32<br>33             |  |
| 34                   |  |
| 34<br>35<br>36<br>37 |  |
| 37<br>38             |  |
| 39<br>40             |  |
| 41                   |  |
| 42<br>43             |  |
| 44                   |  |
| 45<br>46             |  |
| 47                   |  |

| Author<br>and Year                   | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD) | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD) | CCT type<br>for EC and<br>type of CC                     | Frequency, duration<br>and total hours                                                              | Drop-out<br>(%)                  | Cognitive Training<br>Intervention                                                                                                                                              | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>)                                                                      | Include<br>d for<br>meta-a<br>nalysis |
|--------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Fiatarone<br>Singh et<br>al.<br>2014 | N = 24<br>Ratio = n/s<br>Age = >55<br>Edu = n/s<br>MMSE = 28.0<br>(2.0)    | N = 27<br>Ratio = n/s<br>Age = >55<br>Edu = n/s<br>MMSE = 27.0 (2.0)            | EC: multi<br>domain<br>CC: active<br>(sham)              | 75 minute sessions, 2<br>or 3 days per week<br>for 26 weeks.<br>Total = 80 hours.                   | EC: 2<br>CC: 3<br>Total:<br>9.8% | COGPACK program:<br>Computer-based<br>multimodal and multi<br>domain exercises<br>targeting memory,<br>executive function,<br>attention, and speed of<br>information processing | At baseline<br>and 6<br>months and<br>at least 72<br>hours after<br>the previous<br>training<br>session<br>Follow-up:<br>at 18<br>months | Yes                                   |
| Finn &<br>McDonald<br>2011           | N = 8<br>ratio = 37.5%<br>age = 69.0<br>Edu = 13.3<br>MMSE = 28.5<br>(2.3) | N = 8<br>ratio = 62.5%<br>age = 76.4<br>Edu = 12.0<br>MMSE = 27.5 (2.4)         | EC:<br>Multi-doma<br>in<br>CC: Waiting<br>list (Passive) | 30 minute sessions,<br>4-5 sessions a week<br>for an average of<br>11.43 weeks.<br>Total = 25 hours | EC: 4<br>CC: 5<br>Total: 32%     | Lumosity Inc CCT<br>package. Four broad<br>cognitive domains<br>targeted: attention,<br>processing speed, visual<br>memory and cognitive<br>control                             | Before and<br>after training<br>Follow-up<br>(n/s)                                                                                       | Yes                                   |

| Author<br>and Year                   | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD) | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD) | CCT type<br>for EC and<br>type of CC                           | Frequency, duration<br>and total hours                                               | Drop-out<br>(%)                    | Cognitive Training<br>Intervention                                                                                                                   | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>) | Includ<br>d for<br>meta-<br>nalysis |
|--------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------|
| Finn and<br>McDonald<br>2015         | N = 12<br>ratio = 66%<br>age = 72.8<br>Edu = 13.8<br>MMSE = 27.8<br>(1.3)  | N = 12<br>ratio = 75%<br>age = 75.1<br>Edu = 13.7<br>MMSE = 27.8 (1.9)          | EC: Single<br>memory<br>domain<br>CC: Passive                  | 2 sessions per week<br>for 4 weeks<br>Total = n/s                                    | EC: 4<br>CC: 3<br>Total:22.6<br>%  | Repetition-lag training to<br>improve recollection<br>memory                                                                                         | First and last<br>training<br>session<br>Follow-up<br>(n/s)         | Yes                                 |
| Gagnon &<br>Belleville<br>2012       | N = 12<br>ratio = n/s<br>age = 67.0<br>Edu = 15.0<br>MMSE = 28.1<br>(1.2)  | N = 12<br>ratio = n/s<br>age = 68.4<br>Edu = 13.1<br>MMSE = 27.8 (1.5)          | EC: Single<br>domain(att<br>entional<br>control)<br>CC: Active | 60 minute sessions, 3<br>times a week for 2<br>weeks.<br>Total = 6 hours             | EC: 1<br>CC: 1<br>Total: 8%        | Programme targeting<br>attentional control using<br>Variable Priority (VP)<br>training in a dual task<br>with selected priorities<br>and feedback.   | One week<br>pre and after<br>intervention<br>Follow-up<br>(n/s)     | Yes                                 |
| Gooding<br>et al.<br>2016<br>study 1 | N = 31<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/s          | N = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/s               | EC:<br>Multi-doma<br>in<br>CC: Active                          | 60 min sessions, two<br>days per week for 16<br>weeks<br>Total = approx. 30<br>hours | EC: 12<br>CC: 1<br>Total:<br>20.3% | Posit Science's<br>BrainFitness – repeated<br>drill-and-practice<br>adaptive exercises<br>involving memory,<br>attention and executive<br>functions. | Before and<br>after training<br>Follow-up<br>(n/s)                  | Yes                                 |

| Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                          | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD)                                                                                                                         | CCT type<br>for EC and<br>type of CC                                                                                                                                                                                                                                                                                                                                                                  | Frequency, duration<br>and total hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drop-out<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cognitive Training<br>Intervention                                                                                                                                                                       | interval<br>(time pre or<br>post<br>intervention<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Include<br>d for<br>meta-a<br>nalysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/s                                   | N = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/s                                                                                                                                       | EC:<br>Multi-doma<br>in<br>CC: Active                                                                                                                                                                                                                                                                                                                                                                 | 60 min sessions, two<br>days per week for 16<br>weeks<br>Total = approx. 30<br>hours                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EC: 12<br>CC: 1<br>Total:<br>20.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Posit Science's<br>BrainFitness – repeated<br>drill-and-practice<br>adaptive exercises<br>involving memory,<br>attention and executive<br>functions.                                                     | Before and<br>after training<br>Follow-up<br>(n/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| N = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0<br>(2.6) | N = 40<br>ratio = 48%<br>age = 65.9<br>Edu = 70% of<br>secondary<br>education<br>MMSE = 26.0 (1.5)                                                                                                      | EC: Multi<br>domain +<br>balance<br>training<br>CC: Passive(<br>just balance<br>training)                                                                                                                                                                                                                                                                                                             | 30 minute sessions, 2<br>times a week for 10<br>weeks.<br>Total = 10 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EC: 0<br>CC: 2<br>Total:<br>2.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CogniPlus training<br>program Battery<br>contains subprograms<br>for attention, Working<br>Memory, long-term<br>memory, executive<br>functions, spatial<br>processing and<br>visuomotor<br>coordination. | Before and<br>after training<br>Follow-up<br>(n/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                     |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                     | age, mean<br>education, MMSE<br>(SD)<br>N = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/s<br>N = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0 | age, mean<br>education, MMSE<br>(SD)mean age, mean<br>education, MMSE<br>(SD)N = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0N = 40<br>ratio = 48%<br>age = 65.9<br>Edu = 70% of<br>secondary<br>education<br>MMSE = 26.0 | age, mean<br>education, MMSEmean age, mean<br>education, MMSEfor EC and<br>type of CCN = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sEC:<br>Multi-doma<br>in<br>CC: ActiveN = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0N = 40<br>ratio = 48%<br>age = 65.9<br>Edu = 70% of<br>secondary<br>education<br>MMSE = 26.0EC: Multi<br>domain +<br>balance<br>training<br>CC: Passive(<br>just balance<br>training) | age, mean<br>education, MMSEmean age, mean<br>education, MMSEfor EC and<br>type of CCFrequency, duration<br>and total hoursN = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sEC:<br>Multi-doma<br>in<br>CC: Active60 min sessions, two<br>days per week for 16<br>weeks<br>Total = approx. 30<br>hoursN = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0N = 40<br>ratio = 48%<br>age = 65.9<br>Edu = 70% of<br>secondary<br>education<br>MMSE = 26.0EC: Multi<br>domain +<br>balance<br>training<br>CC: Passive(<br>just balance<br>training)30 minute sessions, 2<br>times a week for 10<br>weeks.<br>Total = 10 hours | age, mean<br>education, MMSE<br>(SD)mean age, mean<br>education, MMSE<br>(SD)for EC and<br>type of CCFrequency, duration<br>and total hoursDrop-out<br>                                                  | age, mean<br>education, MMSE<br>(SD)mean age, mean<br>education, MMSE<br>(SD)for EC and<br>type of CCFrequency, duration<br>and total hoursDrop-out<br>(%)Cognitive training<br>interventionN = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 10<br>ratio = 58.1%<br>age = 75.6<br>EC:<br>Multi-doma<br>in<br>CC: ActiveEC:<br>Multi-doma<br>in<br>CC: Active60 min sessions, two<br>days per week for 16<br>weeks<br>Total = approx. 30<br>hoursEC: 12<br>CC: 1<br>Total:<br>20.3%Posit Science's<br>BrainFitness - repeated<br>drill-and-practice<br>adaptive exercises<br>involving memory,<br>attention and executive<br>functions.N = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0<br>(2.6)N = 40<br>ratio = 48%<br>age = 65.9<br>Edu = 70% of<br>Edu = 70% of<br>secondary<br>education<br>MMSE = 26.0 (1.5)EC: Multi<br>domain +<br>balance<br>training<br>CC: Passive(<br>just balance<br>training)30 minute sessions, 2<br>times a week for 10<br>weeks.<br>Total = 10 hoursCogniPlus training<br>program Battery<br>contains subprograms<br>for attention, Working<br>memory, long-term<br>memory, executive<br>functions, spatial<br>processing and<br>visuomotor | age, mean<br>education, MMSEmean age, mean<br>education, MMSEfor EC and<br>type of CCPrequency, duration<br>and total hoursDrop-but<br>(%)Cognitive training<br>Intervention(time pre or<br>post<br>interventionN = 23<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sN = 10<br>ratio = 58.1%<br>age = 75.6<br>Edu = 15.1<br>MMSE = n/sEC:<br>Multi-doma<br>in<br>C: Active60 min sessions, two<br>days per week for 16<br>total = approx. 30<br>hoursEC: 12<br>C: 11<br>Total:<br>20.3%Posit Science's<br>BrainFitness – repeated<br>drill-and-practice<br>adafter training<br>Follow-up<br>(n/s)Before and<br>after training<br>Follow-up<br>(n/s)N = 40<br>ratio = 55%<br>age = 68<br>Edu = 75% of<br>Edu = 70% of<br>secondary<br>educationN = 40<br>ratio = 48%<br>age = 65.9<br>Edu = 70% of<br>secondary<br>contains subprograms<br>for 2 C: Passive(<br>just blane<br>training)30 minute sessions, 2<br>times a week for 10<br>weeks.<br>Total = 10 hoursEC: 0<br>CC: 0<br>Total:<br>Total:<br>2.5%CogniPlus training<br>program Battery<br>contains subprograms<br>for attention, Working<br>memory, executive<br>functions, spatial<br>processing and<br>visuomotor<br>coordination.Before and<br>after training<br>Follow-up<br>(n/s) |

| Author<br>and Year    | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)              | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD)    | CCT type<br>for EC and<br>type of CC                            | Frequency, duration<br>and total hours                                                  | Drop-out<br>(%)               | Cognitive Training<br>Intervention                                                                                                          | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>) | Inc<br>d fe<br>me<br>nal |
|-----------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|
| Han et al<br>2017     | N = 23<br>Ratio = 56.5%<br>Age = 73.7 ± 4.8<br>Edu = 13.5 ± 3.2<br>MMSE = 25.7 ±<br>3.2 | N = 20<br>Ratio = 50.0%<br>Age = 74.5 ± 6.4<br>Edu = 12.7 ± 3.7<br>MMSE=24.5 ± 2.4 | EC: single<br>memory<br>training<br>CC: Passive<br>(Usual Care) | 30 min per session<br>1 hour per day<br>2 sessions/week, 4<br>weeks.<br>Total = 4 hours | EC:3<br>CC:5<br>Total:<br>16% | USMART program<br>involving spaced<br>retrieval-based memory<br>training, using a<br>self-administered<br>application on an iPad<br>tablet. | Week 0, 5<br>Follow-up<br>(n/s)#                                    | Yes                      |
| Herrera et<br>al 2012 | N = 11<br>ratio = 54%<br>age = 75<br>Edu = n/s<br>MMSE = 27.4<br>(0.5)                  | N = 11<br>ratio = 45%<br>age = 78<br>Edu = n/s<br>MMSE = 27.2 (0.4)                | EC:<br>Multidomai<br>n CC: Active                               | 60 minute sessions, 2<br>days a week for 12<br>weeks.<br>Total = 24 hours               | 0%                            | Several computer-based<br>training exercises<br>designed to improve<br>memory and attention                                                 | 0, 12 weeks<br>± 15 days<br>Follow-up:<br>at 24 weeks               | Yes                      |
| Hughes et<br>al 2014  | N = 10<br>ratio = 20%<br>age = 78.5 (7.1)<br>Edu = 13.8 (2.4)<br>MMSE = 27.2<br>(1.9)   | N = 10<br>ratio = 40%<br>age = 76.2 (4.3)<br>Edu = 13.1 (1.9)<br>MMSE = 27.1 (1.8) | EC:<br>Multidomai<br>n<br>CC: Active                            | 90 minute sessions,<br>once a week for 24<br>weeks. Total = 36<br>hours                 | 0%                            | Group-based Nintendo<br>Wii sports package.<br>Group-based Interactive<br>video gaming                                                      | 0, 24 weeks<br>$\pm$ 1 weeks<br>Follow-up:<br>(n/s)                 | Yes                      |
|                       |                                                                                         |                                                                                    |                                                                 |                                                                                         |                               |                                                                                                                                             | 33                                                                  |                          |

| 2                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------|--|
| 3                                                                                                        |  |
| 4<br>5                                                                                                   |  |
| 5<br>6<br>7                                                                                              |  |
| 7                                                                                                        |  |
| 8                                                                                                        |  |
| 9<br>10                                                                                                  |  |
| 10                                                                                                       |  |
| 12                                                                                                       |  |
| 13                                                                                                       |  |
| 14                                                                                                       |  |
| 11<br>12<br>13<br>14<br>15<br>16<br>17                                                                   |  |
| 17                                                                                                       |  |
| 18                                                                                                       |  |
| 18<br>19                                                                                                 |  |
| 20                                                                                                       |  |
| 21                                                                                                       |  |
| 23                                                                                                       |  |
| 24                                                                                                       |  |
| 25                                                                                                       |  |
| 20<br>27                                                                                                 |  |
| 28                                                                                                       |  |
| 29                                                                                                       |  |
| 30                                                                                                       |  |
| 31<br>32                                                                                                 |  |
| 33                                                                                                       |  |
| 34                                                                                                       |  |
| 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 |  |
| 36<br>37                                                                                                 |  |
| 38                                                                                                       |  |
| 39                                                                                                       |  |
| 40                                                                                                       |  |
| 41<br>42                                                                                                 |  |
| 43                                                                                                       |  |
| 44                                                                                                       |  |
| 45                                                                                                       |  |
| 46<br>47                                                                                                 |  |
| 4/                                                                                                       |  |

| Author<br>and Year         | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)              | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD)      | CCT type<br>for EC and<br>type of CC                                                                       | Frequency, duration<br>and total hours                                                  | Drop-out<br>(%)                   | Cognitive Training<br>Intervention                                                                                                                                                                               | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>)          | Include<br>d for<br>meta-a<br>nalysis |
|----------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|
| Hyer Lee<br>et al.<br>2016 | N = 34<br>ratio = 50%<br>age = 75.1<br>Edu = 70%<br>secondary<br>MMSE = n/s             | N = 34<br>ratio = 44%<br>age = 75.2<br>Edu = 66%<br>secondary<br>MMSE = $n/s$        | EC: Single<br>domain<br>(working<br>memory)<br>CC: Active<br>(Sham)                                        | 25 days of 40 min<br>sessions, completed<br>over 5 to 7 weeks.<br>Total = 16.7 hours    | EC: 4<br>CC: 5<br>Total:<br>11.7% | Cogmed – adaptive WM<br>training                                                                                                                                                                                 | Before and<br>after training<br>Follow-up: 3<br>months after<br>intervention | Yes                                   |
| Lin et al<br>2016          | N = 10<br>Ratio = 50.0%<br>Age = 75.2 ± 7.4<br>Edu = 15.9 ± 1.3<br>MMSE = 26.6 ±<br>2.9 | N = 11<br>Ratio = 54.5%<br>Age = 75.2 ± 7.4<br>Edu = 15.9 ± 1.3<br>MMSE = 26.6 ± 2.9 | EC: Single<br>domain<br>speed-of-pr<br>ocessing<br>CC: active<br>control(me<br>ntal leisure<br>activities) | 1 hour per day<br>4 days per week for 6<br>weeks in their<br>homes.<br>Total = 24 hours | EC:2<br>CC:1<br>Total:<br>12.5%   | INSIGHT online program:<br>(vision-based<br>speed-of-processing)<br>which included five<br>training tasks: eye for<br>detail, peripheral<br>challenge, visual sweeps,<br>double decision, and<br>target tracker. | Before and<br>after training<br>Follow-up<br>(n/s)#                          | Yes                                   |
| Optale et<br>al 2010       | N = 15<br>ratio = 59.1%<br>age = 78.5<br>Edu = 5.3<br>MMSE = 22.9<br>(5.0)              | N = 16<br>ratio = 31.25%<br>age = 81.6<br>Edu = 6<br>MMSE = 21.0 (4.8)               | EC: Single<br>domain -<br>Memory<br>CC: Active                                                             | 30 minute sessions, 3<br>times a week for 3<br>months.<br>Total = 58.5 hours            | EC: 3<br>CC: 2<br>Total:<br>16.1% | A Virtual Reality-based<br>memory training<br>programme                                                                                                                                                          | Before and<br>after training<br>Follow-up: 3<br>months after<br>intervention | No**                                  |
|                            |                                                                                         |                                                                                      |                                                                                                            |                                                                                         |                                   |                                                                                                                                                                                                                  | 34                                                                           |                                       |

| Author<br>and Year    | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)  | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD) | CCT type<br>for EC and<br>type of CC                                                                                           | Frequency, duration<br>and total hours                                                          | Drop-out<br>(%) | Cognitive Training<br>Intervention                                                                         | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>) | Inclu<br>d for<br>met<br>naly |
|-----------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------|
| Rosen et<br>al 2011   | N = 6<br>ratio = n/s<br>age = 70.7<br>Edu = 16.7<br>MMSE = 29.3<br>(1.2)    | N = 6<br>ratio = n/s<br>age = 78.0<br>Edu = 18.3<br>MMSE = 27.8 (2.3)           | EC:<br>processing<br>speed and<br>accuracy in<br>auditory<br>processing<br>CC:<br>computer-b<br>ased<br>activities(Ac<br>tive) | 100 minute sessions,<br>5 times a week for 8<br>weeks.<br>Total = 36 hours                      | 0%              | processing speed and<br>accuracy in auditory<br>processing                                                 | Before and<br>after training<br>Follow-up<br>(n/s)                  | Yes                           |
| Rozzini et<br>al 2007 | N = 15<br>ratio = n/s<br>age = 63 - 78<br>Edu = n/s<br>MMSE = 26.0<br>(1.6) | N = 22<br>ratio = n/s<br>age = 63 - 78<br>Edu = n/s<br>MMSE = 26.4 (1.9)        | EC:<br>Multidomai<br>n and<br>medication<br>CC:<br>Medication<br>only<br>(Passive)                                             | 60 minute session, 5<br>days a week for 4<br>weeks in 3 discrete<br>blocks.<br>Total = 60 hours | 0%              | Cognitive exercises<br>based on<br>Neuropsychology<br>Training combined with a<br>cholinesterase inhibitor | Before and<br>after training<br>Follow-up<br>(n/s)                  | Yes                           |

| 1<br>2<br>3<br>4<br>5<br>6<br>7                    |  |
|----------------------------------------------------|--|
| 8<br>9<br>10<br>11<br>12<br>13<br>14               |  |
| 15<br>16<br>17<br>18<br>19<br>20<br>21             |  |
| 22<br>23<br>24<br>25<br>26<br>27<br>28             |  |
| 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37 |  |
| 38<br>39<br>40<br>41<br>42                         |  |
| 43<br>44<br>45<br>46<br>47                         |  |

| Author<br>and Year     | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                                         | Control Group N,<br>ratio of male,<br>mean age, mean<br>education, MMSE<br>(SD)                                                | CCT type<br>for EC and<br>type of CC                                            | Frequency, duration<br>and total hours                                | Drop-out<br>(%) | Cognitive Training<br>Intervention                                  | Assessment<br>interval<br>(time pre or<br>post<br>intervention<br>)                                | Inclue<br>d for<br>meta<br>nalys |
|------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------|
| Savulich<br>et al 2017 | N = 21<br>Ratio = 52.4%<br>Age = 75.2 ± 7.4<br>Edu = 15.9 ± 1.3<br>(Age left<br>education)<br>MMSE = 26.6 ±<br>2.9 | N = 21<br>Ratio = $66.7\%$<br>Age = $76.9 \pm 8.3$<br>Edu = $16.0 \pm 2.1$<br>(Age left<br>education)<br>MMSE = $26.8 \pm 2.2$ | EC: a novel<br>memory<br>game<br>CC:<br>negative<br>(clinic visits<br>as usual) | 1 hour per session, 8<br>hours within 4<br>weeks.<br>Total = 8 hours. | 0 %             | Gameshow program:<br>Computer-based<br>episodic memory<br>training. | At a<br>maximum of<br>4 weeks<br>after the<br>baseline<br>testing<br>session<br>Follow-up<br>(n/s) | Yes                              |
| lotes: MM              | SE: Mini Mental State                                                                                              | e Examination, SD: St                                                                                                          | andard deviati                                                                  | ion, n/s: not stated, EC: E                                           | Experimental    | condition, CC: Control cor                                          | ndition.                                                                                           |                                  |
| Excluded f             | rom meta-analysis d                                                                                                | •                                                                                                                              | nitive outcome                                                                  | es not stated, ** Exclude<br>e used.                                  | d from meta     | analysis due to suspected                                           |                                                                                                    |                                  |
| *Excluded f            | rom meta-analysis d                                                                                                | ue to immediate cogr                                                                                                           | nitive outcome                                                                  | es not stated, ** Exclude<br>e used.                                  | •               | analysis due to suspected                                           |                                                                                                    |                                  |

BMJ Open

| Table 2 Results of Meta-analysis of computerised cognitive training (CCT) on cognitive domains |
|------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------|

| 7<br>8<br>9                                                                                                                                                                                                                                                 | Analysis of<br>CCT    | No. of<br>studies | N<br>Tx*/control | Pooled Effect size g (95% CI)            | Overall effect:<br>Z (P value) | Heterogeneity: I <sup>2</sup> %<br>(P value) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------------------|------------------------------------------|--------------------------------|----------------------------------------------|
| 10<br>11                                                                                                                                                                                                                                                    | Global<br>Cognition   | 11                | 258/245          | 0.23 (0.03, 0.44)                        | z= 2.22, p = 0.03              | 6% p = 0.39                                  |
| 12<br>13                                                                                                                                                                                                                                                    | Memory                | 13                | 245/232          | 0.30 (0.11, 0.50)                        | z = 3.03, p = 0.002            | 46% p = 0.04                                 |
| 14<br>15<br>16                                                                                                                                                                                                                                              | Working<br>Memory     | 5                 | 82/83            | 0.39 (0.12, 0.66)                        | z = 2.85, p = 0.004            | 0% p = 0.81                                  |
| 17<br>18                                                                                                                                                                                                                                                    | Executive<br>Function | 11                | 171/182          | 0.20 (-0.03, 0.43)                       | z= 1.74, p = 0.08              | 51% p = 0.03                                 |
| 20       569         21       22         23       24         25       26         27       28         29       30         31       32         33       34         35       36         37       38         39       40         41       42         43       5 |                       |                   |                  | erien                                    |                                | 37                                           |
| 44<br>45<br>46                                                                                                                                                                                                                                              |                       |                   | For peer review  | v only - http://bmjopen.bmj.com/site/abo | ut/guidelines.xhtml            |                                              |

Figure 1 Flow chart of the study selection process 

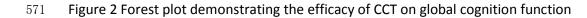
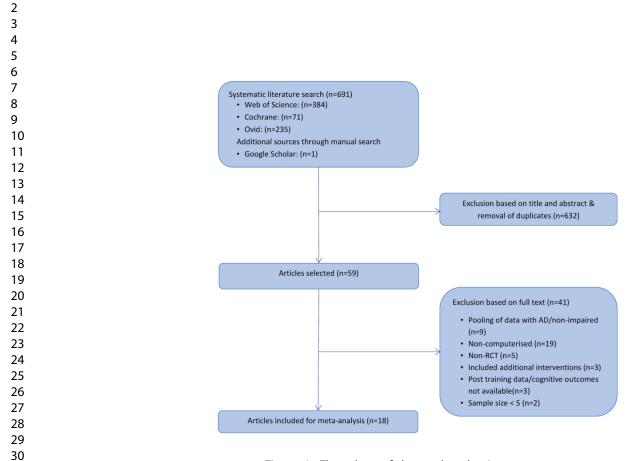
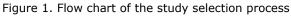





Figure 3 Forest plot demonstrating the efficacy of CCT on memory, working memory and executive function 

.ec efficacy of CCT on memory, working memory .





155x115mm (300 x 300 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

|                                                                                                                                                                      |                                                                       |                                                            | Experimental                                 | Control                                      |                                                                 | Std. Mean Difference                                                                                                                                                         | Std. Mean Difference |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Study or Subgroup                                                                                                                                                    | Std. Mean Difference                                                  | SE                                                         | Total                                        |                                              | Weight                                                          |                                                                                                                                                                              | IV, Random, 95% CI   |
|                                                                                                                                                                      |                                                                       |                                                            |                                              |                                              |                                                                 |                                                                                                                                                                              |                      |
|                                                                                                                                                                      | 0.11                                                                  | 0.2                                                        | 46                                           | 60                                           | 23.5%                                                           | 0.11 [-0.28, 0.50]                                                                                                                                                           |                      |
| Barban 2016<br>Ciarmiello 2015                                                                                                                                       | 0.11<br>0.45                                                          | 0.2<br>0.32                                                | 46<br>15                                     |                                              | 23.5%<br>10.2%                                                  | 0.11 [-0.28, 0.50]<br>0.45 [-0.18, 1.08]                                                                                                                                     |                      |
| Barban 2016<br>Ciarmiello 2015                                                                                                                                       | 0.45                                                                  | 0.2<br>0.32<br>0.45                                        |                                              | 15                                           |                                                                 | 0.11 [-0.28, 0.50]<br>0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]                                                                                                               |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017                                                                                                                    | 0.45                                                                  | 0.32<br>0.45                                               | 15                                           | 15<br>10                                     | 10.2%                                                           | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]                                                                                                                                     |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017<br>Fiatarone Singh 2014                                                                                            | 0.45<br>0.1<br>-0.27                                                  | 0.32<br>0.45                                               | 15<br>10                                     | 15<br>10                                     | 10.2%<br>5.3%                                                   | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]<br>-0.27 [-0.82, 0.28]                                                                                                              |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017<br>Fiatarone Singh 2014<br>Gooding 2016 study 1                                                                    | 0.45<br>0.1<br>-0.27                                                  | 0.32<br>0.45<br>0.28                                       | 15<br>10<br>24                               | 15<br>10<br>27<br>10                         | 10.2%<br>5.3%<br>13.0%                                          | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]                                                                                                                                     |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017<br>Fiatarone Singh 2014<br>Gooding 2016 study 1<br>Gooding 2016 study 2                                            | 0.45<br>0.1<br>-0.27<br>0.17<br>0.98                                  | 0.32<br>0.45<br>0.28<br>0.36                               | 15<br>10<br>24<br>31                         | 15<br>10<br>27<br>10<br>10                   | 10.2%<br>5.3%<br>13.0%<br>8.1%                                  | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]<br>-0.27 [-0.82, 0.28]<br>0.17 [-0.54, 0.88]<br>0.98 [0.20, 1.76]                                                                   |                      |
| Barban 2016<br>Ciarmiello 2015                                                                                                                                       | 0.45<br>0.1<br>-0.27<br>0.17<br>0.98                                  | 0.32<br>0.45<br>0.28<br>0.36<br>0.4                        | 15<br>10<br>24<br>31<br>23                   | 15<br>10<br>27<br>10<br>10<br>40             | 10.2%<br>5.3%<br>13.0%<br>8.1%<br>6.7%                          | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]<br>-0.27 [-0.82, 0.28]<br>0.17 [-0.54, 0.88]<br>0.98 [0.20, 1.76]<br>0.41 [-0.00, 0.82]                                             |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017<br>Fiatarone Singh 2014<br>Gooding 2016 study 1<br>Gooding 2016 study 2<br>Hagovsk 2016<br>Han 2017                | 0.45<br>0.1<br>-0.27<br>0.17<br>0.98<br>0.41<br>0.19                  | 0.32<br>0.45<br>0.28<br>0.36<br>0.4<br>0.21                | 15<br>10<br>24<br>31<br>23<br>40             | 15<br>10<br>27<br>10<br>10<br>40<br>20       | 10.2%<br>5.3%<br>13.0%<br>8.1%<br>6.7%<br>21.7%                 | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]<br>-0.27 [-0.82, 0.28]<br>0.17 [-0.54, 0.88]<br>0.98 [0.20, 1.76]<br>0.41 [-0.00, 0.82]<br>0.19 [-1.57, 1.95]                       |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017<br>Fiatarone Singh 2014<br>Gooding 2016 study 1<br>Gooding 2016 study 2<br>Hagovsk 2016                            | 0.45<br>0.1<br>-0.27<br>0.17<br>0.98<br>0.41<br>0.19                  | 0.32<br>0.45<br>0.28<br>0.36<br>0.4<br>0.21<br>0.9<br>0.46 | 15<br>10<br>24<br>31<br>23<br>40<br>23<br>10 | 15<br>10<br>27<br>10<br>10<br>40<br>20<br>10 | 10.2%<br>5.3%<br>13.0%<br>8.1%<br>6.7%<br>21.7%<br>1.4%         | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]<br>-0.27 [-0.82, 0.28]<br>0.17 [-0.54, 0.88]<br>0.98 [0.20, 1.76]<br>0.41 [-0.00, 0.82]<br>0.19 [-1.57, 1.95]<br>0.58 [-0.32, 1.48] |                      |
| Barban 2016<br>Ciarmiello 2015<br>Djabelkhir 2017<br>Fiatarone Singh 2014<br>Gooding 2016 study 1<br>Gooding 2016 study 2<br>Hagovsk 2016<br>Han 2017<br>Hughes 2014 | 0.45<br>0.1<br>-0.27<br>0.17<br>0.98<br>0.41<br>0.19<br>0.58<br>-0.49 | 0.32<br>0.45<br>0.28<br>0.36<br>0.4<br>0.21<br>0.9<br>0.46 | 15<br>10<br>24<br>31<br>23<br>40<br>23       | 15<br>10<br>27<br>10<br>10<br>40<br>20<br>10 | 10.2%<br>5.3%<br>13.0%<br>8.1%<br>6.7%<br>21.7%<br>1.4%<br>5.1% | 0.45 [-0.18, 1.08]<br>0.10 [-0.78, 0.98]<br>-0.27 [-0.82, 0.28]<br>0.17 [-0.54, 0.88]<br>0.98 [0.20, 1.76]<br>0.41 [-0.00, 0.82]<br>0.19 [-1.57, 1.95]                       |                      |

Figure 2 Forest plot demonstrating the efficacy of CCT on global cognitive function

195x62mm (300 x 300 DPI)

|                                                                   |                                                               | Ex         | perimental          | Control |        | Std. Mean Difference | Std. Mean Differer               |
|-------------------------------------------------------------------|---------------------------------------------------------------|------------|---------------------|---------|--------|----------------------|----------------------------------|
| Study or Subgroup                                                 | Std. Mean Difference                                          | SE         | Total               | Total   | Weight | IV, Random, 95% CI   | IV, Random, 95%                  |
| 1 Memory                                                          |                                                               |            |                     |         |        |                      |                                  |
| Barban 2016                                                       | -0.09                                                         | 0.2        | 46                  | 60      | 5.0%   | -0.09 [-0.48, 0.30]  |                                  |
| Ciarmiello 2015                                                   | 0.34                                                          | 0.2        | 15                  | 15      | 5.0%   | 0.34 [-0.05, 0.73]   |                                  |
| Djabelkhir 2017                                                   | 0.12                                                          | 0.4        | 10                  | 10      | 2.1%   | 0.12 [-0.66, 0.90]   |                                  |
| Fiatarone Singh 2014                                              | 0.16                                                          | 0.19       | 24                  | 27      | 5.2%   | 0.16 [-0.21, 0.53]   |                                  |
| Finn 2011                                                         | -0.2                                                          | 0.46       | 8                   | 8       | 1.7%   | -0.20 [-1.10, 0.70]  |                                  |
| Finn 2015                                                         | 0.01                                                          | 0.31       | 12                  | 12      | 3.0%   | 0.01 [-0.60, 0.62]   |                                  |
| Gooding 2016 study 1                                              | 0.35                                                          | 0.22       | 31                  | 10      | 4.6%   | 0.35 [-0.08, 0.78]   |                                  |
| Gooding 2016 study 2                                              | 0.52                                                          | 0.24       | 23                  | 10      | 4.1%   | 0.52 [0.05, 0.99]    |                                  |
| Han 2017                                                          | 0.09                                                          | 0.2        | 23                  | 20      | 5.0%   | 0.09 [-0.30, 0.48]   |                                  |
| Herrera 2012                                                      | 1.1                                                           | 0.28       | 11                  | 11      | 3.4%   | 1.10 [0.55, 1.65]    | -                                |
| Rosen 2011                                                        | 0.89                                                          | 0.62       | 6                   | 6       | 1.0%   | 0.89 [-0.33, 2.11]   |                                  |
| Rozzini 2007                                                      | 0.08                                                          | 0.29       | 15                  | 22      | 3.3%   | 0.08 [-0.49, 0.65]   | <del>_</del>                     |
| Savulich 2017                                                     | 0.85                                                          | 0.28       | 21                  | 21      | 3.4%   | 0.85 [0.30, 1.40]    |                                  |
| Subtotal (95% CI)                                                 |                                                               |            | 245                 | 232     | 46.8%  | 0.30 [0.11, 0.50]    | •                                |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z | .06; Chi <sup>2</sup> = 22.08, df = 12<br>= 3.03 (P = 0.002)  | (P = 0.0-  | 4); I² = 46%        |         |        |                      |                                  |
| 2 Working memory                                                  |                                                               |            |                     |         |        |                      |                                  |
| Ciarmiello 2015                                                   | 0.24                                                          | 0.44       | 15                  | 15      | 1.8%   | 0.24 [-0.62, 1.10]   |                                  |
| Finn 2015                                                         | 0.63                                                          | 0.38       | 12                  | 12      | 2.2%   | 0.63 [-0.11, 1.37]   |                                  |
| Herrera 2012                                                      |                                                               | 0.36       | 11                  | 11      | 2.4%   | 0.39 [-0.32, 1.10]   |                                  |
| Hyer 2016                                                         | 0.66                                                          |            | 34                  | 34      | 2.6%   | 0.66 [-0.01, 1.33]   |                                  |
| Lin 2016                                                          |                                                               | 0.2        | 10                  | 11      | 5.0%   | 0.26 [-0.13, 0.65]   | +                                |
| Subtotal (95% CI)                                                 | 0.20                                                          |            | 82                  | 83      | 14.1%  | 0.39 [0.12, 0.66]    | •                                |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z | .00; Chi <sup>2</sup> = 1.57, df = 4 (F<br>= 2.85 (P = 0.004) | 9 = 0.81); | I <sup>2</sup> = 0% |         |        |                      |                                  |
| 3 Executive function                                              |                                                               |            |                     |         |        |                      |                                  |
| Ciarmiello 2015                                                   | 0.51                                                          | 0.27       | 15                  | 15      | 3.6%   | 0.51 [-0.02, 1.04]   | <b>⊢</b> •                       |
| Djabelkhir 2017                                                   | -0.3                                                          | 0.26       | 10                  | 10      | 3.8%   | -0.30 [-0.81, 0.21]  |                                  |
| Fiatarone Singh 2014                                              | 0.22                                                          | 0.18       | 24                  | 27      | 5.5%   | 0.22 [-0.13, 0.57]   | +                                |
| Finn 2011                                                         | 1.15                                                          | 0.29       | 8                   | 8       | 3.3%   | 1.15 [0.58, 1.72]    | -                                |
| Finn 2015                                                         | 0.06                                                          | 0.31       | 12                  | 12      | 3.0%   | 0.06 [-0.55, 0.67]   |                                  |
| Gagnon 2012                                                       | 0.26                                                          | 0.24       | 12                  | 12      | 4.1%   | 0.26 [-0.21, 0.73]   | +                                |
| Hughes 2014                                                       | 0.48                                                          | 0.4        | 10                  | 10      | 2.1%   | 0.48 [-0.30, 1.26]   |                                  |
| Hyer 2016                                                         | -0.14                                                         |            | 34                  | 34      | 4.3%   | -0.14 [-0.59, 0.31]  |                                  |
| Lin 2016                                                          | 0.02                                                          |            | 10                  | 11      | 2.2%   | 0.02 [-0.72, 0.76]   |                                  |
| Rozzini 2007                                                      | 0.22                                                          | 0.24       | 15                  | 22      | 4.1%   | 0.22 [-0.25, 0.69]   | +                                |
| Savulich 2017                                                     | -0.16                                                         |            | 21                  | 21      | 3.0%   | -0.16 [-0.77, 0.45]  |                                  |
| Subtotal (95% CI)                                                 |                                                               |            | 171                 | 182     | 39.1%  | 0.20 [-0.03, 0.43]   | •                                |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z | .07; Chi² = 20.28, df = 10<br>= 1.74 (P = 0.08)               | (P = 0.0   | 3); I² = 51%        |         |        |                      |                                  |
| Total (95% CI)                                                    |                                                               |            | 498                 | 497     | 100.0% | 0.28 [0.15, 0.40]    | •                                |
| ( )                                                               |                                                               |            |                     |         |        |                      | -2 -1 0<br>Favours control Favou |

Figure 3 Forest plot demonstrating the efficacy of CCT on memory, working memory and executive function

195x173mm (300 x 300 DPI)

Supplement to: Zhang H, Huntley J, et al. The efficacy of Computerized Cognitive Training on cognitive outcomes in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis.

Supplementary Figure 1 summary of risk of bias for included studies

Supplementary Figure 2 Funnel plot demonstrating bias of CCT on global cognitive function

Supplementary Figure 3 Forest plot demonstrating efficacy of CCT on global cognition stratified by the type of control group

Supplementary Figure 4 Funnel plot demonstrating bias of CCT on global cognition stratified by the type of control group

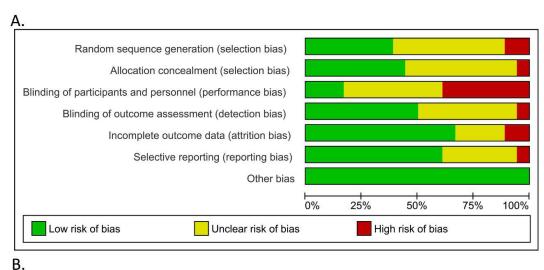
Supplementary Figure 5 Funnel plot demonstrating bias of CCT on memory, working memory and executive function

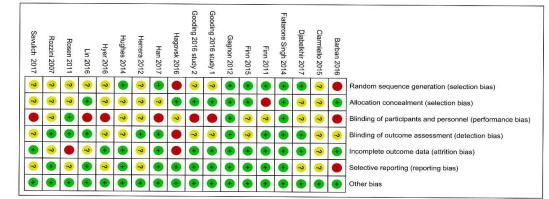
Supplementary Figure 6 Forest plot demonstrating efficacy of CCT on memory stratified by the type of control group

Supplementary Figure 7 Funnel plot demonstrating bias of CCT on memory stratified by the type of control group

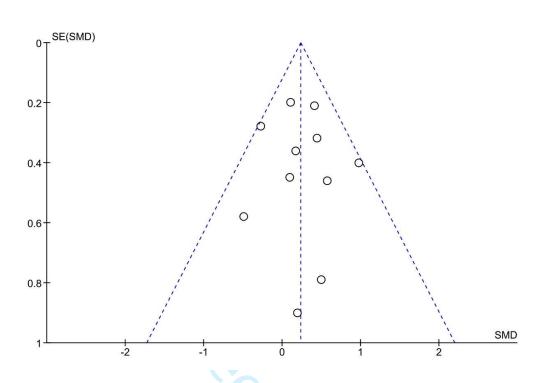
Supplementary Figure 8 Forest plot demonstrating efficacy of CCT on executive function stratified by the type of control group

Supplementary Figure 9 Funnel plot demonstrating bias of CCT on executive cognition stratified by the type of control group


Supplementary Figure 10 Forest plot demonstrating efficacy of CCT on memory stratified by single memory domain or multi-domain intervention


Supplementary Figure 11 Funnel plot demonstrating bias of CCT on memory stratified by single memory domain or multi-domain intervention

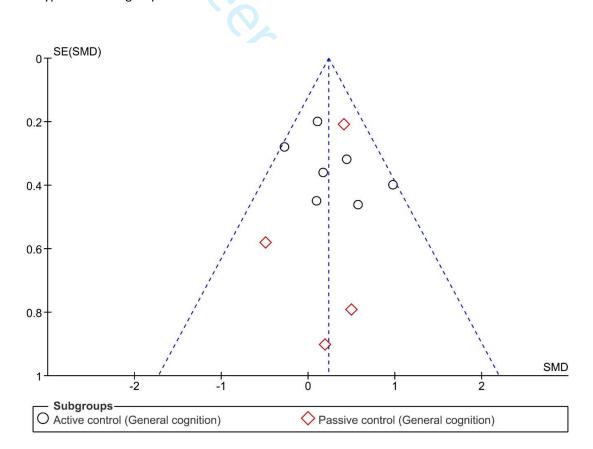
Supplementary Figure 12 Forest plot demonstrating efficacy of CCT on global cognition stratified by dose of the intervention


Supplementary Figure 13 Funnel plot demonstrating bias of CCT on global cognition stratified by dose of the intervention

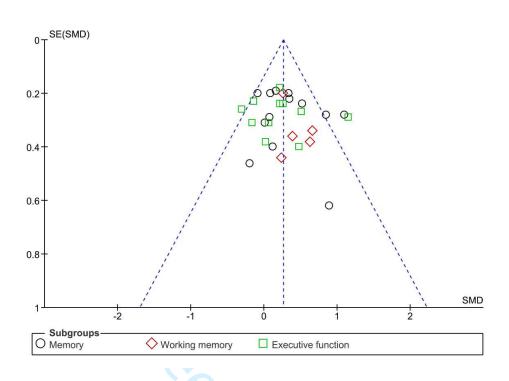
**BMJ** Open






Supplementary Figure 1 (A-B). Summary of risk of bias for included studies. (A). Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies. (B). Risk of bias summary: review authors' judgements about each risk of bias item for each included study.




Supplementary Figure 2. Funnel plot demonstrating bias of CCT on global cognitive function

| 2   |                                     |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                                          |                                       |
|-----|-------------------------------------|----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|------------------------------------------|---------------------------------------|
| 3   |                                     |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                                          |                                       |
| 4   |                                     |                                        |         | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control   |               | Std. Mean Difference                     | Std. Mean Difference                  |
| 5   | Study or Subgroup                   | Std. Mean Difference                   | SE      | A REAL PROVIDED AND A REAL PROVIDA AND A REAL PROVIDED AND A REAL PROVIDA AND A REAL PRO |           | Weight        |                                          | IV, Random, 95% Cl                    |
| 6   | 2.7.1 Active control (G             | eneral cognition)                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                                          |                                       |
| 0   | Barban 2016                         | 0.11                                   | 0.2     | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60        | 23.5%         | 0.11 [-0.28, 0.50]                       |                                       |
| 7   | Ciarmiello 2015                     | 0.45                                   | 0.32    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15        | 10.2%         | 0.45 [-0.18, 1.08]                       |                                       |
| 8   | Djabelkhir 2017                     |                                        | 0.45    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        | 5.3%          | 0.10 [-0.78, 0.98]                       |                                       |
|     | Fiatarone Singh 2014                | -0.27                                  |         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27        | 13.0%         | -0.27 [-0.82, 0.28]                      |                                       |
| 9   | Gooding 2016 study 1                |                                        | 0.36    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        | 8.1%          |                                          |                                       |
| 10  | Gooding 2016 study 2                | 0.98                                   |         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        | 6.7%          | 0.98 [0.20, 1.76]                        |                                       |
|     | Hughes 2014<br>Subtotal (95% CI)    | 0.58                                   | 0.46    | 10<br>159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>142 | 5.1%<br>71.9% | 0.58 [-0.32, 1.48]<br>0.23 [-0.05, 0.51] |                                       |
| 11  |                                     | .04; Chi² = 8.17, df = 6 (F            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 142       | /1.9/0        | 0.23 [-0.05, 0.51]                       |                                       |
| 12  | Test for overall effect: Z          |                                        | - = 0.2 | $(3); 1^{-} = 27\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |               |                                          |                                       |
| 13  | 2.7.2 Passive control (             | General cognition)                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                                          |                                       |
| 1 / | Hagovsk 2016                        | 0.41                                   | 0.21    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40        | 21.7%         | 0.41 [-0.00, 0.82]                       |                                       |
| 14  | Hagovsk 2010<br>Han 2017            | 0.41                                   |         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20        | 1.4%          | 0.19 [-1.57, 1.95]                       |                                       |
| 15  | Rozzini 2007                        | -0.49                                  |         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22        | 3.2%          | -0.49 [-1.63, 0.65]                      |                                       |
| 16  | Savulich 2017                       |                                        | 0.79    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21        | 1.8%          | 0.50 [-1.05, 2.05]                       | · · · · · · · · · · · · · · · · · · · |
| 10  | Subtotal (95% CI)                   |                                        |         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103       | 28.1%         | 0.31 [-0.06, 0.68]                       | ◆                                     |
| 17  | Heterogeneity: Tau <sup>2</sup> = 0 | .00; Chi² = 2.20, df = 3 (F            | P = 0.5 | i3); l² = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |               |                                          |                                       |
| 18  | Test for overall effect: Z          | = 1.66 (P = 0.10)                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                                          |                                       |
| 19  | Total (95% CI)                      |                                        |         | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245       | 100.0%        | 0.23 [0.03, 0.44]                        | ◆                                     |
| 20  |                                     | .01; Chi <sup>2</sup> = 10.62, df = 10 | (P = )  | 0.39); I² = 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |               |                                          | -2 -1 0 1 2                           |
|     | Test for overall effect: Z          |                                        | (5      | 2 70 12 00/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |               |                                          | Favours control Favours CCT           |
| 21  | lest for subgroup differe           | ences: Chi <sup>2</sup> = 0.12, df = 1 | (P = (  | J.73), I <sup>2</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |               |                                          |                                       |
|     |                                     |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |               |                                          |                                       |

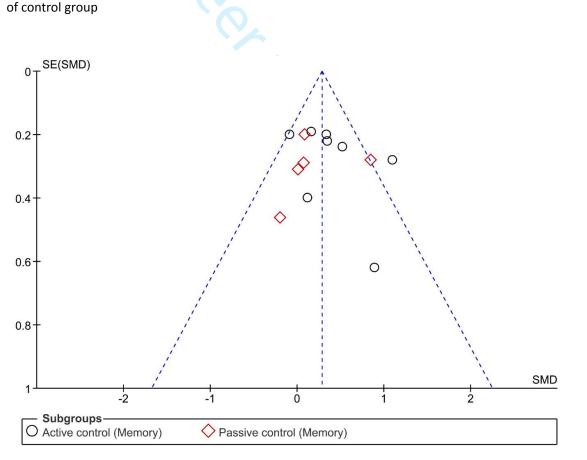
Supplementary Figure 3. Forest plot demonstrating efficacy of CCT on global cognition stratified by the type of control group



#### Supplementary Figure 4. Funnel plot demonstrating bias of CCT on global cognition stratified by the type of control group



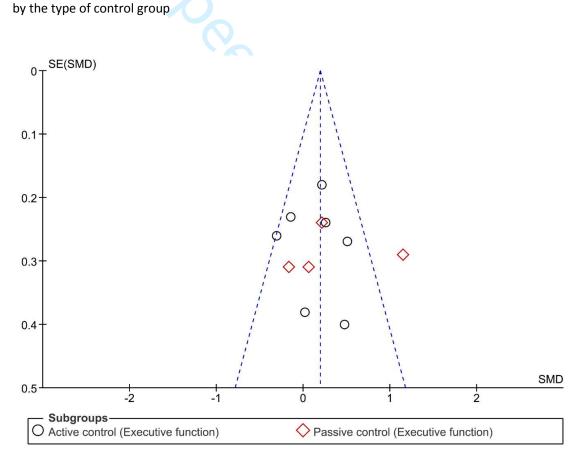
Supplementary Figure 5. Funnel plot demonstrating bias of CCT on memory, working memory and executive function


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Page 47 of 66                                                                                                                                                                                                                                                                                               | ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>20                                                                                                                                     |   |
| 30         31         32         33         34         35         36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57 |   |

60

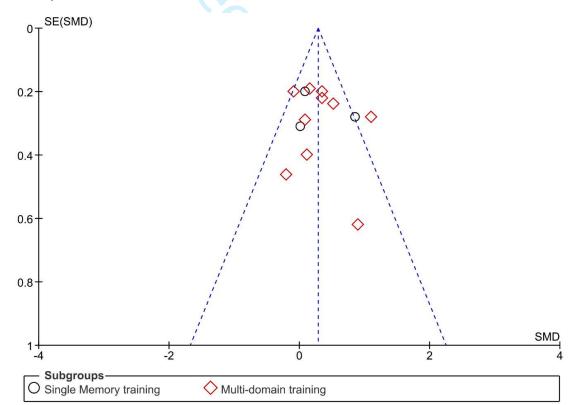
|                                                                                                                                                                                 |                                                                      | Exp                                         | erimental                                               | Control                    | 1                                      | Std. Mean Difference                                                                                      | Std. Mean Difference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|
| Study or Subgroup                                                                                                                                                               | Std. Mean Difference                                                 | SE                                          | Total                                                   | Total                      | Weight                                 | IV, Random, 95% CI                                                                                        | IV, Random, 95% CI   |
| 1 Active control (Mem                                                                                                                                                           | югу)                                                                 |                                             |                                                         |                            |                                        |                                                                                                           |                      |
| Barban 2016                                                                                                                                                                     | -0.09                                                                | 0.2                                         | 46                                                      | 60                         | 10.5%                                  | -0.09 [-0.48, 0.30]                                                                                       |                      |
| Ciarmiello 2015                                                                                                                                                                 | 0.34                                                                 | 0.2                                         | 15                                                      | 15                         | 10.5%                                  | 0.34 [-0.05, 0.73]                                                                                        |                      |
| Djabelkhir 2017                                                                                                                                                                 | 0.12                                                                 | 0.4                                         | 10                                                      | 10                         | 4.6%                                   | 0.12 [-0.66, 0.90]                                                                                        |                      |
| Fiatarone Singh 2014                                                                                                                                                            | 0.16                                                                 | 0.19                                        | 24                                                      | 27                         | 10.9%                                  | 0.16 [-0.21, 0.53]                                                                                        | - <b>+-</b>          |
| Gooding 2016 study 1                                                                                                                                                            | 0.35                                                                 | 0.22                                        | 31                                                      | 10                         | 9.6%                                   | 0.35 [-0.08, 0.78]                                                                                        |                      |
| Gooding 2016 study 2                                                                                                                                                            | 0.52                                                                 | 0.24                                        | 23                                                      | 10                         | 8.8%                                   | 0.52 [0.05, 0.99]                                                                                         |                      |
| Herrera 2012                                                                                                                                                                    | 1.1                                                                  | 0.28                                        | 11                                                      | 11                         | 7.5%                                   | 1.10 [0.55, 1.65]                                                                                         |                      |
| Rosen 2011                                                                                                                                                                      | 0.89                                                                 | 0.62                                        | 6                                                       | 6                          | 2.3%                                   | 0.89 [-0.33, 2.11]                                                                                        | · · · ·              |
| Subtotal (95% CI)                                                                                                                                                               |                                                                      |                                             | 166                                                     | 149                        | 64.6%                                  | 0.36 [0.11, 0.61]                                                                                         | •                    |
| 2 Passive control (Me                                                                                                                                                           | morv)                                                                |                                             |                                                         |                            |                                        |                                                                                                           |                      |
| z rassive control (we                                                                                                                                                           |                                                                      |                                             |                                                         |                            |                                        |                                                                                                           |                      |
| Finn 2011                                                                                                                                                                       |                                                                      | 0.46                                        | 0                                                       | 0                          | 2 70/                                  | 0.20 [ 1.10 0.70]                                                                                         |                      |
|                                                                                                                                                                                 | -0.2                                                                 | 0.46                                        | 8                                                       | 8                          | 3.7%                                   | -0.20 [-1.10, 0.70]                                                                                       |                      |
| Finn 2015                                                                                                                                                                       | -0.2<br>0.01                                                         | 0.31                                        | 12                                                      | 12                         | 6.6%                                   | 0.01 [-0.60, 0.62]                                                                                        |                      |
| Finn 2015<br>Han 2017                                                                                                                                                           | -0.2<br>0.01<br>0.09                                                 | 0.31<br>0.2                                 | 12<br>23                                                | 12<br>20                   | 6.6%<br>10.5%                          | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]                                                                  |                      |
| Finn 2015<br>Han 2017<br>Rozzini 2007                                                                                                                                           | -0.2<br>0.01<br>0.09<br>0.08                                         | 0.31<br>0.2<br>0.29                         | 12<br>23<br>15                                          | 12<br>20<br>22             | 6.6%<br>10.5%<br>7.2%                  | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]                                            |                      |
| Finn 2015<br>Han 2017<br>Rozzini 2007<br>Savulich 2017                                                                                                                          | -0.2<br>0.01<br>0.09                                                 | 0.31<br>0.2<br>0.29                         | 12<br>23                                                | 12<br>20<br>22<br>21       | 6.6%<br>10.5%<br>7.2%<br>7.5%          | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]<br>0.85 [0.30, 1.40]                       |                      |
| Finn 2015<br>Han 2017<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)                                                                                                     | -0.2<br>0.01<br>0.09<br>0.08<br>0.85                                 | 0.31<br>0.2<br>0.29<br>0.28                 | 12<br>23<br>15<br>21<br>79                              | 12<br>20<br>22             | 6.6%<br>10.5%<br>7.2%                  | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]                                            |                      |
| Finn 2015<br>Han 2017<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0                                                              | -0.2<br>0.01<br>0.09<br>0.08<br>0.85<br>0.06; Chi² = 6.99, df = 4 (F | 0.31<br>0.2<br>0.29<br>0.28                 | 12<br>23<br>15<br>21<br>79                              | 12<br>20<br>22<br>21       | 6.6%<br>10.5%<br>7.2%<br>7.5%          | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]<br>0.85 [0.30, 1.40]                       |                      |
| Finn 2015<br>Han 2017<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0                                                              | -0.2<br>0.01<br>0.09<br>0.08<br>0.85<br>0.06; Chi² = 6.99, df = 4 (F | 0.31<br>0.2<br>0.29<br>0.28                 | 12<br>23<br>15<br>21<br>79                              | 12<br>20<br>22<br>21       | 6.6%<br>10.5%<br>7.2%<br>7.5%          | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]<br>0.85 [0.30, 1.40]                       |                      |
| Finn 2011<br>Finn 2015<br>Han 2017<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = (<br>Test for overall effect: 2<br>Total (95% CI) | -0.2<br>0.01<br>0.09<br>0.08<br>0.85<br>0.06; Chi² = 6.99, df = 4 (F | 0.31<br>0.2<br>0.29<br>0.28                 | 12<br>23<br>15<br>21<br>79                              | 12<br>20<br>22<br>21<br>83 | 6.6%<br>10.5%<br>7.2%<br>7.5%          | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]<br>0.85 [0.30, 1.40]                       | •<br>•               |
| Finn 2015<br>Han 2017<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = (<br>Test for overall effect: 2<br>Total (95% CI)              | -0.2<br>0.01<br>0.09<br>0.08<br>0.85<br>0.06; Chi² = 6.99, df = 4 (F | 0.31<br>0.2<br>0.29<br>0.28<br>? = 0.14); I | 12<br>23<br>15<br>21<br>79<br><sup>2</sup> = 43%<br>245 | 12<br>20<br>22<br>21<br>83 | 6.6%<br>10.5%<br>7.2%<br>7.5%<br>35.4% | 0.01 [-0.60, 0.62]<br>0.09 [-0.30, 0.48]<br>0.08 [-0.49, 0.65]<br>0.85 [0.30, 1.40]<br>0.20 [-0.14, 0.54] |                      |


Supplementary Figure 6. Forest plot demonstrating efficacy of CCT on memory stratified by the type of control group



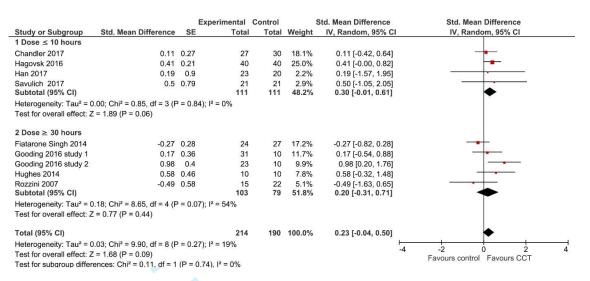
# Supplementary Figure 7. Funnel plot demonstrating bias of CCT on memory stratified by the type of control group

| 04                                                                                                                                                                                                                          | Old Mars Difference                                                                                                 |                                        | Experimental                                                    |                      |                                | Std. Mean Difference                                                                  | Std. Mean Difference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|----------------------|--------------------------------|---------------------------------------------------------------------------------------|----------------------|
| Study or Subgroup                                                                                                                                                                                                           | Std. Mean Difference                                                                                                | SE                                     | Total                                                           | Total                | Weight                         | IV, Random, 95% CI                                                                    | IV, Random, 95% CI   |
| 1 Active control (Exec                                                                                                                                                                                                      |                                                                                                                     |                                        |                                                                 |                      |                                |                                                                                       |                      |
| Ciarmiello 2015                                                                                                                                                                                                             |                                                                                                                     | 0.27                                   | 15                                                              |                      | 9.3%                           | 0.51 [-0.02, 1.04]                                                                    |                      |
| Djabelkhir 2017                                                                                                                                                                                                             | -0.3                                                                                                                | 0.26                                   | 10                                                              | 10                   | 9.6%                           | -0.30 [-0.81, 0.21]                                                                   |                      |
| Fiatarone Singh 2014                                                                                                                                                                                                        | 0.22                                                                                                                | 0.18                                   | 24                                                              |                      | 12.9%                          | 0.22 [-0.13, 0.57]                                                                    |                      |
| Gagnon 2012                                                                                                                                                                                                                 | 0.26                                                                                                                | 0.24                                   | 12                                                              | 12                   | 10.4%                          | 0.26 [-0.21, 0.73]                                                                    |                      |
| Hughes 2014                                                                                                                                                                                                                 | 0.48                                                                                                                | 0.4                                    | 10                                                              | 10                   | 5.8%                           | 0.48 [-0.30, 1.26]                                                                    |                      |
| Hyer 2016                                                                                                                                                                                                                   | -0.14                                                                                                               | 0.23                                   | 34                                                              | 34                   | 10.8%                          | -0.14 [-0.59, 0.31]                                                                   |                      |
| Lin 2016                                                                                                                                                                                                                    | 0.02                                                                                                                | 0.38                                   | 10                                                              | 11                   | 6.2%                           | 0.02 [-0.72, 0.76]                                                                    |                      |
| Subtotal (95% CI)                                                                                                                                                                                                           |                                                                                                                     |                                        | 115                                                             | 119                  | 65.0%                          | 0.13 [-0.08, 0.35]                                                                    | •                    |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: 2<br>2 Passive control (Eve                                                                                                                                 | z = 1.20 (P = 0.23)                                                                                                 | P = 0.2                                | 28); 1* = 20%                                                   |                      |                                |                                                                                       |                      |
| Test for overall effect: Z                                                                                                                                                                                                  | z = 1.20 (P = 0.23)                                                                                                 | P = 0.2                                | 28); 1* = 20%                                                   |                      |                                |                                                                                       |                      |
|                                                                                                                                                                                                                             | Z = 1.20 (P = 0.23)<br>ecutive function)                                                                            | 0.29                                   | 28); 1* = 20%                                                   | 8                    | 8.6%                           | 1.15 [0.58, 1.72]                                                                     |                      |
| Test for overall effect: 2<br>2 Passive control (Exe                                                                                                                                                                        | Z = 1.20 (P = 0.23)<br>ecutive function)<br>1.15                                                                    |                                        | ,                                                               |                      | 8.6%<br>8.0%                   | 1.15 [0.58, 1.72]<br>0.06 [-0.55, 0.67]                                               |                      |
| Test for overall effect: Z<br>2 Passive control (Exe<br>Finn 2011                                                                                                                                                           | Z = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06                                                            | 0.29                                   | 8                                                               |                      |                                |                                                                                       |                      |
| Test for overall effect: Z<br>2 Passive control (Exe<br>Finn 2011<br>Finn 2015                                                                                                                                              | Z = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06                                                            | 0.29<br>0.31<br>0.24                   | 8<br>12                                                         | 12                   | 8.0%                           | 0.06 [-0.55, 0.67]                                                                    | <br>                 |
| Test for overall effect: Z<br>2 Passive control (Exe<br>Finn 2011<br>Finn 2015<br>Rozzini 2007                                                                                                                              | 2 = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06<br>0.22                                                    | 0.29<br>0.31<br>0.24                   | 8<br>12<br>15                                                   | 12<br>22             | 8.0%<br>10.4%                  | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]                                              |                      |
| Test for overall effect: Z<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% Cl)                                                                                        | 2 = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06<br>0.22                                                    | 0.29<br>0.31<br>0.24<br>0.31           | 8<br>12<br>15<br>21<br>56                                       | 12<br>22<br>21       | 8.0%<br>10.4%<br>8.0%          | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]                       |                      |
| Test for overall effect: Z<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% Cl)                                                                                        | 2 = 1.20 (P = 0.23)<br>acutive function)<br>1.15<br>0.06<br>0.22<br>-0.16<br>0.23; Chi <sup>2</sup> = 11.46, df = 3 | 0.29<br>0.31<br>0.24<br>0.31           | 8<br>12<br>15<br>21<br>56                                       | 12<br>22<br>21       | 8.0%<br>10.4%<br>8.0%          | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]                       |                      |
| Test for overall effect: 2<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = C                                                 | 2 = 1.20 (P = 0.23)<br>acutive function)<br>1.15<br>0.06<br>0.22<br>-0.16<br>0.23; Chi <sup>2</sup> = 11.46, df = 3 | 0.29<br>0.31<br>0.24<br>0.31           | 8<br>12<br>15<br>21<br>56                                       | 12<br>22<br>21<br>63 | 8.0%<br>10.4%<br>8.0%          | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]                       |                      |
| Test for overall effect: 2<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = (<br>Test for overall effect: 2<br>Total (95% CI) | 2 = 1.20 (P = 0.23)<br>acutive function)<br>1.15<br>0.06<br>0.22<br>-0.16<br>0.23; Chi <sup>2</sup> = 11.46, df = 3 | 0.29<br>0.31<br>0.24<br>0.31<br>(P = 0 | 8<br>12<br>15<br>21<br>56<br>.009); I <sup>2</sup> = 74%<br>171 | 12<br>22<br>21<br>63 | 8.0%<br>10.4%<br>8.0%<br>35.0% | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]<br>0.32 [-0.23, 0.87] |                      |

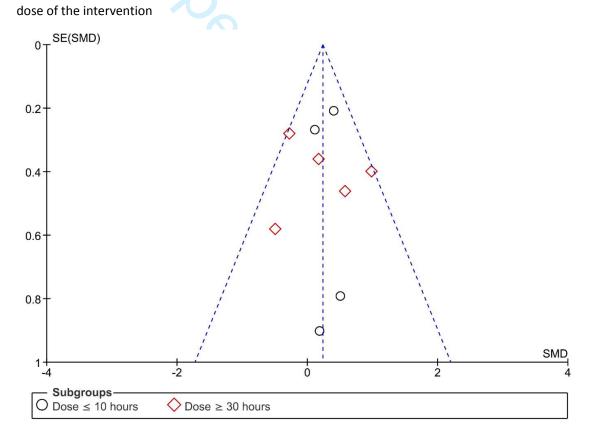

Supplementary Figure 8. Forest plot demonstrating efficacy of CCT on executive function stratified



Supplementary Figure 9. Funnel plot demonstrating bias of CCT on executive cognition stratified by the type of control group


| Study or Subgroup                    | Std. Mean Difference                   | SE       | Total                    | Total | Weight | IV, Random, 95% C   | I IV, Random, 95% CI                     |
|--------------------------------------|----------------------------------------|----------|--------------------------|-------|--------|---------------------|------------------------------------------|
| 1 Single Memory traini               |                                        |          | Total                    | Total | Weight | 10, rundom, 3576 0  |                                          |
| Finn 2015                            | 0                                      | 0.31     | 12                       | 12    | 6.6%   | 0.01 [-0.60, 0.62]  |                                          |
| Han 2017                             | 0.09                                   | 0.2      | 23                       | 20    | 10.5%  | 0.09 [-0.30, 0.48]  |                                          |
| Savulich 2017                        |                                        | 0.28     | 23                       | 21    | 7.5%   | 0.85 [0.30, 1.40]   | · · · · · · · · · · · · · · · · · · ·    |
| Subtotal (95% CI)                    | 0.05                                   | 0.20     | 56                       | 53    | 24.5%  | 0.31 [-0.19, 0.81]  | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0. | 13: Chi <sup>2</sup> = 5.80, df = 2 (F | P = 0.05 | ); $I^2 = 66\%$          |       |        |                     |                                          |
| Test for overall effect: Z           |                                        |          |                          |       |        |                     |                                          |
|                                      |                                        |          |                          |       |        |                     |                                          |
| 2 Multi-domain training              | 5.)                                    |          |                          |       |        |                     |                                          |
| Barban 2016                          | -0.09                                  | 0.2      | 46                       | 60    | 10.5%  | -0.09 [-0.48, 0.30] |                                          |
| Ciarmiello 2015                      | 0.34                                   |          | 15                       | 15    | 10.5%  | 0.34 [-0.05, 0.73]  |                                          |
| Djabelkhir 2017                      | 0.12                                   | 0.4      | 10                       | 10    | 4.6%   | 0.12 [-0.66, 0.90]  |                                          |
| Fiatarone Singh 2014                 | 0.16                                   | 0.19     | 24                       | 27    | 10.9%  | 0.16 [-0.21, 0.53]  |                                          |
| Finn 2011                            | -0.2                                   | 0.46     | 8                        | 8     | 3.7%   | -0.20 [-1.10, 0.70] |                                          |
| Gooding 2016 study 1                 | 0.35                                   | 0.22     | 31                       | 10    | 9.6%   | 0.35 [-0.08, 0.78]  |                                          |
| Gooding 2016 study 2                 | 0.52                                   | 0.24     | 23                       | 10    | 8.8%   | 0.52 [0.05, 0.99]   |                                          |
| Herrera 2012                         | 1.1                                    | 0.28     | 11                       | 11    | 7.5%   | 1.10 [0.55, 1.65]   |                                          |
| Rosen 2011                           | 0.89                                   | 0.62     | 6                        | 6     | 2.3%   | 0.89 [-0.33, 2.11]  |                                          |
| Rozzini 2007                         | 0.08                                   | 0.29     | 15                       | 22    | 7.2%   | 0.08 [-0.49, 0.65]  |                                          |
| Subtotal (95% CI)                    |                                        |          | 189                      | 179   | 75.5%  | 0.30 [0.08, 0.53]   | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0. | 05; Chi <sup>2</sup> = 16.28, df = 9 ( | P = 0.0  | 6); l <sup>2</sup> = 45% |       |        |                     |                                          |
| Test for overall effect: Z           | = 2.65 (P = 0.008)                     |          |                          |       |        |                     |                                          |
| Total (95% CI)                       |                                        |          | 245                      | 232   | 100.0% | 0.30 [0.11, 0.50]   | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0. | 06: Chi <sup>2</sup> = 22.08, df = 12  | (P = 0)  | $(04)$ ; $ ^2 = 46\%$    |       |        | 4 8 8               | 1 <u>1</u> 1                             |
| Test for overall effect: Z           | 아이들은 것을 많이 다. 요구 비행을 것을 것을 알고 드셨다.     | 1. 0.    |                          |       |        |                     | -4 -2 0 2<br>Favours control Favours CCT |

Supplementary Figure 10 Forest plot demonstrating efficacy of CCT on memory stratified by single memory domain or multi-domain intervention




# Supplementary Figure 11 Funnel plot demonstrating bias of CCT on memory stratified by single memory domain or multi-domain intervention

| 1<br>2   |
|----------|
| 3        |
| 4<br>5   |
| 6        |
| 7<br>8   |
| 9        |
| 10<br>11 |
| 12       |
| 13<br>14 |
| 15       |
| 16<br>17 |
| 18       |
| 19<br>20 |
| 21       |
| 22<br>23 |
| 23       |
| 25<br>26 |
| 20       |
| 28<br>29 |
| 29<br>30 |
| 31       |
| 33       |
| 34       |
| 35<br>36 |
| 37       |
| 38<br>39 |
| 40       |
| 41<br>42 |
| 43       |
| 44<br>45 |
| 46       |
| 47<br>48 |
| 49       |
| 50<br>51 |
| 52       |
| 53<br>54 |
| 55       |
| 56<br>57 |
| 58       |
| 59<br>60 |
|          |



Supplementary Figure 12 Forest plot demonstrating efficacy of CCT on global cognition stratified by



Supplementary Figure 13 Funnel plot demonstrating bias of CCT on global cognition stratified by dose of the intervention

BMJ Open

| Supplement to: Zhang H, Huntley J, et | al. The efficacy of Computerized Cognitive Training on cognitive outcomes in Mild Cognitive Impairm |
|---------------------------------------|-----------------------------------------------------------------------------------------------------|
| A Systematic Review and Meta-Analys   | ;is.                                                                                                |
| Supplementary Table 1 Search terms    | used for literature search                                                                          |
| Sunnlementary Table 2 Brief descript  | tion of the specific outcome measures included in the meta-analysis                                 |
| Supplementary Appendix 1 Statistical  |                                                                                                     |
|                                       |                                                                                                     |
|                                       |                                                                                                     |
|                                       |                                                                                                     |
|                                       |                                                                                                     |
|                                       |                                                                                                     |
|                                       |                                                                                                     |
|                                       | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                           |
|                                       |                                                                                                     |

Supplementary Table 1. Search terms used for literature search

| Intervention Terms | "cognitive stimulation" OR "cognitive rehabilitation" OR "cognitive training" OR "cognitive  |
|--------------------|----------------------------------------------------------------------------------------------|
|                    | therapy" OR "cognitive retraining" OR "cognitive support" OR "cognitive intervention" OR     |
|                    | "cognitive exercise" OR "cognitive strategy" OR "cognitive aid" OR "memory function" OR      |
|                    | "memory rehabilitation" OR "memory therapy" OR "memory aid" OR "memory group" OR             |
|                    | "memory training" OR "memory retraining" OR "memory support" OR "memory                      |
|                    | stimulation" OR "memory strategy" OR "memory management" OR "brain training" OR              |
|                    | "brain rehabilitation" OR "brain stimulation" OR "brain retraining" OR "brain exercise" OR   |
|                    | "neuropsychological training" OR "neuropsychological therapy" OR "neuropsychological         |
|                    | strategy" OR "neuropsychological aid" OR "neuropsychological stimulation" OR                 |
|                    | "neuropsychological rehabilitation" OR "neuropsychological exercise" OR                      |
|                    | "neuropsychological intervention" OR "neuropsychological retraining" OR                      |
|                    | "neuropsychological support" OR "psychostimulation" OR "executive training" OR "executive    |
|                    | stimulation" OR "executive rehabilitation" OR "attention training" OR "attentional training" |
|                    | OR "attentional rehabilitation" OR "global stimulation" OR "reality orientation"             |
|                    |                                                                                              |
|                    |                                                                                              |
| Study Terms        | "RCT" OR "controlled trial" OR random*                                                       |
|                    |                                                                                              |
|                    |                                                                                              |
| Subject Terms      | "Mild cognitive impairment" OR "memory impairment" OR "cognitive impairment" OR              |
|                    | "memory disorder" OR "cognitive disorder" OR "memory dysfunction" OR "cognitive              |
|                    | dysfunction" OR "MCI" OR "AAMI" OR "MCD" OR "mild cognitive disorder"                        |
|                    | dystatication of the of AAM of the of the of the ostation of the                             |
|                    |                                                                                              |
|                    |                                                                                              |

# Supplementary Table 2. Brief description of the specific outcome measures included in the meta-analysis

| 8<br>9<br>10                                             | Outcome measure                                                 | Domain  | Brief Description                                                                                                                                                                                                                       | Study                                                                                                                                                         |
|----------------------------------------------------------|-----------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | Mini Mental State Examination<br>(MMSE)                         | GEN COG | A 30-point questionnaire used to estimate severity of cognitive impairment including orientation and memory functions                                                                                                                   | Barben et al, 2016<br>Ciarmiello et al. 2015<br>Djabelkhir et al 2017<br>Han et al 2017<br>Hagovska et al. 2015<br>Rozzini et al 2007<br>Savullich et al 2017 |
| 21<br>22<br>23<br>24<br>25                               | Modified Mini Mental State<br>Examination (mMMSE)               | GEN COG | This instrument included all items from the standard MMSE, plus the<br>Wechsler Adult Intelligence Scale–Revised Digit Span subtest and additional<br>attention/calculation and general knowledge, language, and construction<br>items. | Gooding et al 2015 study<br>1&2                                                                                                                               |
| 26<br>27<br>28<br>29                                     | Alzheimer's Disease Assessment<br>Scale-Cognitive (ADAS-Cog)    | GEN COG | Measuring severity of cognitive dysfunction associated with Alzheimer's disease, and is widely used in pharmacological studies of dementia and MCI. Higher scores indicate more dysfunction.                                            | Fiatarone Singh et al 2014                                                                                                                                    |
| 30<br>31                                                 | Computerised Assessment of Mild<br>Cognitive Impairment (CAMCI) | GEN COG | A battery of tests to assess cognitive performance including domains of attention, executive functioning, memory and processing speed                                                                                                   | Hughes et al 2014                                                                                                                                             |
| 32<br>33<br>34<br>35                                     | Milan Overall Dementia<br>Assessment (MODA)                     | GEN COG | The MODA is a paper and pencil test, composed of three sections: an autonomy scale, a section testing orientation and a section testing a wide range of cognitive domains.                                                              | Ciarmiello et al. 2015                                                                                                                                        |
| 36<br>37                                                 | 16-item free and cued reminding test                            | MEM     | Participants search a card containing four pictures of items with matched<br>category cues before subjected to tests of free and cued recall                                                                                            | Herrera et al 2012<br>Djabelkhir et al 2017                                                                                                                   |
| 38                                                       | BEM-144 recall test                                             | MEM     | A 12-word immediate recall test from BEM-144 memory battery                                                                                                                                                                             | Herrera et al 2012                                                                                                                                            |
| 39 <sup>-</sup><br>40<br>41<br>42                        |                                                                 |         |                                                                                                                                                                                                                                         |                                                                                                                                                               |

| 2<br>3<br>4                                        | Outcome measure                                                                                     | Domain | Brief Description                                                                                                                                                                                                                                                                                            | Study                                                                |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 5<br>6<br>7                                        | Description of the visual recognition memory task (DMS48)                                           | MEM    | Participants asked to remember a sample before making a delayed forced-<br>choice match to original sample                                                                                                                                                                                                   | Herrera et al 2012<br>Ciarmiello et al. 2015                         |
| 8<br>9<br>10                                       | Doors Recognition subtest                                                                           | MEM    | Participants are shown a variety of different coloured doors which they must<br>remember and later recognise from a selection of similar doors                                                                                                                                                               | Herrera et al 2012                                                   |
| 11<br>12                                           | MMSE - Recall Test                                                                                  | МЕМ    | Participants presented with stimuli before being asked to recall as many as possible                                                                                                                                                                                                                         | Herrera et al 2012                                                   |
| 13<br>14<br>15<br>16                               | Paired-associates learning (PAL)                                                                    | MEM    | Visual patterns revealed in different boxes before participant tested on where pattern originally located                                                                                                                                                                                                    | Finn & McDonald 2011<br>Finn & McDonald 2015<br>Savullich et al 2017 |
| 17                                                 | Pattern Recognition Memory (PRM)                                                                    | MEM    | Test of visual pattern recognition in a forced discrimination paradigm                                                                                                                                                                                                                                       | Finn & McDonald 2011                                                 |
| 18<br>19                                           | Recall of Rey's Complex Figure                                                                      | MEM    | Subjects shown complex figure and then tested on their delayed recall of the figure                                                                                                                                                                                                                          | Herrera et al 2012<br>Rozzini et al 2007                             |
| 20<br>21<br>22<br>23<br>24<br>25                   | Rey's figure copy                                                                                   | MEM    | Participants are to reproduce a drawing by i) copying (reproduction) and ii) memory (recall) using a 18-point scoring system                                                                                                                                                                                 | Rozzini et al 2007                                                   |
|                                                    | List Learning Memory Sum from<br>ADAS-Cog                                                           | MEM    | List learning assessed across the three memory recall trials of the ADAS-Cog.<br>Higher scores indicate better memory.                                                                                                                                                                                       | Fiatarone Singh et al 2014                                           |
| 26<br>27<br>28<br>29                               | Benton Visual Retention Test-<br>Revised (BVRT-R)                                                   | MEM    | BVRT-R is a visual memory test which assesses visual perception and visual constructional abilities as participants are required to draw from memory simple designs. Higher scores indicate better function.                                                                                                 | Fiatarone Singh et al 2014<br>Savullich et al 2017                   |
| 30<br>31<br>32<br>33<br>34                         | The Logical Memory subtest of the<br>Wechsler Memory Scale 3rd edition<br>(immediately and delayed) | MEM    | The logic memory is used to measure both immediate (I) and delayed (II)<br>memory for verbal information. Participants are presented with a simple<br>narrative and are required to recall as many details of the story as they can<br>immediately after presentation. Higher scores indicate better memory. | Fiatarone Singh et al 2014                                           |
| 35<br>36<br>37 -                                   | Rey Auditory Verbal Learning Test<br>(RAVLT)                                                        | MEM    | RAVLT includes a list of 15 words to be recalled immediately after each of the 5 verbal presentations and after a 30-min delay                                                                                                                                                                               | Barben et al, 2016<br>Ciarmiello et al. 2015                         |
| 37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45 |                                                                                                     | For p  | eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                         |                                                                      |

|                                                                               | Outcome measure                                        | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Study                           |
|-------------------------------------------------------------------------------|--------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 5<br>5<br>7<br>3<br>9<br>10                                                   | Prose memory                                           | MEM    | A subset of The Memory Assessment Scales, is an auditory verbal prose recall task which requires the subject to recall a short story. Subjects are asked to recall the story from memory and are then asked nine questions about details of the story.                                                                                                                                                                                 | Ciarmiello et al. 2015          |
| 1<br>2                                                                        | visuospatial memory test<br>(VST)                      | МЕМ    | From the Cognitive Efficiency Profile                                                                                                                                                                                                                                                                                                                                                                                                  | Djabelkhir et al 2017           |
| 3<br>4<br>5<br>6<br>7<br>8                                                    | Buschke Selective Reminding Test<br>(BSRT)             | MEM    | The test provides 12 words which are selectively rehearsed by the subject<br>until they are memorized. That is, only those words not recalled on the<br>immediately preceding trial are presented. The subject then attends to an<br>interference task or verbal list. Subsequently, after a delay, the subject is<br>asked to recall the words.                                                                                       | Gooding et al 2015 study<br>1&2 |
| 9<br>20<br>21<br>22                                                           | WMS-R Visual Reproductions<br>(VR) I and II subtests   | MEM    | VR assesses visual memory. Cards with printed designs is shown to the participants. Following each exposure and a 30 minutes delay, subjects draw what they remember of the design.                                                                                                                                                                                                                                                    | Gooding et al 2015 study<br>1&2 |
| 3<br>4                                                                        | WMS-R Logical Memory<br>(LM)Subtests I and II subtests | MEM    | LM. The examiner reads two stories, stopping after each reading for an immediate free recall. And a 30 minutes delayed recall.                                                                                                                                                                                                                                                                                                         | Gooding et al 2015 study<br>1&2 |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33                      | The Word List Memory Test<br>(WLMT)                    | MEM    | Word list task that contains 10 semantically unrelated<br>words The words are presented to the subject one at<br>a time and are read aloud Three trials are administered<br>in this fashion, with the order of the 10 words being randomized for each trial<br>The examiner records the order of recall and notes any intrusions that might<br>occur The primary Indices of Interest are the number of words recalled on<br>each trial | Han et al 2017                  |
| 4<br>5                                                                        | The Word List Recall Test (WLRT)                       | MEM    | Words, displayed one at a time for one second each. Participants read each of the words, and try to remember them without taking notes.                                                                                                                                                                                                                                                                                                | Han et al 2017                  |
| 36 <sup>-37</sup><br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46 |                                                        | For p  | eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                   |                                 |

| 2<br>3<br>4                                        | Outcome measure                  | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Study                                       |
|----------------------------------------------------|----------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 5<br>6<br>7<br>8<br>9<br>10                        | WLRcT(The Word List Recognition) | MEM    | A word list was designed so that half its words would denote targets when<br>any of a number of target classes were defined. After scanning this list for<br>targets, subjects were unexpectedly tested on their ability to recognize the<br>words they had scanned.                                                                                                                                                                                                                                                   | Han et al 2017                              |
| 11<br>12<br>13                                     | RBANS Memory Score               | MEM    | It consists of 12 subtests, which yield five Index scores (i.e., Attention,<br>Language, Visuospatial/Constructional, Immediate Memory, and Delayed<br>Memory) and a Total Scale score.                                                                                                                                                                                                                                                                                                                                | Rosen et al 2011                            |
| 14<br>15<br>16                                     | Dot counting test                | WM     | The task dot counting requires examinees to count the dots as quickly as possible by the fastest means possible.                                                                                                                                                                                                                                                                                                                                                                                                       | Lin et al 2016                              |
| 17<br>18<br>19                                     | 1-back test                      | WM     | In the 1-Back task, participants are presented a sequence of stimuli one-by-<br>one. For each stimulus, they need to decide if the current stimulus is the same<br>as the one presented 1 trials ago.                                                                                                                                                                                                                                                                                                                  | Lin et al 2016                              |
| 20<br>21<br>22                                     | Digit Span Test                  | WM     | Sequence of digits is read aloud. Subjects asked to immediately recall digits in the correct order. If correct, a sequence with an additional digit is presented.                                                                                                                                                                                                                                                                                                                                                      | Herrera et al 2012<br>Ciarmiello et al 2015 |
| 23<br>24<br>25<br>26<br>27                         | LNS (Letter-Number Sequencing)   | WM     | The task involves listening to and remembering a string of digits and letters<br>read aloud at a speed of one per second, then recalling the information by<br>repeating the numbers in chronological order, followed by the letters in<br>alphabetical order.                                                                                                                                                                                                                                                         | Hyer et al 2016                             |
| 28<br>29                                           | Spatial Span                     | WM     | Participants tested on ability to remember the location of objects on a spatial grid.                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hyer et al 2016                             |
| 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38 | Spatial Span (Corsi test)        | WM     | Corsi is a short term memory task conceptually similar to the digit span test.<br>the experimenter (the person who carries out the study) shows nine blocks<br>arranged in front of the participant, the experimenter taps a sequence of<br>blocks (for example, the experimenter taps a sequence of 3 different blocks,<br>one after another), the participant needs to tap the blocks that the<br>experimenter showed, in the same order, steps 1-3 are repeated multiple<br>times with different lengths of blocks. | Ciarmiello et al. 2015                      |
| 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46       |                                  |        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |

46

BMJ Open

| Outcome measure                                | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Study                         |
|------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Spatial working memory (SWM)                   | WM     | A test that requires retention and manipulation of visuospatial information to collect 'tokens' and fill a column                                                                                                                                                                                                                                                                                                                                                                                      | Finn & McDonald 2011          |
| Symbol Span                                    | WM     | This subtest assesses visual working memory using novel visual stimuli.<br>Beginning with two symbols, abstract visual symbols are exposed for 5<br>seconds. In the test phase, the participant has to correctly recall not only the<br>correct symbols from distractor items, but also the order in which they were<br>presented from left to right. The number of symbols presented increases by<br>one at intervals as the test progresses. Higher scores indicate better visual<br>working memory. | Finn & McDonald et al<br>2015 |
| Word span                                      | WM     | Participants tested on ability to remember a list of words in order.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ciarmiello et al. 2015        |
| Alpha span task                                | WM     | In the alpha span test, short lists of words are presented and the participant's task is to mentally reorder the words and give them back in correct alphabetical order.                                                                                                                                                                                                                                                                                                                               | Ciarmiello et al. 2015        |
| Intra-/extra-dimensional set<br>shifting (IED) | EXE    | A test of rule acquisition and reversal. It is computerised analogue of the Wisconsin Card Sorting test and measured the total errors made                                                                                                                                                                                                                                                                                                                                                             | Finn & McDonald 2011          |
| Modified Dual Task                             | EXE    | Participants completed a modified dual task consisting of a visual detection<br>task (responding to an appearance of a stimuli) and alpha-arithmetic task<br>(responding 'true' or 'false' to equations of letters and numbers e.g. 'U-1 = T')<br>simultaneously and were recorded in accuracy of responses in each task                                                                                                                                                                               | Gagnon & Belleville 2012      |
| Raven's coloured matrices                      | EXE    | 60 patterns present in order of difficulty. Subjects asked to identify the missing element that completes a pattern                                                                                                                                                                                                                                                                                                                                                                                    | Rozzini et al 2007            |
| Short Story                                    | EXE    | Participants are asked to recall a short story                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rozzini et al 2007            |
| Telephone Search Dual Task                     | EXE    | Participants complete the telephone search test whilst simultaneously counting audible tones                                                                                                                                                                                                                                                                                                                                                                                                           | Gagnon & Belleville 2012      |
| Telephone Search Test                          | EXE    | Participants circle key stimuli while searching entries in a simulated classified telephone directory                                                                                                                                                                                                                                                                                                                                                                                                  | Gagnon & Belleville 2012      |
|                                                | Fo     | or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |

| Outcome measure                                          | Domain    | Brief Description                                                                                                                                                                                                                                                                                                                                                                                      | Study                                                                                       |
|----------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Trial making test                                        | EXE       | The task requires participants to 'connect the dots' in two parts, firstly numerically and secondly, alphanumerically                                                                                                                                                                                                                                                                                  | Gagnon & Belleville 2012,<br>Hughes et al 2014,<br>Djabelkhir et al 2017<br>Hyer et al 2016 |
| Verbal fluency                                           | EXE       | Participants generate as many words in one minute from a given letter.                                                                                                                                                                                                                                                                                                                                 | Rozzini et al 2007,<br>Djabelkhir et al 2017                                                |
| Visual Elevator Test                                     | EXE       | Participants count up and down according to visual stimuli in an elevator, the time-per-direction-change score was calculated                                                                                                                                                                                                                                                                          | Gagnon & Belleville 2012                                                                    |
| Raven's progressive matrices -<br>non-verbal test (PM47) | EXE       | The Raven Standard Progressive Matrices (PM47) assess the logical-deductive skill. ?                                                                                                                                                                                                                                                                                                                   | Ciarmiello et al. 2015                                                                      |
| Rey–Osterrieth complex figure<br>(ROCF)                  | test EXE  | ROCF is a neuropsychological assessment in which examinees are asked to reproduce a complicated line drawing, first by copying it freehand (recognition), and then drawing from memory (recall).                                                                                                                                                                                                       | Ciarmiello et al. 2015                                                                      |
| Categorical verbal fluency (ani                          | mals) EXE | Participants generate as many animal names as possible in one minute.                                                                                                                                                                                                                                                                                                                                  | Fiatarone Singh et al 2014<br>Djabelkhir et al 2017                                         |
| Number sequencing<br>Number-Letter switching             | EXE       | In Number Sequencing, the participant is asked to draw a line connecting<br>numbers in order from low to high as quickly as possible without making<br>mistakes, and is a measure of attention. In Number-Letter switching, the task<br>is to switch between connecting numbers and letters, in order, from lowest to<br>highest, e.g., 1-A, 2-B, 3-C etc., and is a measure of cognitive flexibility. | Finn & McDonald et al<br>2015                                                               |
| Tracking A, Tracking B                                   | EXE       | Two tracking tasks requiring participants to (1) track numbers (from 24-1) in reverse order (Tracking A), and (2) months forward (January – December) and numbers in reverse (Tracking B).                                                                                                                                                                                                             | Hughes et al 2014                                                                           |
| Useful field of view (UFOV)                              | EXE       | UFOV is a computerized test assessing visual processing speed and attention.                                                                                                                                                                                                                                                                                                                           | Lin et al 2016                                                                              |
| Verbal fluency                                           | EXE       | (Phonemic and categorical fluency)?                                                                                                                                                                                                                                                                                                                                                                    | Lin et al 2016                                                                              |
| Cognitive control                                        | EXE       | Set shifting and flanker tasks?                                                                                                                                                                                                                                                                                                                                                                        | Lin et al 2016                                                                              |
|                                                          | Fc        | or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                               |                                                                                             |

| Outcome measure                    | Domain            | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                     | Study                     |
|------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Cross-modality dual task (Divided) | EXE               | Participants were subjected to a dual-task simultaneously consisting of a visual detection (as above) with a digit span task (orally recalling a list of digits) and recorded span items recalled correctly in %.                                                                                                                                                                                                     | Gagnon & Belleville 2012  |
| The CANTAB CRT(speed)              | EXE               | It is used to assess motor speed and thus acts as a control measure of general alertness to help interpret other cognitive tasks. An arrow will appear on either the left or right side of a computer screen. After the arrow appears, the participant is instructed to press a corresponding left or right button, using a response box, as quickly as possible.                                                     | Savullich et al 2017      |
| WAIS-III Similarities              | EXE               | WAIS Similarities is a subtest from the WAIS-III used to measure verbal<br>conception formation and abstractive thinking. Higher scores indicate better<br>function.                                                                                                                                                                                                                                                  | Fiatarone Singh et al 201 |
| WAIS-III Matrices                  | EXE               | WAIS Matrices is a perceptual subtest of the Wechsler Adult Intelligence<br>Scale–III and is used to assess executive functions posing four types of non-<br>verbal reasoning tasks including pattern completion, classification, abstraction<br>and serial reasoning, and all items require visual perception, organization, and<br>synthesis of visual spatial information. Higher scores indicate better function. | Fiatarone Singh et al 201 |
| COWAT                              | EXE               | Combined Oral Word Association Test is a language-based task assessing<br>association fluency, and is often used as a measure of executive functioning.<br>The most commonly used letters are F, A, and S. or C, F, and L, based upon<br>word prevalence rates. Higher scores indicate better function.                                                                                                               | Fiatarone Singh et al 201 |
| SDMT (Attention/speed)             | EXE               | Symbol Digit Modalities Test measures divided attention, visual scanning,<br>tracking, and motor speed. It uses a substitution format presenting symbols<br>with matching numbers, and participants are required to provide name the<br>numbers corresponding to each given symbol. Higher scores indicate better<br>function.                                                                                        | Fiatarone Singh et al 201 |
| Notes: General cognition (GEN C    | COG), episodic me | mory (MEM), working memory (WM), executive function (EXE)                                                                                                                                                                                                                                                                                                                                                             |                           |
|                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |
|                                    | Fo                | r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                               |                           |

## **Supplementary Appendix 1**

Statistical methods

 Effect size calculation

Effect sizes were calculated using RevMan software version 5.3. Standardised mean differences were calculated using Hedges' adjusted g<sup>1</sup>. Pre-

intervention standard deviations were used as these are most likely to be comparable across studies and therefore provide the most accurate

review only

estimate of effect size.<sup>3</sup>

The Hedges' adjusted g formula used in RevMan is as follows:

g= [M<sub>post intervention</sub> – M<sub>post control</sub>/SD<sub>pre-pooled</sub>]\*[1- 3/(4N-9)]

Where N= n<sub>intervention group</sub> + n<sub>control group</sub>

and

SD<sub>pre-pooled</sub> = V [((nintervention-1) SD<sub>pre</sub> intervention<sup>2</sup> + (n<sub>control-1</sub>) SD<sub>pre</sub> control<sup>2</sup>)/ N-2]

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

### Meta-analyses

Meta-analyses were performed using RevMan software version 5.3. A random effects method as described by DeSirmonian and laird<sup>4</sup> was used,

adjusting standard errors of the effect sizes in each study to account for the heterogeneity for intervention effects observed between different

studies.

The pooled effect size of each meta-analysis was calculated by attributing a weight to the average effect size in each study according to sample

evia

size. The z statistic was used to evaluate whether the pooled effect size was significantly different to no effect.

Heterogeneity was quantified using the I<sup>s</sup> statistic.

### **Composite measure calculation**

Composite scores were calculated where a study reported multiple outcomes falling within a particular outcome domain (e.g. objective cognitive performance). This approach was pragmatic in allowing one score to represent each intervention in the meta-analysis regardless of the number of outcomes reported. In turn this prevents more weight being given to studies with multiple outcomes.<sup>2</sup>The variance of the sum of variables was calculated as described below.

Using the example of a study with two relevant outcomes, there will be two effect sizes, namely  $y_1$  and  $y_2$ . The overall mean effect size for the composite measure will be:

# $\bar{y} = 1/2(y_1 + y_2)$

The variance of this mean is calculated as follows:

 $V_{\bar{y}} = \frac{1}{4} (V_{Y1} + V_{y2} + 2r^* \sqrt{V_{Y1}} \sqrt{V_{y2}}),$ 

where r is the correlation coefficient describing to what extent  $y_1$  and  $y_2$  co-vary.

If the correlation is set at 0, the outcomes are essentially treated as independent of each other and if the correlation is set at 1, the variance is an average of each outcome's variance. The former will lead to an underestimate of the variance and overestimate of precision while the latter will have the opposite effect. Consequently, in the absence of existing literature to identify a suitable correlation, we reported composite effect sizes calculated using a correlation of 0.5.

1. Hedges LV, Olkin I. Statistical methods for meta-analysis. New York, Academic Press 1985.

2. Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to Meta-Analysis. Chichester, John Wiley & Sons, Ltd 2009.

3. Morris S. Estimating Effect Sizes From Pretest-Posttest-Control Group Designs. Organ. Res. Meth 2008;11 (2):364-386.

4. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3):177-188

#### PRISMA checklist

| Section/topic             | Checklist item                                                                                                                                                                                                                                                                                              | Page number/<br>Figure/Table |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Title                     |                                                                                                                                                                                                                                                                                                             |                              |
| Title                     | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                         | 1                            |
| Abstract                  |                                                                                                                                                                                                                                                                                                             |                              |
| Structured summary        | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 2-3                          |
| Introduction              |                                                                                                                                                                                                                                                                                                             |                              |
| Rationale                 | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | 4-6                          |
| Objectives                | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  | 6                            |
| Methods                   |                                                                                                                                                                                                                                                                                                             |                              |
| Protocol and registration | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.                                                                                                                               | n/a                          |
| Eligibility criteria      | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                      | 8                            |
| Information sources       | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  | 8                            |
| Search                    | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | Supplementary                |

| 1<br>2<br>3<br>4<br>5<br>6       |  |
|----------------------------------|--|
| 7<br>8<br>9<br>10<br>11          |  |
| 12<br>13<br>14<br>15<br>16       |  |
| 17<br>18<br>19<br>20<br>21<br>22 |  |
| 22<br>23<br>24<br>25<br>26<br>27 |  |
| 28<br>29<br>30<br>31<br>32       |  |
| 33<br>34<br>35<br>36<br>37       |  |
| 38<br>39<br>40<br>41<br>42       |  |
| 43<br>44<br>45<br>46<br>47       |  |

| Section/topic                         | Checklist item                                                                                                                                                                                                         | Page number/<br>Figure/Table |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                       |                                                                                                                                                                                                                        | Table 1                      |
| Study selection                       | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                              | 9                            |
| Data collection<br>process            | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                             | 9                            |
| Data items                            | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                  | n/a                          |
| Risk of bias in<br>individual studies | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 9                            |
| Summary measures                      | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                          | 9                            |
| Synthesis of results                  | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I <sup>2</sup> ) for each meta-analysis.                                                     | 9                            |
| Risk of bias across<br>studies        | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                           | 9                            |
| Additional analyses                   | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                       | 10                           |
| Results                               |                                                                                                                                                                                                                        |                              |
| Study selection                       | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                        | Figure 1                     |

| Section/topic         | Checklist item                                                                                                                     | Page number/  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                       |                                                                                                                                    | Figure/Table  |
| Study characteristics | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide      | Table 1       |
|                       | the citations.                                                                                                                     | 11-12         |
|                       |                                                                                                                                    | 11-12         |
| Risk of bias within   | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                          | Supplementary |
| studies               |                                                                                                                                    | Figure 1      |
| Results of individual | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention            | Figs 2-3      |
| studies               | group (b) effect estimates and confidence intervals, ideally with a forest plot.                                                   | 0             |
|                       |                                                                                                                                    |               |
| Synthesis of results  | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                            | 13-14         |
| Risk of bias across   | Present results of any assessment of risk of bias across studies (see Item 15).                                                    | Supplementary |
| studies               |                                                                                                                                    | Figure 1      |
| Additional analysis   | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).              | 13-14         |
| Discussion            |                                                                                                                                    |               |
| Summary of            | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key              | 16            |
| evidence              | groups (e.g., healthcare providers, users, and policy makers).                                                                     |               |
| Limitations           | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified | 16-17         |
|                       | research, reporting bias).                                                                                                         |               |
| Conclusions           | Provide a general interpretation of the results in the context of other evidence, and implications for future research.            | 19            |
| Funding               |                                                                                                                                    |               |
|                       | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the            | n/a           |

| Section/topic | Checklist item                                                            | Page number/<br>Figure/Table |
|---------------|---------------------------------------------------------------------------|------------------------------|
|               | systematic review.                                                        |                              |
|               |                                                                           |                              |
|               | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |                              |

# **BMJ Open**

## The effect of Computerized Cognitive Training on cognitive outcomes in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis

| Journal:                             | BMJ Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                        | bmjopen-2018-027062.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Article Type:                        | Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Date Submitted by the Author:        | 03-Apr-2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Complete List of Authors:            | Zhang, Haifeng; University College London Division of Psychiatry;<br>Peking University Sixth Hospital, Peking University Institute of Mental<br>Health, NHC Key Laboratory of Mental Health (Peking University),<br>National Clinical Research Center for Mental Disorders (Peking University<br>Sixth Hospital), Beijing Dementia Key Lab<br>Huntley, Jonathan; University College London, Division of Psychiatry<br>Bhome, Rohan; University College London, Division of Psychiatry<br>Holmes, Benjamin; University College London Division of Psychiatry<br>Cahill, Jack; Institute of Psychiatry, Psychology and Neuroscience. King's<br>College London<br>Gould, Rebecca; University College London Division of Psychiatry<br>Wang, Huali; Peking University Sixth Hospital, Peking University Institute<br>of Mental Health, NHC Key Laboratory of Mental Health (Peking<br>University), National Clinical Research Center for Mental Disorders<br>(Peking University Sixth Hospital, Peking University Institute of<br>Mental Health, NHC Key Laboratory of Mental Health (Peking<br>University), National Clinical Research Center for Mental Disorders<br>(Peking University Sixth Hospital), Beijing Dementia Key Lab<br>Yu, Xin; Peking University Sixth Hospital, Peking University Institute of<br>Mental Health, NHC Key Laboratory of Mental Health (Peking University),<br>National Clinical Research Center for Mental Disorders (Peking University<br>Sixth Hospital), Beijing Dementia Key Lab<br>Howard, R; University College London Division of Psychiatry, |
| <b>Primary Subject<br/>Heading</b> : | Mental health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Secondary Subject Heading:           | Mental health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Keywords:                            | Mild cognitive training (MCI), computerised, cognitive training, cognitive outcomes, meta-analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# SCHOLARONE<sup>™</sup> Manuscripts

BMJ Open

| 2                                                                                                                          |    |                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3<br>4<br>5                                                                                                                | 1  | The effect of Computerized Cognitive Training on cognitive                                                                                                                                   |
| 6<br>7                                                                                                                     | 2  | outcomes in Mild Cognitive Impairment: A Systematic Review and                                                                                                                               |
| 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                                                                 | 3  | Meta-Analysis                                                                                                                                                                                |
|                                                                                                                            | 4  | Haifeng Zhang <sup>1, 3</sup> , J. D. Huntley <sup>1</sup> , R. Bhome <sup>1</sup> , B. Holmes <sup>1</sup> , J.T. Cahill <sup>2</sup> , R.L. Gould <sup>1</sup> , Huali Wang <sup>3</sup> , |
|                                                                                                                            | 5  | Xin Yu <sup>3</sup> and R. J. Howard <sup>1</sup>                                                                                                                                            |
| 16<br>17<br>18                                                                                                             | 6  | 1. Division of Psychiatry, University College London, London W1T 7NF, United Kingdom                                                                                                         |
| 19<br>20                                                                                                                   | 7  | 2. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London                                                                                                       |
| 21<br>22<br>23                                                                                                             | 8  | SE5 8AF, United Kingdom                                                                                                                                                                      |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44 | 9  | 3. Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC                                                                                                       |
|                                                                                                                            | 10 | Key Laboratory of Mental Health (Peking University), National Clinical Research                                                                                                              |
|                                                                                                                            | 11 | Center for Mental Disorders (Peking University Sixth Hospital), Beijing Dementia Key                                                                                                         |
|                                                                                                                            | 12 | Lab, Beijing 100191, China                                                                                                                                                                   |
|                                                                                                                            | 13 | * Address correspondence                                                                                                                                                                     |
|                                                                                                                            | 14 | Dr. Huntley: j.huntley@ucl.ac.uk                                                                                                                                                             |
|                                                                                                                            | 15 | 6th Floor Maple House, 149 Tottenham Court Road, London W1T 7NF,                                                                                                                             |
|                                                                                                                            | 16 | University College London, United Kingdom.                                                                                                                                                   |
| 45<br>46                                                                                                                   | 17 |                                                                                                                                                                                              |
| 47<br>48                                                                                                                   | 18 | Running title: A meta-analysis of computerised cognitive training in MCI                                                                                                                     |
| 49<br>50                                                                                                                   | 19 | Key words: Mild cognitive training (MCI), computerised, cognitive training, cognitive                                                                                                        |
| 51<br>52<br>53<br>54<br>55                                                                                                 | 20 | outcomes, meta-analysis.                                                                                                                                                                     |
|                                                                                                                            | 21 | Word count: 4050                                                                                                                                                                             |
| 56<br>57<br>58<br>59<br>60                                                                                                 | 22 |                                                                                                                                                                                              |

#### 23 Abstract:

**Objectives** To determine the effect of computerised cognitive training (CCT) on improving cognitive 25 function for older adults with mild cognitive impairment (MCI).

**Design** Systematic review and meta-analysis.

Data Sources PubMed, Embase, Web of Science and the Cochrane Library were searched through
January 2018.

Eligibility Criteria Randomised controlled trials (RCTs) comparing CCT with control conditions in
 those with MCI aged 55+ were included.

Data extraction and synthesis Two independent reviewers extracted data and assessed the risk of
 bias. Effect sizes (Hedges' g and 95% CIs) were calculated and random effects meta-analyses were
 performed where three or more studies investigated a comparable intervention and outcome.
 Heterogeneity was quantified using the l<sup>2</sup> statistic.

**Results** 18 studies met the inclusion criteria and were included in the analyses, involving 690 participants. Meta-analysis revealed small to moderate positive treatment effects compared to control interventions in 4 domains as follows: Global Cognitive Function (g = 0.23, 95% CI = 0.03, 0.44), Memory (g = 0.30, 95% CI = 0.11, 0.50), Working Memory (g = 0.39, 95% CI = 0.12, 0.66) and Executive function (g = 0.20, 95% CI = -0.03, 0.43). Statistical significance was reached in all domains apart from executive function.

41 Conclusions This meta-analysis provides evidence that CCT improves cognitive function in older 42 people with MCI. However, the long-term transfer of these improvements and the potential to 43 reduce dementia prevalence remains unknown. Various methodological issues such as 44 heterogeneity in outcome measures, interventions and MCI symptoms and lack of intention-to-treat 45 (ITT) analyses limit the quality of the literature and represent areas for future research.

| 2<br>3<br>4<br>5                                                                                                                                                                                                                                                                                                                                           | 47 | Stı | rengths and limitations of this study                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----------------------------------------------------------------------------------------------------|
| 6<br>7                                                                                                                                                                                                                                                                                                                                                     | 48 | 1.  | This is a comprehensive systematic review and meta-analysis evaluating the effects of              |
| 8<br>9                                                                                                                                                                                                                                                                                                                                                     | 49 |     | computerised cognitive training in older adults with mild cognitive impairment on cognitive        |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                   | 50 |     | outcomes.                                                                                          |
| 12<br>13<br>14                                                                                                                                                                                                                                                                                                                                             | 51 | 2.  | We excluded studies that did not utilise strict clinical diagnostic criteria for MCI to reduce the |
| 15<br>16                                                                                                                                                                                                                                                                                                                                                   | 52 |     | heterogeneity often found between participants in MCI studies.                                     |
| 17<br>18                                                                                                                                                                                                                                                                                                                                                   | 53 | 3.  | Data for four main cognitive domains most significantly affected by MCI and targeted by            |
| 19<br>20                                                                                                                                                                                                                                                                                                                                                   | 54 |     | cognitive interventions were extracted from individual studies (global cognitive function,         |
| 21<br>22<br>23                                                                                                                                                                                                                                                                                                                                             | 55 |     | episodic memory, working memory and executive function) and where appropriate composite            |
| 24<br>25                                                                                                                                                                                                                                                                                                                                                   | 56 |     | measures were calculated for meta-analyses.                                                        |
| 26<br>27                                                                                                                                                                                                                                                                                                                                                   | 57 | 4.  | The studies included in the systematic review are generally of moderate quality, however           |
| 28<br>29                                                                                                                                                                                                                                                                                                                                                   | 58 |     | several methodological issues may limit the interpretation of results.                             |
| 30<br>31<br>32                                                                                                                                                                                                                                                                                                                                             | 59 | 5.  | A lack of follow up data makes it impossible to draw conclusions regarding long term effects or    |
| <ul> <li>33</li> <li>34</li> <li>35</li> <li>36</li> <li>37</li> <li>38</li> <li>39</li> <li>40</li> <li>41</li> <li>42</li> <li>43</li> <li>44</li> <li>45</li> <li>46</li> <li>47</li> <li>48</li> <li>49</li> <li>50</li> <li>51</li> <li>52</li> <li>53</li> <li>54</li> <li>55</li> <li>56</li> <li>57</li> <li>58</li> <li>59</li> <li>60</li> </ul> | 60 |     | impact on the prevalence of dementia.                                                              |

# 62 INTRODUCTION

There are currently estimated to be over 46 million people worldwide living with dementia. This number is expected to grow to approximately 131.5 million by 2050.<sup>1</sup> There is therefore an urgent need to develop therapeutic treatments that may delay or prevent dementia in population groups considered 'at risk'.<sup>2</sup> Interventions that delay the onset of AD by an average of two years would decrease the worldwide prevalence rate by 22.8 million cases, <sup>3</sup> which in turn, would ease the huge burden placed on individuals, families and society. For these reasons, evidence-based interventions that reduce the risk of dementia are urgently required.

Mild Cognitive Impairment (MCI) refers to an intermediate stage between normal age-related cognitive decline (ARCD) and dementia. <sup>4</sup> Although many older adults experience a degree of deterioration in cognitive performance, MCI is described as a greater than the expected cognitive decline for an individual's age and education, but without notable interference in everyday functioning.<sup>5</sup> Within the older adult population, the estimated prevalence rate of MCI ranges from 15-20%. <sup>6</sup> Although MCI can present with a variety of symptoms, when memory loss is the predominant symptom it is termed "amnestic MCI" and is frequently seen as a prodromal stage of Alzheimer's disease. <sup>6</sup> When individuals have impairments in domains other than memory it is classified as non-amnestic single- or multiple-domain MCI and these individuals are believed to be more likely to convert to other types of dementia. <sup>6</sup>

The lack of therapeutic benefit or delay in progression from MCI to AD with pharmacological interventions has meant that the focus has shifted towards non-pharmacological interventions. <sup>7</sup> Cognitive remediation is the term used for interventions designed to mediate cognitive decline and can be typically identified as involving one of three different approaches: cognitive stimulation (CS), cognitive rehabilitation (CR) and cognitive training (CT). Interventions based on CS and CR are more focused on individuals with established dementia, often with the aim of overcoming specific difficulties with daily living and improving general quality of life. In comparison, CT can be used for

subjects without significant cognitive or functional difficulties, and is therefore well suited forindividuals with MCI.

89 CT refers to interventions that aim to improve cognitive domains through repeated practice on 90 theoretically driven skills and strategies. <sup>8</sup> Each CT exercise aims to target one or two specific 91 domains in an adaptive manner with a possibility of transfer effects whereby performance in other 92 untrained cognitive domains is also improved. <sup>9</sup>

Computerised cognitive training (CCT) utilises computers for the delivery of the intervention and differs from traditional CT, which usually incorporates face-to-face contact with a professional and paper-and-pencil paradigms.<sup>8</sup> CCT has several advantages including cost-effectiveness, increased accessibility and ability to customise the content and difficulty of the training. <sup>10-12</sup> Research involving older adults has found that CCT programs are associated with high satisfaction levels, and that they are also a feasible option for individuals with MCI, with equal or better adherence rates when compared to traditional CT.<sup>10 13</sup> In addition, evidence suggests that studies utilising CCT show a pattern of stronger effect sizes and enhanced generalisation of benefits compared to traditional strategy training in MCI. <sup>14</sup> A previous meta-analysis found that CT is not effective in people with established dementia. <sup>15</sup> However, there is growing interest as to whether CCT has the potential to prevent or slow the progression from MCI to dementia particularly given the association between higher participation in mental activity and reduced dementia risk.<sup>16</sup> 

Studies investigating the effectiveness of CT in improving cognitive performance in people with MCI have demonstrated small to moderate improvement but existing research suffers from methodological concerns and limitations. <sup>14</sup> <sup>17-19</sup> CT research in individuals with MCI has been criticised for the failure to include an appropriate control group, <sup>20-22</sup> use of subsets of participants from previous studies, <sup>23</sup> and pooling of MCI data with that from non-impaired adults<sup>24</sup> as well as those with probable AD. <sup>25-27</sup> Another issue raised in treatment studies has been the use of ecologically valid outcome measures. For example, the inclusion of functional outcome measures is important to monitor progression from MCI to dementia but given that individuals with MCI are, by 

definition, not significantly impaired in functioning, it is a challenge to measure the functional effects
 of the intervention. <sup>17</sup>

115 CCT is far from a single construct and factors such as the content, platform, context and dose of 116 training may differ. <sup>28</sup> Unfortunately, despite increasing scientific scrutiny, there is a limited 117 understanding as to which, if any, dimensions are associated with cognitive benefit. Ideally, critical 118 analysis of research using CCT for MCI would reveal insight into which specific components of CCT 119 are necessary for it to be effective, however, it is important to establish the overall effect of CCT on 120 individuals with MCI.

Systematic reviews and meta-analyses of cognitive interventions in MCI have reported mixed results, <sup>19 29-34</sup> and when exploring the effect of cognitive training in MCI have largely not distinguished between studies evaluating computerised and non-computerised training. This makes it difficult to draw conclusions, specifically on the efficacy of CCT in MCI. For example, a systematic review by Ge et al summarised the findings of CCT studies among people with MCI, however no meta-analyses were performed and the review included non-randomized controlled studies, studies that combined CCT with other interventions and studies not using Petersen's core MCI diagnosis criteria, making it challenging to draw rigorous conclusions. <sup>35</sup> A previous meta-analysis by Hill et al (2017) specially explored the effectiveness of CCT in MCI on cognition and behavioural outcomes, <sup>32</sup> however the field is progressing rapidly, as highlighted by Ge et al's observation that 42% of the studies in their review were published between 2016 and 2017, <sup>35</sup> and further relevant studies have been published subsequently. <sup>32</sup> 36-38 Another more recently published meta-analysis by Gates et al only included studies where the intervention period lasted for more than 12 weeks and excluded a significant number of studies with shorter training duration. <sup>39</sup> Thus, it is necessary to conduct an updated meta-analysis to include more recent articles and all intervention durations.

#### **BMJ** Open

This paper investigates the effect of CCT on improving cognitive outcomes in individuals diagnosed with MCI using random effects meta-analyses. To address some of the problems identified in the literature, only peer-reviewed Randomised controlled trials (RCTs) were selected and cognitive outcome measures were extracted for analysis. Variables that may moderate the effect of CCT, such as the type of programme or dose of the intervention, were reviewed. The purpose of the current review was to: a) evaluate the effect of CCT in older adults with MCI on cognitive outcomes; b) . c .group based on fi. evaluate the content and methodological quality of the intervention studies; and c) suggest future directions in CCT research in this group based on findings.

# 146 MATERIALS AND METHODS

# 147 Search strategy and selection criteria

A literature search was completed during January 2018 of four online literature databases and trial registers: PubMed, Embase, Web of Science and Cochrane library. The search terms are shown in supplementary table 1. Previous meta-analyses and systematic reviews of cognitive interventions in MCI were also searched. Furthermore, reference lists of included studies were manually scanned for additional relevant papers.

## 153 Inclusion and exclusion criteria

Types of studies: Published, peer-reviewed studies with an RCT design investigating the use of CCT interventions in older people with MCI were considered for inclusion. Studies were included if sufficient data were available for calculation of effect sizes in each treatment arm (unavailable information was requested from authors and included if obtained). The date of publication was not limited, but only studies published in English were included.

Participants: Inclusion criteria were a mean age of participants greater than 55 years, a diagnosis of MCI using core criteria according to Petersen<sup>4</sup> and no other psychiatric diagnosis or neurological disorder. The number of participants in each arm needed to be at least five. Studies with non-impaired older people or those with probable AD were excluded unless separate data for participants with MCI was provided. 

Types of interventions: Studies were included if they compared any CCT intervention, administered on a personal computer or gaming console, to an active or non-active control. Computerised training had to represent the primary intervention, not simply one of multiple broader non-computerised cognitive interventions, in order to be included. Active controls were classified as interventions that controlled for non-specific therapeutic effects, whereas non-active control groups included waiting list conditions, treatment as usual (TAU) or a non-matched minimal intervention. Each study was 

**BMJ** Open

independently screened, selected for inclusion and its data extracted by independent researchers. Any disagreements were resolved through discussion with another author. Types of outcome measures: We focused on cognitive domains that are reported to be most significantly affected by MCI and targeted by cognitive interventions, namely episodic memory, executive function, working memory/attention and general cognitive function.<sup>40</sup> Available data from all relevant cognitive outcomes was extracted. Cognitive outcomes used in the included studies and their classification into the main cognitive domains are shown in supplementary table 2. Risk of bias assessment The Cochrane Collaboration Risk of Bias tool was used to assess study methodological quality<sup>41</sup>. Risk of bias was assessed in multiple domains: sequence generation, allocation concealment, blinding of participants and investigators, incomplete outcome data and selective reporting of outcomes. In each of these categories, the methodological quality of each assessed domain was rated as 'low risk', 'unclear' or 'high risk'. Studies were excluded if unsure or high risk in all assessed domains. **Statistical analysis** Intervention and control groups' post-intervention outcome scores were compared using Review Manager (RevMan) software version 5.3. The programme uses Hedges' adjusted g<sup>42</sup> to calculate a standardised mean difference (SMD) which is adjusted for small sample bias. Pooling of standardized

187 mean Hedges' g estimates of < 0.30,  $\ge 0.30$  and < 0.60, and  $\ge 0.60$  were considered small, moderate, 188 and large, respectively. Meta-analyses were performed where three or more studies investigated a 189 comparable intervention and outcome using a random effects model. Heterogeneity was quantified 190 using the I<sup>2</sup> statistic, considered as low, moderate, or large when at 25%, 50%, or 75%, respectively. 191 <sup>43</sup> Where a study reported multiple outcome measures for one cognitive domain (e.g., within 192 memory function), a composite measure was calculated to provide a single quantitative measure for 193 meta-analysis. <sup>44</sup> Publication bias was examined using funnel plots. We also performed subgroup

> analysis and meta-regression using the "metafor" program in R (https://www.R-project.org/), for example we compared the effectiveness of single and multi-domain training. Furthermore, we subgrouped studies with a training dose of less than 10 hours and more than 30 hours to see if there is a dose-response correlation. We also compared studies with active vs. non-active control conditions, following a reviewer's suggestion. Sensitivity analyses were performed to identify potential sources of heterogeneity. Further details of statistical methods are found in the supplementary material (see supplementary appendix 1).

- Patient and public involvement
- nvolvement in th. There was no direct patient or public involvement in this review.

| 1        |     |                                                                                                           |
|----------|-----|-----------------------------------------------------------------------------------------------------------|
| 2<br>3   | 204 |                                                                                                           |
| 4<br>5   | 204 |                                                                                                           |
| 6        | 205 | RESULTS                                                                                                   |
| 7<br>8   |     |                                                                                                           |
| 9<br>10  | 206 | Description of studies                                                                                    |
| 11<br>12 | 207 | The Preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist was used to     |
| 13<br>14 |     |                                                                                                           |
| 15       | 208 | guide reporting of results. <sup>45</sup>                                                                 |
| 16<br>17 | 209 | Following the initial literature review a total of 8893 studies were found. Of these 8875 were            |
| 18<br>19 | 210 | excluded and 18 studies met inclusion criteria. Figure 1 presents a flowchart of study selection. The     |
| 20<br>21 |     |                                                                                                           |
| 22<br>23 | 211 | total number of participants included was 690 and the brief summary characteristics of each study         |
| 24<br>25 | 212 | are presented in table 1 and detailed in supplementary table 3. Sample sizes ranged from 12 to 106,       |
| 26       | 213 | and dropout rates ranged from 0% to 32%. One study was excluded from the meta-analysis because            |
| 27<br>28 | 214 | of suspected inclusion of participants with probable AD based on the reported average Mini–Mental         |
| 29<br>30 | 215 | State Examination (MMSE) score. <sup>46</sup> Another two studies were excluded from the meta-analysis as |
| 31<br>32 |     |                                                                                                           |
| 33<br>34 | 216 | post-intervention cognitive data could not be obtained. 47 48                                             |
| 35<br>36 | 217 | Thirteen studies reported outcomes assessing memory, five studies reported outcomes assessing             |
| 37<br>38 | 218 | working memory, 11 studies reported outcomes assessing executive function, and 11 studies                 |
| 39       |     |                                                                                                           |
| 40<br>41 | 219 | reported global cognitive functioning outcomes (see table 2.).                                            |
| 42<br>43 | 220 | Quality of studies                                                                                        |
| 44<br>45 |     |                                                                                                           |
| 46<br>47 | 221 | The quality of each study was evaluated in regard to certain methodological aspects and                   |
| 48       | 222 | summarised in supplementary figure 1. 11 of the 18 studies did not report blinding of participants.       |
| 49<br>50 |     |                                                                                                           |
| 51<br>52 | 223 | Participant characteristics                                                                               |
| 53<br>54 | 224 | The total number of participants from all studies included was 690 (CCT: n=351, mean group size:          |
| 55<br>56 |     |                                                                                                           |
| 57<br>58 | 225 | n=20, control: n=339, mean group size: n=19). The average age of participants in both conditions          |
| 59       | 226 | was 73.4 years. 52.5% of all participants were male. The disparity and lack of reporting of the ratio of  |
| 60       |     |                                                                                                           |

> participants' years of education precluded mean calculations, although the available data suggests most participants had at least secondary school education. The pooled average baseline score for the MMSE was 26.9 in both groups, although the range of scores indicated heterogeneity within participants.

# 231 Cognitive Training Interventions

Interventions were mostly delivered on a personal computer (PC), using commercially available or purpose built CT packages, with two studies utilising a video game on a games console. <sup>13 38</sup> All interventions were specifically designed to improve various aspects of cognition. The most common type of intervention used was multi-domain (11/18 studies), where the programme targeted two or more cognitive domains. In the seven single domain intervention studies, three evaluated memory training and executive function training while one used working memory training. The dose and duration of the CT intervention was variable, with the total length of training ranging from 4 hours <sup>49</sup> to 80 hours <sup>50</sup> and the duration of training from 2 weeks<sup>51</sup> to 26 weeks. <sup>50</sup> 

## 240 Outcome Measures

Supplementary Table 2 summarises the 60 different cognitive outcome measures used by studies included in the meta-analyses. A considerable variability in measures reported was also noted; only three outcome measures were reported three or more times; seven studies used the MMSE as a measure of global cognition, three studies used Paired-associates learning (PAL) to measure memory and in four studies used the Trail Making Test (TMT) as a measure of executive function.

# 246 Meta-analysis of specific outcomes

Separate meta-analyses were conducted on four different cognitive domains. The most commonly tested domains were memory, with thirteen studies exploring this domain. The results of the meta-analyses are presented in table 2.

60 250 Global Cognition function

#### **BMJ** Open

Overall, there was a significant benefit of CCT on global cognition compared to the control group. The meta-analysis revealed a small but statistically significant pooled effect size of 0.23 (95% CI [0.03, 0.44], z = 2.22, p = 0.03) with low heterogeneity between studies ( $I^2 = 6\%$ ) (see figure 2.). The funnel plot did not reveal significant asymmetry (see supplementary figure 2.). The effect size across active-controlled trials (n=7, g=0.23, 95% CI [-0.05, 0.51], I<sup>2</sup>=27%) was smaller than that of trials with non-active control groups (n=4, g=0.31, 95% CI [-0.06, 0.68], I<sup>2</sup>=0%) (see supplementary figure 3-4.), but was not statistically significantly different (z = -0.11, p = 0.91).

Memory

The pooled effect size of CCT on memory outcomes, when compared with control conditions, was moderate and statistically significant (g = 0.30, 95% CI = [0.11, 0.50], z = 3.03, p = 0.002), with moderate heterogeneity between studies (I<sup>2</sup> = 46%) (see figure 3.). The funnel plot did not reveal significant asymmetry (see supplementary figure 5.). The effect size across active-controlled trials  $(n=8, g=0.36, 95\% CI [0.11, 0.61], I^2=52\%)$  was larger than that of trials with passive control groups  $(n=5, 10^{-1})$ g=0.20, 95% CI [-0.14, 0.54],  $I^2$ =43%) (see supplementary figure 6-7.), but was not statistically significantly different (z = -0.32, p = 0.75). However, there was moderate heterogeneity across studies in both analyses.

Due to the moderate heterogeneity between studies, a sensitivity analysis was also conducted, in which one study at a time was removed and the others analysed to estimate whether the results could have been markedly affected by a single study. The combined Hedges' g were consistent and without apparent fluctuation, with a range from 0.23 [0.07, 0.39] to 0.35[0.15, 0.55].

Working Memory

The meta-analysis revealed a statistically significant moderate effect size of 0.39 in favour of CCT compared with controls (95% CI [0.12, 0.66], z = 2.85, p = 0.004) with low heterogeneity between studies (I<sup>2</sup> = 0%) (see figure 3.). The funnel plot did not reveal significant asymmetry (see 

supplementary figure 5.). Due to there being fewer than three non-active we did not compare the

effect size between active-controlled trials and non-active trials. **Executive function** The overall effect of CCT on executive function compared with control conditions was small and non-significant. The meta-analysis revealed a pooled effect size of 0.20 (95% CI [-0.03, 0.43], z= 1.74, p = 0.08) with high heterogeneity between studies (I<sup>2</sup> = 51%) (see figure 3.). The funnel plot did not reveal significant asymmetry (see supplementary figure 5.). The effect size across active-controlled trials (n=7, g=0.13, 95% CI [-0.08, 0.35],  $I^2$ =20%) was smaller than for the non-active control groups (n=4, g=0.32, 95% CI [-0.23, 0.87], I<sup>2</sup>=74%) (see supplementary figure 8-9.), but was not statistically significantly different (z = 0.95, p = 0.35). Considering the large heterogeneity between studies (I<sup>2</sup> = 51%), a sensitivity analysis was also conducted as described above. The combined Hedges' g were consistent and without apparent fluctuation, with a range from 0.12 [-0.05, 0.28] to 0.35 [0.03, 0.48]. A priori subgroup analysis A priori, we stipulated that meta-analysis would only be performed if three studies report outcomes in the same cognitive domain and so subgroup analysis could only compare single and multi-domain memory training. Similarly, only global cognition could be used for subgroup analysis to compare the training interventions less than ten hours and more than thirty hours. Our subgroup analyses and meta-regression suggested that there is no difference between multi-domain CCT and single-domain CCT (z = 0.09, p = 0.93), although the former had a significant effect (g = 0.30, 95% CI (0.08, 0.53)) while the latter was non-significant (g = 0.31, 95% CI (-0.19, 0.81)) (see supplementary figure 10-11). There is also no clear evidence for a dose-response relationship. Our subgroup analysis found that studies that provided more than 30 hours of CCT had a smaller overall effect on global cognitive function (g = 0.20, 95% CI (-0.31, 0.71)) compared to studies providing less than 10 hours of CCT (g= 

| 3<br>4                                                                     | 3 |
|----------------------------------------------------------------------------|---|
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                  | 3 |
| 6<br>7                                                                     |   |
| 8                                                                          | 3 |
| 9<br>10                                                                    | 3 |
| 11                                                                         | - |
| 12                                                                         |   |
| 13<br>14                                                                   |   |
| 15                                                                         |   |
| 16<br>17                                                                   |   |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 |   |
| 19                                                                         |   |
| 20                                                                         |   |
| 22                                                                         |   |
| 23                                                                         |   |
| 24<br>25                                                                   |   |
| 25<br>26                                                                   |   |
| 27                                                                         |   |
| 28<br>29                                                                   |   |
| 30                                                                         |   |
| 31                                                                         |   |
| 32<br>33<br>34<br>35                                                       |   |
| 33<br>34                                                                   |   |
| 35                                                                         |   |
| 36<br>37<br>38                                                             |   |
| 38                                                                         |   |
| 39                                                                         |   |
| 40<br>41                                                                   |   |
| 41                                                                         |   |
| 43                                                                         |   |
| 44<br>45                                                                   |   |
| 46                                                                         |   |
| 47                                                                         |   |
| 48<br>49                                                                   |   |
| 50                                                                         |   |
| 51                                                                         |   |
| 52<br>53                                                                   |   |
| 55<br>54                                                                   |   |
| 55                                                                         |   |
| 56<br>57                                                                   |   |
| 57<br>58                                                                   |   |
| 59                                                                         |   |

60

303 0.30, 95% CI (-0.01, 0.61) (see supplementary figure 12-13). We did not perform a meta-regression
304 for training dose because fewer than ten studies were included. The subgroup analyses need to be
305 interpreted with caution due to the small number of studies and heterogeneity, however, they
306 illustrate the lack of clear factors that are associated with efficacy.

For beer teries only

# 307 DISCUSSION

# 308 Main findings

Based on results from 18 RCTs, it is likely that CCT is a viable intervention for improving cognition in older people with MCI. There were small to moderate positive effect sizes found in all domains, with statistical significance reached for global cognitive function (g=0.23, 95% CI = [0.03, 0.44]), memory (g=0.30, 95% CI=[0.11, 0.50]) and working memory (g=0.39, 95% CI=[0.12, 0.66]), but not executive function (g=0.20, 95% CI=[-0.03, 0.43]). The largest effect sizes were found for working memory and memory (although statistically significant heterogeneity was found for the latter domain). This is unsurprising given its central focus in most interventions and promising given this is the primary complaint in most cases of MCI.

The present meta-analyses updated the literature search and added eight new studies<sup>23</sup> <sup>36-38</sup> <sup>51-54</sup>compared with the previous study conducted by Hill et al<sup>32</sup>. The present findings are largely in keeping with the results of Hill et al <sup>32</sup> that demonstrated positive effect sizes for global cognition (g=0.38, 95% CI=[0.14–0.62]), memory (g=0.42, 95% CI =[0.21, 0.63]), working memory (g=0.74, 95% CI =[0.32, 1.15]) and executive function (g=0.20, 95% CI=[-0.05, 0.44]). However, our results are in contrast with the results reported by Gates et al which found that there were no clear effects of CCT on cognition for people with MCl<sup>39</sup>. Methodological reasons for this inconsistency may be that Gates et al only included studies with a minimum intervention period of 12 weeks and included a broader range of participants at risk of cognitive decline. As a result, fewer studies (eight) met their eligibility criteria, of which two studies did not require a strict MCI diagnosis <sup>46 47</sup> and one used self or informant-reported cognitive complaints.55

The current meta-analysis employed strict eligibility criteria to overcome the methodological issues reported in the literature <sup>56 57</sup> such as inappropriate control groups and CCT being combined with other interventions. The combination of an overall large sample size (N=690) and stringent eligibility criteria make this meta-analysis a useful contribution to the growing evidence for the efficacy of CCT control groups and control groups and stringent eligibility

#### **BMJ** Open

in MCI. Nevertheless, various methodological issues were identified that limit the ability to make
recommendations for the optimal format, frequency or intensity of CCT. Further, the lack of
longitudinal studies make it unclear whether observed post-intervention benefits contribute in any
way to the goal of delaying or preventing the progression from MCI to dementia.

# 336 Validity of observations and limitations

## 337 Sources of bias

Several methodological issues were identified. Studies were rarely double-blinded, and whilst it may be considered impractical to blind therapists and participants given the nature of the intervention, this nevertheless introduces the risk of expectation bias and exaggerated results. In addition, data concerning dropouts were rarely included in the analyses and ITT analysis was only used in two studies.<sup>49 58</sup> Whilst most of the remaining studies reported no significant differences at baseline for those who dropped out, these differences may have only become apparent post-intervention, and baseline differences may have been more obvious with the large number of participants in the meta-analysis. Thus, the absence of ITT may have introduced an attrition bias.

Further bias may have arisen due to the decision in this study not to differentiate between amnestic and non-amnestic forms of MCI. This classification is an example of the heterogeneity of MCI symptoms. This heterogeneity is supported in descriptions by Petersen <sup>59</sup> and in the results of a study revealing MCI as a highly nuanced and complex clinical entity. <sup>60</sup> This may lead to considerably different intervention effects between participants and render it difficult to evaluate the efficacy of the cognitive intervention and the generalisability of the current results.

This meta-analysis calculated composite effect sizes when multiple outcome measures were provided for the same domain in each study. Whilst this method maximises the amount of data drawn from the reviewed studies, it also has certain limitations. Firstly, this approach necessitated an arbitrary measure of correlation between outcome measures, in this case set at 0.5. This may be

inaccurate, with outcome measures being more or less heterogeneous. Unfortunately, data on composite heterogeneity was not available, however, choosing between outcome measures to decide which best represents a particular domain would have posed a significant risk of selection bias. This partly stems from the fact that 'gold standard' tests for the different cognitive domains have not been identified.

Another limitation of the present meta-analysis is the lack of registration on Prospero. The registration could ensure that the protocol and results are available to other researchers for replication and updating. <sup>61</sup> However unfortunately at the stage of registration of our protocol, data extraction was complete and the study was therefore ineligible to be registered on Prospero.

The literature suggests multiple factors may influence the efficacy of cognitive interventions. <sup>62</sup> An aim of the current analysis was to provide insight regarding CCT design choices and training outcomes to inform decisions on interventions to use both clinically and in future studies. Of note, the sub-groups analyses and meta-regression did not find any significant differences between studies with active and non-active control conditions for any domain, or between multi-domain and single-domain CCT. Due to the limited number of studies and heterogeneity of interventions and outcome measures, it is difficult to make clear recommendations for the optimal form of CCT.

This meta-analysis has demonstrated efficacy of CCT in MCI patients for a very specific outcome: performance on a neuropsychological test immediately post-intervention. Whilst promising, this is far removed from the goal of slowing progression to or preventing dementia in MCI patients. There was a lack of follow-up data, with only three studies <sup>50 53 63</sup> including long-term outcome measures, so no conclusions can be drawn regarding the longevity of the small to moderate effects or the transfer of immediate effects. In addition, benefits on neuropsychological testing may not translate to clinically meaningful benefits in everyday function. Barnett and Ceci <sup>64</sup> describe the immediate

#### **BMJ** Open

outcomes measured here as 'near transfer' and the long-term transfer to untrained cognitive abilities as 'far transfer'. If there is any possibility of dementia being prevented or delayed using CCT then 'far transfer' of some sort is likely necessary. A review by Zelinski 65 outlines how 'far transfer' from cognitive training has been observed in aging population, though this is not specific to CCT or MCI. Demonstration of 'far transfer' as a result of cognitive training in healthy adults is very rare and there is increasing evidence that even 'near transfer' is difficult to demonstrate convincingly. <sup>66</sup> More research into long-term transfer effects of CCT in patients with MCI is vital in determining its potential to reduce the dementia burden.

Suggestions for future research

The discussion highlights factors limiting the reliability and transferability of the results of the meta-analysis. These limitations may be potentially overcome by more RCTs examining long-term cognitive outcomes to assess transfer of CCT to everyday life and provide more insight on whether CCT can influence progression to dementia. It is feasible to conduct large and longitudinal studies of CCT, as it can be delivered online and therefore be easily and widely available. The standardization of outcome measures between RCTs would also avoid problems associated with heterogeneity and overall higher methodological quality of RCTs would reduce bias.

#### Conclusion

This meta-analysis has demonstrated support for the hypothesis that CCT improves cognitive function in older people with MCI. However, the long-term transfer of these improvements and relevance to reducing dementia prevalence remains unknown. Various methodological issues such as heterogeneity in outcome measures, interventions and MCI symptoms and lack of ITT analyses are significant limitations of the literature. Long-term outcomes are the next priority for CCT in MCI patients to further explore its efficacy with respect to influencing dementia progression.

| 2<br>3<br>4<br>5     | 404 |
|----------------------|-----|
| 6<br>7               | 405 |
| 8<br>9               | 406 |
| 10<br>11             | 407 |
| 12<br>13<br>14       | 408 |
| 15<br>16             | 409 |
| 17<br>18             | 410 |
| 19<br>20<br>21       | 411 |
| 22<br>23<br>24       | 412 |
| 25<br>26             | 413 |
| 27<br>28             | 414 |
| 29<br>30<br>21       | 415 |
| 31<br>32<br>33       | 416 |
| 34<br>35<br>36       | 417 |
| 37<br>38<br>39       | 418 |
| 40<br>41<br>42       | 419 |
| 43<br>44<br>45       | 420 |
| 46<br>47<br>48       | 421 |
| 49<br>50<br>51       | 422 |
| 52<br>53<br>54       | 423 |
| 54<br>55<br>56<br>57 | 424 |
| 57<br>58<br>59<br>60 | 425 |
|                      |     |

#### 404 Contributors

1 2

> 405 HZ, RB, JDH, RG, HW, XY and RJH all contributed to the conception and design of the review. HZ, BH, 406 CJT, JDH read and screened abstracts and titles of potentially relevant studies. HZ, RB, and JDH read 407 the retained papers and were responsible for extracting data and rating their quality independently. 408 HZ drafted the paper with all the authors critically reviewing it and suggesting amendments prior to 409 submission. All the authors had access to all the data in the study and can take responsibility for the 410 integrity of the reported findings.

411 Funding

412 We acknowledge the funding provided by Beijing Municipal Science & Technology Commission (No. 413 Z161100000516001, D171100008217007). Haifeng Zhang is supported by the China Scholarship 414 Council (CSC) (No. 201706010329) to be a visiting Ph.D. student at University College London, UK. RB 415 is supported by a NIHR Academic Clinical Fellowship. JH, RG and RH are supported by the NIHR UCLH 416 BRC.

417 **Competing interests** 

418 None declared.

419 **Patient consent** 

420 Not required.

#### 421 Provenance and peer review

422 Not commissioned; externally peer reviewed.

#### 423 Data sharing statement

424 Details of excluded papers are available from the first author on request.

| 1            |            |                                                                                                                            |
|--------------|------------|----------------------------------------------------------------------------------------------------------------------------|
| 2<br>3       | 426        |                                                                                                                            |
| 4            | 420        |                                                                                                                            |
| 5<br>6<br>7  | 427        |                                                                                                                            |
| 8<br>9<br>10 | 428        | REFERENCES                                                                                                                 |
| 11<br>12     | 429        | 1. Alzheimer's Disease International. World Alzheimer Report 2015. 2015                                                    |
| 13           | 430        | 2. Huckans M, Hutson L, Twamley E, et al. Efficacy of cognitive rehabilitation therapies for mild                          |
| 14<br>15     | 431        | cognitive impairment (MCI) in older adults: working toward a theoretical model and                                         |
| 16           | 432        | evidence-based interventions. <i>Neuropsychol Rev</i> 2013;23(1):63-80. doi:                                               |
| 17<br>18     | 433        | 10.1007/s11065-013-9230-9                                                                                                  |
| 19           | 434        | 3. Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's                          |
| 20<br>21     | 435        | disease. Alzheimer's & dementia : the journal of the Alzheimer's Association 2007;3(3):186-91.                             |
| 22           | 436        | doi: 10.1016/j.jalz.2007.04.381                                                                                            |
| 23<br>24     | 437        | 4. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and                       |
| 24<br>25     | 438        | outcome. Archives of neurology 1999;56(3):303-8.                                                                           |
| 26           | 439        | 5. Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment. <i>Lancet</i>                                       |
| 27<br>28     | 440        | 2006;367(9518):1262-70. doi: 10.1016/s0140-6736(06)68542-5                                                                 |
| 29           | 441        | <ol> <li>6. Petersen RC. Mild Cognitive Impairment. <i>Continuum (Minneap Minn)</i> 2016;22(2 Dementia):404-18.</li> </ol> |
| 30<br>31     | 442        | doi: 10.1212/CON.00000000000313                                                                                            |
| 32           | 443        | 7. Karakaya T, Fusser F, Schroder J, et al. Pharmacological Treatment of Mild Cognitive Impairment                         |
| 33<br>34     | 444        | as a Prodromal Syndrome of Alzheimer's Disease. <i>Curr Neuropharmacol</i> 2013;11(1):102-8.                               |
| 35           | 445        | doi: 10.2174/157015913804999487                                                                                            |
| 36<br>37     | 446        | 8. Gates N, Valenzuela M. Cognitive Exercise and Its Role in Cognitive Function in Older Adults.                           |
| 37<br>38     | 447        | <i>Current Psychiatry Reports</i> 2010;12(1):20-27. doi: 10.1007/s11920-009-0085-y                                         |
| 39           | 448        | 9. Ball K, Berch DB, Helmers KF, et al. Effects of cognitive training interventions with older adults: a                   |
| 40<br>41     | 449        | randomized controlled trial. Jama 2002;288(18):2271-81.                                                                    |
| 42           | 450        | 10. Kueider AM, Parisi JM, Gross AL, et al. Computerized cognitive training with older adults: a                           |
| 43<br>44     | 451        | systematic review. <i>PloS one</i> 2012;7(7):e40588. doi: 10.1371/journal.pone.0040588                                     |
| 45           | 452        | 11. Jak AJ, Seelye AM, Jurick SM. Crosswords to computers: a critical review of popular approaches                         |
| 46<br>47     | 453        | to cognitive enhancement. <i>Neuropsychology review</i> 2013;23(1):13-26.                                                  |
| 48           | 454        | 12. Owen AM, Hampshire A, Grahn JA, et al. Putting brain training to the test. <i>Nature</i>                               |
| 49<br>50     | 455        | 2010;465(7299):775-78. doi: 10.1038/nature09042                                                                            |
| 51           | 456        | 13. Hughes TF, Flatt JD, Fu B, et al. Interactive video gaming compared with health education in older                     |
| 52           | 457        | adults with mild cognitive impairment: a feasibility study. <i>International journal of geriatric</i>                      |
| 53<br>54     | 458        | psychiatry 2014;29(9):890-8. doi: 10.1002/gps.4075                                                                         |
| 55           | 459        | 14. Gates NJ, Sachdev PS, Singh MAF, et al. Cognitive and memory training in adults at risk of                             |
| 56<br>57     | 459<br>460 | dementia: A Systematic Review. <i>BMC geriatrics</i> 2011;11 doi: Artn 55                                                  |
| 58           | 400        | dementia. A Systematic Neview. Divic genatics 2011, 11 001. Atti 35                                                        |
| 59<br>60     | 461        | 10.1186/1471-2318-11-55                                                                                                    |

15. Huntley JD, Gould RL, Liu K, et al. Do cognitive interventions improve general cognition in

dementia? A meta-analysis and meta-regression. Bmj Open 2015;5(4) doi: ARTN e005247

10.1136/bmjopen-2014-005247 16. Wilson RS, Mendes De Leon CF, Barnes LL, et al. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. Jama 2002;287(6):742-8. 17. Belleville S. Cognitive training for persons with mild cognitive impairment. International Psychogeriatrics 2008;20(01) doi: 10.1017/s104161020700631x 18. Mowszowski L, Hermens DF, Diamond K, et al. Cognitive training enhances pre-attentive neurophysiological responses in older adults 'at risk' of dementia. Journal of Alzheimer's disease : JAD 2014;41(4):1095-108. doi: https://dx.doi.org/10.3233/JAD-131985 19. Reijnders J, van Heugten C, van Boxtel M. Cognitive interventions in healthy older adults and people with mild cognitive impairment: a systematic review. Ageing Res Rev 2013;12(1):263-75. doi: 10.1016/j.arr.2012.07.003 20. Gunther VK, Schafer P, Holzner BJ, et al. Long-term improvements in cognitive performance through computer-assisted cognitive training: a pilot study in a residential home for older people. Aging Ment Health 2003;7(3):200-06. doi: 10.1080/1360786031000101175 21. Cipriani G, Bianchetti A, Trabucchi M. Outcomes of a computer-based cognitive rehabilitation program on Alzheimer's disease patients compared with those on patients affected by mild cognitive impairment. Archives of gerontology and geriatrics 2006;43(3):327-35. doi: 10.1016/j.archger.2005.12.003 22. Gonzalez-Palau F, Franco M, Bamidis P, et al. The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample. Aging Ment *Health* 2014;18(7):838-46. doi: 10.1080/13607863.2014.899972 23. Rosen AC, Sugiura L, Kramer JH, et al. Cognitive training changes hippocampal function in mild cognitive impairment: a pilot study. Journal of Alzheimer's disease : JAD 2011;26 Suppl 3:349-57. doi: 10.3233/jad-2011-0009 24. Eckroth-Bucher M, Siberski J. Preserving cognition through an integrated cognitive stimulation and training program. Am J Alzheimers Dis Other Demen 2009;24(3):234-45. doi: 10.1177/1533317509332624 25. Galante E, Venturini G, Fiaccadori C. Computer-based cognitive intervention for dementia: preliminary results of a randomized clinical trial. G Ital Med Lav Ergon 2007;29(3 Suppl B):B26-32. 26. Gaitan A, Garolera M, Cerulla N, et al. Efficacy of an adjunctive computer-based cognitive training program in amnestic mild cognitive impairment and Alzheimer's disease: a single-blind, randomized clinical trial. International journal of geriatric psychiatry 2013;28(1):91-9. doi: https://dx.doi.org/10.1002/gps.3794 27. Zhuang JP, Fang R, Feng X, et al. The impact of human-computer interaction-based comprehensive training on the cognitive functions of cognitive impairment elderly individuals 

Page 23 of 67

10.3233/jad-130158

 in a nursing home. Journal of Alzheimer's disease : JAD 2013;36(2):245-51. doi:

| 6<br>7   | 502 | 28. Bavelier D, Green CS, Han DH, et al. Brains on video games. Nat Rev Neurosci                          |
|----------|-----|-----------------------------------------------------------------------------------------------------------|
| 8        | 503 | 2011;12(12):763-8. doi: 10.1038/nrn3135                                                                   |
| 9<br>10  | 504 | 29. Li H, Li J, Li N, et al. Cognitive intervention for persons with mild cognitive impairment: A         |
| 10       | 505 | meta-analysis. <i>Ageing Res Rev</i> 2011;10(2):285-96. doi: 10.1016/j.arr.2010.11.003                    |
| 12       | 506 | 30. Martin M, Clare L, Altgassen AM, et al. Cognition-based interventions for healthy older people and    |
| 13<br>14 | 507 | people with mild cognitive impairment. The Cochrane database of systematic reviews                        |
| 15       | 508 | 2011(1):CD006220. doi: 10.1002/14651858.CD006220.pub2                                                     |
| 16<br>17 | 509 | 31. Simon SS, Yokomizo JE, Bottino CM. Cognitive intervention in amnestic Mild Cognitive                  |
| 18       | 510 | Impairment: a systematic review. <i>Neurosci Biobehav Rev</i> 2012;36(4):1163-78. doi:                    |
| 19<br>20 | 511 | 10.1016/j.neubiorev.2012.01.007                                                                           |
| 20       | 512 | 32. Hill NT, Mowszowski L, Naismith SL, et al. Computerized Cognitive Training in Older Adults With       |
| 22       | 513 | Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Am J                        |
| 23<br>24 | 514 | <i>Psychiatry</i> 2017;174(4):329-40. doi: 10.1176/appi.ajp.2016.16030360                                 |
| 25       | 515 | 33. Sherman DS, Mauser J, Nuno M, et al. The Efficacy of Cognitive Intervention in Mild Cognitive         |
| 26<br>27 | 516 | Impairment (MCI): a Meta-Analysis of Outcomes on Neuropsychological Measures.                             |
| 28       | 517 | Neuropsychol Rev 2017;27(4):440-84. doi: 10.1007/s11065-017-9363-3                                        |
| 29<br>30 | 518 | 34. Coyle H, Traynor V, Solowij N. Computerized and virtual reality cognitive training for individuals at |
| 31       | 519 | high risk of cognitive decline: systematic review of the literature. The American journal of              |
| 32<br>33 | 520 | geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry              |
| 33<br>34 | 521 | 2015;23(4):335-59. doi: 10.1016/j.jagp.2014.04.009                                                        |
| 35       | 522 | 35. Ge S, Zhu Z, Wu B, et al. Technology-based cognitive training and rehabilitation interventions for    |
| 36<br>37 | 523 | individuals with mild cognitive impairment: a systematic review. BMC geriatrics                           |
| 38       | 524 | 2018;18(1):213. doi: 10.1186/s12877-018-0893-1                                                            |
| 39<br>40 | 525 | 36. Djabelkhir L, Wu YH, Vidal JS, et al. Computerized cognitive stimulation and engagement               |
| 41       | 526 | programs in older adults with mild cognitive impairment: comparing feasibility, acceptability,            |
| 42<br>43 | 527 | and cognitive and psychosocial effects. <i>Clinical interventions in aging</i> 2017;12:1967-75. doi:      |
| 44       | 528 | 10.2147/cia.s145769                                                                                       |
| 45<br>46 | 529 | 37. Han JW, Son KL, Byun HJ, et al. Efficacy of the Ubiquitous Spaced Retrieval-based Memory              |
| 40<br>47 | 530 | Advancement and Rehabilitation Training (USMART) program among patients with mild                         |
| 48<br>49 | 531 | cognitive impairment: a randomized controlled crossover trial. Alzheimers Res Ther 2017;9:8.              |
| 49<br>50 | 532 | doi: 10.1186/s13195-017-0264-8                                                                            |
| 51       | 533 | 38. Savulich G, Piercy T, Fox C, et al. Cognitive Training Using a Novel Memory Game on an iPad in        |
| 52<br>53 | 534 | Patients with Amnestic Mild Cognitive Impairment (aMCI). Int J Neuropsychopharmacol 2017                  |
| 54       | 535 | doi: 10.1093/ijnp/pyx040                                                                                  |
| 55<br>56 | 536 | 39. Gates NJ, Vernooij RW, Di Nisio M, et al. Computerised cognitive training for preventing dementia     |
| 57       | 537 | in people with mild cognitive impairment. The Cochrane database of systematic reviews                     |
| 58<br>59 | 538 | 2019;3(3):CD012279. doi: 10.1002/14651858.CD012279.pub2 [published Online First:                          |
| 59<br>60 | 539 | 2019/03/14]                                                                                               |
|          |     |                                                                                                           |
|          |     |                                                                                                           |

- 40. Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Archives of neurology 2001;58(12):1985-92. [published Online First: 2001/12/26]
- 41. Higgins JPT GS, (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. : The Cochrane Collaboration 2011.
- 42. Hedges LV OI. Statistical Methods for Meta-Analysis: New York: Academic Press 1985.
- 43. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557-60. doi: 10.1136/bmj.327.7414.557
- 44. Borenstein M. Introduction to meta-analysis2009.

- 45. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535. doi: 10.1136/bmj.b2535
- 46. Optale G, Urgesi C, Busato V, et al. Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study. Neurorehabilitation and neural repair 2010;24(4):348-57. doi: 10.1177/1545968309353328
- 47. Barnes DE, Yaffe K, Belfor N, et al. Computer-based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer disease and associated disorders 2009;23(3):205-10. doi: 10.1097/WAD.0b013e31819c6137
- 48. Chandler MJ, Locke DEC, Duncan NL, et al. Computer versus Compensatory Calendar Training in Individuals with Mild Cognitive Impairment: Functional Impact in a Pilot Study. Brain sciences 2017;7(9):10. doi: 10.3390/brainsci7090112
- 49. Han JW, Lee H, Hong JW, et al. Multimodal cognitive enhancement therapy for patients with mild cognitive impairment and mild dementia: A multi- center, randomized, controlled, double-blind, of Alzheimer's 2017;55(2):787-96. crossover trial. Journal Disease doi: http://dx.doi.org/10.3233/JAD-160619
- 50. Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training (SMART) study-resistance training and/or cognitive training in mild cognitive impairment: a J Am Med Dir Assoc randomized, double-blind, double-sham controlled trial. 2014;15(12):873-80. doi: 10.1016/j.jamda.2014.09.010
- 51. Gagnon LG, Belleville S. Training of attentional control in mild cognitive impairment with executive deficits: results from a double-blind randomised controlled study. Neuropsychological rehabilitation 2012;22(6):809-35. doi: https://dx.doi.org/10.1080/09602011.2012.691044
- 52. Ciarmiello A, Gaeta MC, Benso F, et al. FDG-PET in the Evaluation of Brain Metabolic Changes Induced by Cognitive Stimulation in aMCI Subjects. Curr Radiopharm 2015;8(1):69-75. doi: 10.2174/1874471008666150428122924
- 53. Hyer L, Scott C, Atkinson MM, et al. Cognitive Training Program to Improve Working Memory in Older Adults with MCI. 2016;39(5):410-27. Clin Gerontologist doi: 10.1080/07317115.2015.1120257
- 54. Lin F, Heffner KL, Ren P, et al. Cognitive and Neural Effects of Vision-Based Speed-of-Processing Training in Older Adults with Amnestic Mild Cognitive Impairment: A Pilot Study. Journal of the American Geriatrics Society 2016;64(6):1293-8. doi: 10.1111/jgs.14132

- 3<br/>458055. Kwok T, Wong A, Chan G, et al. Effectiveness of cognitive training for Chinese elderly in Hong5581Kong. Clinical interventions in aging 2013;8:213-9. doi: 10.2147/CIA.S38070 [published6<br/>7582Online First: 2013/02/27]
- 583 56. Papp KV WS, Snyder PJ. Immediate and delayed effects of cognitive interventions in healthy
   584 elderly: a review of current literature and future directions. . 2009
- 585 57. Martin M CL, Altgassen AM, Cameron MH, Zehnder F. Cognition-based interventions for healthy
   586 older people and people with mild cognitive impairment. 2011
- 587 58. Vidovich MR, Lautenschlager NT, Flicker L, et al. The PACE study: A randomized clinical trial of 14 15 588 cognitive activity strategy training for older people with mild cognitive impairment. American 16 589 Journal of Geriatric Psychiatry 2015;23(4):360-72. doi: 17 18 590 http://dx.doi.org/10.1016/j.jagp.2014.04.002
- 591 59. Petersen RC. Mild cognitive impairment clinical trials. 2003
- 2159260. Libon DJ XS, Eppig J, Wicas G, Lamar M, Lippa C, Bettcher BM, Price CC, Giovannetti T,22593Swenson R, Wambach DM. The heterogeneity of mild cognitive impairment: a23594neuropsychological analysis. 2009
- 25<br/>26<br/>2759561. Booth A, Clarke M, Dooley G, et al. The nuts and bolts of PROSPERO: an international<br/>prospective register of systematic reviews. Syst Rev 2012;1:2. doi: 10.1186/2046-4053-1-228<br/>29597<br/>[published Online First: 2012/05/17]
- 59862. V. Solfrizzi FP, A.M. Colacicco, A. D'Introno, C. Capurso, F. Torres, F. Grigoletto, S. Maggi, A. Del3159932Parigi, E.M. Reiman, R.J. Caselli, E. Scafato, G. Farchi, A. Capurso. Vascular risk factors,32incidence of MCI, and rates of progression to dementia. 2004
- 601 63. Herrera C, Chambon C, Michel BF, et al. Positive effects of computer-based cognitive training in
   602 adults with mild cognitive impairment. *Neuropsychologia* 2012;50(8):1871-81. doi:
   603 10.1016/j.neuropsychologia.2012.04.012
- 604 64. Barnett SM CS. When and where do we apply what we learn? A taxonomy for far transfer. 2002
   604 64. Barnett SM CS. When and where do we apply what we learn? A taxonomy for far transfer.
- 40 605 65. Meta-Analysis CCTiOAWMCIoDASRa. Far transfer in cognitive training of older adults. 2014
- 606
   607
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
   608
- 45 609 67. Barban F, Annicchiarico R, Pantelopoulos S, et al. Protecting cognition from aging and 46 610 47 Alzheimer's disease: a computerized cognitive training combined with reminiscence therapy. 48 611 International journal of geriatric psychiatry 2016;31(4):340-8. doi: 49 612 https://dx.doi.org/10.1002/gps.4328 50
- 51<br/>52<br/>5361368. Finn M, McDonald S. Computerised Cognitive Training for Older Persons With Mild Cognitive53<br/>53614Impairment: A Pilot Study Using a Randomised Controlled Trial Design. Brain Impair54<br/>556152011;12(3):187-99.
- 5661669. Finn M, McDonald S. Repetition-lag training to improve recollection memory in older people with57617amnestic mild cognitive impairment. A randomized controlled trial. Aging Neuropsychol C586182015;22(2):244-58. doi: 10.1080/13825585.2014.915918

- 70. Gooding AL, Choi J, Fiszdon JM, et al. Comparing three methods of computerised cognitive training for older adults with subclinical cognitive decline. Neuropsychological Rehabilitation 2016;26(5-6):810-21. doi: 10.1080/09602011.2015.1118389
- 71. Hagovska M, Olekszyova Z. Impact of the combination of cognitive and balance training on gait, fear and risk of falling and quality of life in seniors with mild cognitive impairment. Geriatrics & Gerontology International 2016;16(9):1043-50. doi: 10.1111/ggi.12593
  - 72. Rozzini L, Costardi D, Chilovi BV, et al. Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. International journal of geriatric psychiatry 2007;22(4):356-60. doi: 10.1002/gps.1681

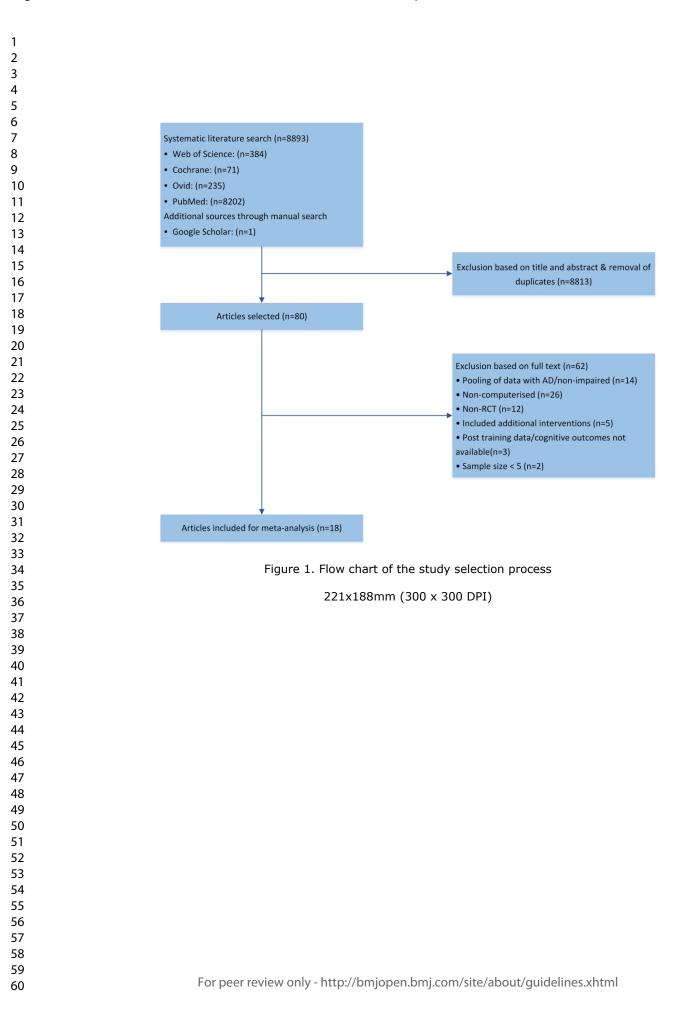
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| 629 |
|-----|
| 630 |
|     |

Table 1. Characteristics of studies using computerised cognitive training in persons with MCI

| Author and Year                          | CCT Group N, age, education                                | Control Group N, age, education                             | CCT type            | Total<br>hours |
|------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|---------------------|----------------|
| Barban et al 2016 <sup>67</sup>          | N = 46, Age = 74.4 (5.7), Edu = 9 (4.3)                    | N = 60, Age = 72.9 (6.0), Edu = 11 (4.7)                    | Multi domain        | 24             |
| Ciarmiello et al 2015 <sup>52</sup>      | N = 15, Age = 71.2 (7.7), Edu = 9.3 (3.0)                  | N = 15, Age = 72.0 (7.1), Edu = 7.8 (2.6)                   | Multi domain        | 24             |
| Djabelkhjr et al 2017 <sup>36</sup>      | N = 10, Age = 75.2 (6.4), Edu = $60.0\%$ of college level  | N = 10, Age = 78.2 (7.0), Edu = 44.4% of college level      | Multi domain        | 18             |
| Fiatarone et al 2014 <sup>50</sup>       | N = 24, Age = >55, Edu = n/s                               | N = 27, Age = >55, Edu = n/s                                | Multi domain        | 80             |
| Finn & McDonald 201168                   | N = 8, Age = 69.0 (7.7), Edu = 13.3 (2.2)                  | N = 8, Age = 76.4 (6.5), Edu = 12.0 (2.8)                   | Multi domain        | 25             |
| Finn & McDonald 201569                   | N = 12, Age = 72.8 (5.7), Edu = 13.8 (3.0)                 | N = 12, Age = 75.1 (7.5), Edu = 13.7 (2.8)                  | Memory              | n/s            |
| Gagnon & Belleville 2012 <sup>51</sup>   | N = 12, Age = 67.0 (7.8), Edu = 15.0 (4.6)                 | N = 12, Age = 68.4 (6.0), Edu = 13.1 (5.7)                  | Attentional control | 6              |
| Gooding et al 2016 study 1 <sup>70</sup> | N = 31, Age = 75.6 (8.8), Edu = 15.1 (2.6)                 | N = 10, Age = 75.6 (8.8), Edu = 15.1 (2.6)                  | Multi domain        | 30             |
| Gooding et al 2016 study 2 <sup>70</sup> | N = 23, Age = 75.6 (8.8), Edu = 15.1 (2.6)                 | N = 10, Age = 75.6 (8.8), Edu = 15.1 (2.6)                  | Multi domain        | 30             |
| Hagovska et al 2016 <sup>71</sup>        | N = 40, Age = 68.0 (4.4), Edu = 75% of secondary education | N = 40, Age = $65.9$ (6.2),Edu = 70% of secondary education | Multi domain        | 10             |
| Han et al 2017 <sup>37</sup>             | N = 23, Age = 73.7 (4.8), Edu = 13.5 (3.2)                 | N = 20, Age = 74.5 (6.4), Edu = 12.7 (3.7)                  | Memory              | 4              |
|                                          |                                                            |                                                             |                     |                |

| Author and Year                   | CCT Group N, age, education                                     | Control Group N, age, education                                 | CCT type          | Total<br>hours |
|-----------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------------------|----------------|
| Herrera et al 2012 <sup>63</sup>  | N = 11, Age = 75.1 (2.0), Edu = 46% of secondary school or more | N = 11, Age = 78.2 (1.4), Edu = 63% of secondary school or more | Multi domain      | 24             |
| Hughes et al 2014 <sup>13</sup>   | N = 10, Age = 78.5 (7.1), Edu = 13.8 (2.4)                      | N = 10, Age = 76.2 (4.3), Edu = 13.1 (1.9)                      | Multi domain      | 36             |
| Hyer et al 2016 <sup>53</sup>     | N = 34, Age = 75.1 (7.4), Edu = 70% secondary                   | N = 34, Age = 75.2 (7.8), Edu = 66% secondary                   | Working<br>memory | 16.7           |
| in et al 2016 <sup>54</sup>       | N = 10, Age = 72.9 (8.2), Edu = 90.0% of college level          | N = 11, Age = 73.1 (9.6), Edu = 54.5% of college level          | Processing speed  | 24             |
| Rosen et al 2011 <sup>23</sup>    | N = 6, Age = 70.7 (10.6), Edu = 16.7 (0.8)                      | N = 6, Age = 78.0 (7.9), Edu = 18.3 (1.5)                       | Processing speed  | 36             |
| Rozzini et al 2007 <sup>72</sup>  | N = 15, Age = 63-78,Edu = n/s                                   | N = 22, Age = 63-78, Edu = n/s                                  | Multi domain      | 60             |
| Savulich et al 2017 <sup>38</sup> | N = 21, Age = 75.2 (7.4), Edu = 15.9 (1.3)<br>(Age left school) | N = 21, Age = 76.9 (8.3)<br>Edu = 16.0 (2.1) (Age left school)  | Memory            | 8              |
| 1 Notes: MMSE: Mini Me<br>2       | ntal State Examination, n/s: not stated                         |                                                                 |                   |                |
|                                   |                                                                 |                                                                 |                   |                |
|                                   |                                                                 |                                                                 |                   |                |
|                                   |                                                                 |                                                                 |                   |                |
|                                   |                                                                 |                                                                 |                   | 28             |


|            | Analysis of<br>CCT    | No. of<br>studies | N<br>Tx*/control | Pooled Effect size g (95% CI) | Overall effect:<br>Z (P value) | Heterogeneity: I <sup>2</sup> %<br>(P value) |
|------------|-----------------------|-------------------|------------------|-------------------------------|--------------------------------|----------------------------------------------|
|            | Global<br>Cognition   | 11                | 258/245          | 0.23 (0.03, 0.44)             | z= 2.22, p = 0.03              | 6% p = 0.39                                  |
|            | Memory                | 13                | 245/232          | 0.30 (0.11, 0.50)             | z = 3.03, p = 0.002            | 46% p = 0.04                                 |
|            | Working<br>Memory     | 5                 | 82/83            | 0.39 (0.12, 0.66)             | z = 2.85, p = 0.004            | 0% p = 0.81                                  |
|            | Executive<br>Function | 11                | 171/182          | 0.20 (-0.03, 0.43)            | z= 1.74, p = 0.08              | 51% p = 0.03                                 |
| 634<br>635 | *Tx = training gr     | oup.              |                  |                               |                                |                                              |
|            |                       |                   |                  |                               |                                |                                              |
|            |                       |                   |                  |                               |                                |                                              |

636 Figure 1 Flow chart of the study selection process

637 Figure 2 Forest plot demonstrating the efficacy of CCT on global cognition function

638 Figure 3 Forest plot demonstrating the efficacy of CCT on memory, working memory and executive function

 For peer teview only



|                      |                      |      | Experimental | Control |        | Std. Mean Difference | Std. Mean Difference |
|----------------------|----------------------|------|--------------|---------|--------|----------------------|----------------------|
| Study or Subgroup    | Std. Mean Difference | SE   | Total        | Total   | Weight | IV, Random, 95% CI   | IV, Random, 95% CI   |
| Barban 2016          | 0.11                 | 0.2  | 46           | 60      | 23.5%  | 0.11 [-0.28, 0.50]   |                      |
| Ciarmiello 2015      | 0.45                 | 0.32 | 15           | 15      | 10.2%  | 0.45 [-0.18, 1.08]   | +                    |
| Djabelkhir 2017      | 0.1                  | 0.45 | 10           | 10      | 5.3%   | 0.10 [-0.78, 0.98]   |                      |
| Fiatarone Singh 2014 | -0.27                | 0.28 | 24           | 27      | 13.0%  | -0.27 [-0.82, 0.28]  |                      |
| Gooding 2016 study 1 | 0.17                 | 0.36 | 31           | 10      | 8.1%   | 0.17 [-0.54, 0.88]   | <del>_</del>         |
| Gooding 2016 study 2 | 0.98                 | 0.4  | 23           | 10      | 6.7%   | 0.98 [0.20, 1.76]    | · · · ·              |
| Hagovsk 2016         | 0.41                 | 0.21 | 40           | 40      | 21.7%  | 0.41 [-0.00, 0.82]   |                      |
| Han 2017             | 0.19                 | 0.9  | 23           | 20      | 1.4%   | 0.19 [-1.57, 1.95]   |                      |
| Hughes 2014          | 0.58                 | 0.46 | 10           | 10      | 5.1%   | 0.58 [-0.32, 1.48]   |                      |
| Rozzini 2007         | -0.49                | 0.58 | 15           | 22      | 3.2%   | -0.49 [-1.63, 0.65]  |                      |
| Savulich 2017        | 0.5                  | 0.79 | 21           | 21      | 1.8%   | 0.50 [-1.05, 2.05]   |                      |
| Total (95% CI)       |                      |      | 258          | 245     | 100.0% | 0.23 [0.03, 0.44]    | •                    |

Figure 2 Forest plot demonstrating the efficacy of CCT on global cognitive function

195x62mm (300 x 300 DPI)

|                                                                   |                                                               | E        | cperimental           | Control |         | Std. Mean Difference | Std. Mean Differen |
|-------------------------------------------------------------------|---------------------------------------------------------------|----------|-----------------------|---------|---------|----------------------|--------------------|
| Study or Subgroup                                                 | Std. Mean Difference                                          | SE       | Total                 | Total   | Weight  | IV, Random, 95% CI   | IV, Random, 95%    |
| 1 Memory                                                          |                                                               |          |                       |         |         |                      |                    |
| Barban 2016                                                       | -0.09                                                         | 0.2      | 46                    | 60      | 5.0%    | -0.09 [-0.48, 0.30]  |                    |
| Ciarmiello 2015                                                   | 0.34                                                          | 0.2      | 15                    | 15      | 5.0%    | 0.34 [-0.05, 0.73]   | -                  |
| Djabelkhir 2017                                                   | 0.12                                                          | 0.4      | 10                    | 10      | 2.1%    | 0.12 [-0.66, 0.90]   | <del></del>        |
| Fiatarone Singh 2014                                              | 0.16                                                          | 0.19     | 24                    | 27      | 5.2%    | 0.16 [-0.21, 0.53]   |                    |
| Finn 2011                                                         | -0.2                                                          | 0.46     | 8                     | 8       | 1.7%    | -0.20 [-1.10, 0.70]  |                    |
| Finn 2015                                                         | 0.01                                                          | 0.31     | 12                    | 12      | 3.0%    | 0.01 [-0.60, 0.62]   |                    |
| Gooding 2016 study 1                                              | 0.35                                                          | 0.22     | 31                    | 10      | 4.6%    | 0.35 [-0.08, 0.78]   |                    |
| Gooding 2016 study 2                                              | 0.52                                                          | 0.24     | 23                    | 10      | 4.1%    | 0.52 [0.05, 0.99]    |                    |
| Han 2017                                                          | 0.09                                                          | 0.2      | 23                    | 20      | 5.0%    | 0.09 [-0.30, 0.48]   |                    |
| Herrera 2012                                                      | 1.1                                                           | 0.28     | 11                    | 11      | 3.4%    | 1.10 [0.55, 1.65]    | -                  |
| Rosen 2011                                                        | 0.89                                                          | 0.62     | 6                     | 6       | 1.0%    | 0.89 [-0.33, 2.11]   |                    |
| Rozzini 2007                                                      | 0.08                                                          | 0.29     | 15                    | 22      | 3.3%    | 0.08 [-0.49, 0.65]   |                    |
| Savulich 2017                                                     | 0.85                                                          | 0.28     | 21                    | 21      | 3.4%    | 0.85 [0.30, 1.40]    |                    |
| Subtotal (95% CI)                                                 |                                                               |          | 245                   | 232     | 46.8%   | 0.30 [0.11, 0.50]    | ◆                  |
| Test for overall effect: Z                                        | .06; Chi <sup>2</sup> = 22.08, df = 12<br>= 3.03 (P = 0.002)  | (P = 0.0 | 14); 1² = 46%         |         |         |                      |                    |
| 2 Working memory                                                  |                                                               |          |                       |         |         |                      |                    |
| Ciarmiello 2015                                                   | 0.24                                                          | 0.44     | 15                    | 15      | 1.8%    | 0.24 [-0.62, 1.10]   |                    |
| Finn 2015                                                         | 0.63                                                          | 0.38     | 12                    | 12      | 2.2%    | 0.63 [-0.11, 1.37]   |                    |
| Herrera 2012                                                      | 0.39                                                          | 0.36     | 11                    | 11      | 2.4%    | 0.39 [-0.32, 1.10]   |                    |
| Hyer 2016                                                         | 0.66                                                          | 0.34     | 34                    | 34      | 2.6%    | 0.66 [-0.01, 1.33]   |                    |
| Lin 2016                                                          | 0.26                                                          | 0.2      | 10                    | 11      | 5.0%    | 0.26 [-0.13, 0.65]   |                    |
| Subtotal (95% CI)                                                 |                                                               |          | 82                    | 83      | 14.1%   | 0.39 [0.12, 0.66]    | ◆                  |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z | .00; Chi <sup>2</sup> = 1.57, df = 4 (F<br>= 2.85 (P = 0.004) | = 0.81); | ; l <sup>2</sup> = 0% |         |         |                      |                    |
| 3 Executive function                                              |                                                               |          |                       |         |         |                      |                    |
| Ciarmiello 2015                                                   | 0.51                                                          | 0.27     | 15                    | 15      | 3.6%    | 0.51 [-0.02, 1.04]   |                    |
| Djabelkhir 2017                                                   | -0.3                                                          | 0.26     | 10                    | 10      | 3.8%    | -0.30 [-0.81, 0.21]  |                    |
| Fiatarone Singh 2014                                              | 0.22                                                          | 0.18     | 24                    | 27      | 5.5%    | 0.22 [-0.13, 0.57]   | +                  |
| Finn 2011                                                         | 1.15                                                          | 0.29     | 8                     | 8       | 3.3%    | 1.15 [0.58, 1.72]    | -                  |
| Finn 2015                                                         | 0.06                                                          | 0.31     | 12                    | 12      | 3.0%    | 0.06 [-0.55, 0.67]   |                    |
| Gagnon 2012                                                       | 0.26                                                          | 0.24     | 12                    | 12      | 4.1%    | 0.26 [-0.21, 0.73]   | +                  |
| Hughes 2014                                                       | 0.48                                                          | 0.4      | 10                    | 10      | 2.1%    | 0.48 [-0.30, 1.26]   |                    |
| Hyer 2016                                                         | -0.14                                                         | 0.23     | 34                    | 34      | 4.3%    | -0.14 [-0.59, 0.31]  |                    |
| Lin 2016                                                          | 0.02                                                          | 0.38     | 10                    | 11      | 2.2%    | 0.02 [-0.72, 0.76]   |                    |
| Rozzini 2007                                                      | 0.22                                                          | 0.24     | 15                    | 22      | 4.1%    | 0.22 [-0.25, 0.69]   | +                  |
| Savulich 2017                                                     | -0.16                                                         | 0.31     | 21                    | 21      | 3.0%    | -0.16 [-0.77, 0.45]  |                    |
| Subtotal (95% CI)                                                 |                                                               |          | 171                   | 182     | 39.1%   | 0.20 [-0.03, 0.43]   | •                  |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z | .07; Chi <sup>2</sup> = 20.28, df = 10<br>= 1.74 (P = 0.08)   | (P = 0.0 | 13); I² = 51%         |         |         |                      |                    |
| Total (95% CI)                                                    |                                                               |          | 498                   | 407     | 100.0%  | 0.28 [0.15, 0.40]    |                    |
| ( )                                                               | 04. Chi2 - 45.62 df - 20                                      | (D = 0.0 |                       | -31     | .00.076 | 5.20 [0.10, 0.40]    | · · · · ·          |
| neterogeneity: Tau* = 0                                           | .04; Chi <sup>2</sup> = 45.63, df = 28<br>= 4.26 (P < 0.0001) | (P = 0.0 | 2), 1 39%             |         |         |                      | -2 -1 0            |

Figure 3 Forest plot demonstrating the efficacy of CCT on memory, working memory and executive function

195x173mm (300 x 300 DPI)

Supplement to: Zhang H, Huntley J, et al. The efficacy of Computerized Cognitive Training on cognitive outcomes in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis.

Supplementary Figure 1 summary of risk of bias for included studies

Supplementary Figure 2 Funnel plot demonstrating bias of CCT on global cognitive function

Supplementary Figure 3 Forest plot demonstrating efficacy of CCT on global cognition stratified by the type of control group

Supplementary Figure 4 Funnel plot demonstrating bias of CCT on global cognition stratified by the type of control group

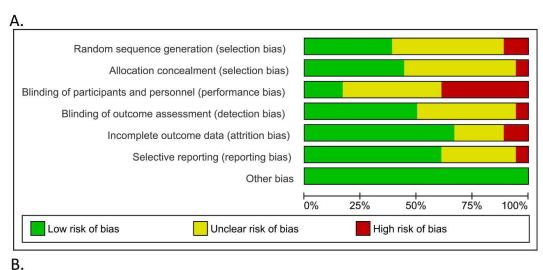
Supplementary Figure 5 Funnel plot demonstrating bias of CCT on memory, working memory and executive function

Supplementary Figure 6 Forest plot demonstrating efficacy of CCT on memory stratified by the type of control group

Supplementary Figure 7 Funnel plot demonstrating bias of CCT on memory stratified by the type of control group

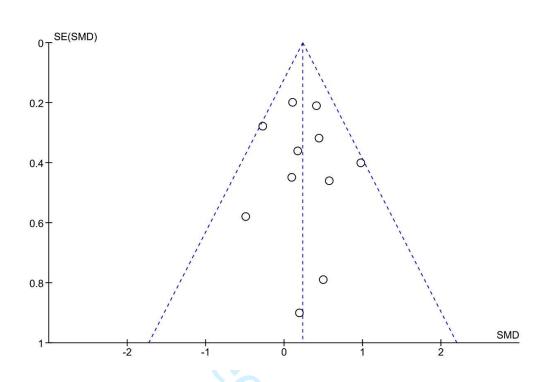
Supplementary Figure 8 Forest plot demonstrating efficacy of CCT on executive function stratified by the type of control group

Supplementary Figure 9 Funnel plot demonstrating bias of CCT on executive cognition stratified by the type of control group


Supplementary Figure 10 Forest plot demonstrating efficacy of CCT on memory stratified by single memory domain or multi-domain intervention

Supplementary Figure 11 Funnel plot demonstrating bias of CCT on memory stratified by single memory domain or multi-domain intervention

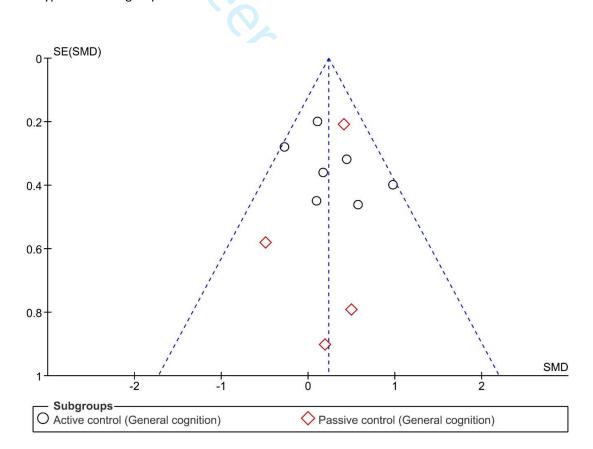
Supplementary Figure 12 Forest plot demonstrating efficacy of CCT on global cognition stratified by dose of the intervention


Supplementary Figure 13 Funnel plot demonstrating bias of CCT on global cognition stratified by dose of the intervention

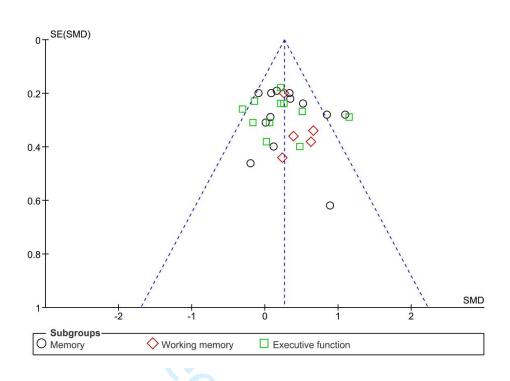
**BMJ** Open



| Savulich 2017 | Rozzini 2007 | Rosen 2011 | Lin 2016 | Hyer 2016 | Hughes 2014 | Herrera 2012 | Han 2017 | Hagovsk 2016 | Gooding 2016 study 2 | Gooding 2016 study 1 | Gagnon 2012 | Finn 2015 | Finn 2011 | Fiatarone Singh 2014 | Djabelkhir 2017 | Ciarmiello 2015 | Barban 2016 |                                                          |
|---------------|--------------|------------|----------|-----------|-------------|--------------|----------|--------------|----------------------|----------------------|-------------|-----------|-----------|----------------------|-----------------|-----------------|-------------|----------------------------------------------------------|
| ••            | ~            | ••         | ••       | •>        | •           | ->           | •        | ٠            | ••                   | ~                    | •           | •         | •         | •                    | •               | ~               | •           | Random sequence generation (selection bias)              |
| ~             | ~            | ->         | •        | ~         | •           | ~            | ••       | •            | ٠                    | •                    | •           | •         |           | •                    | ->              | ••              | •           | Allocation concealment (selection bias)                  |
| •             | ~            | •          | •        | •         | •           | ~            | •        | ->           | •                    |                      | •           | ••        | ~         | •                    | ~               | ••              | •           | Blinding of participants and personnel (performance bias |
| ~>            | •            | +          | •        | ••        | ~           | •            | ٠        | •            | ~                    | ••                   | ٠           | ••        | •         | •                    | •               | ->              | ~           | Blinding of outcome assessment (detection bias)          |
| •             | ~            | •          | ~        | •         | •           | ->           | •        |              | •                    | •                    | •           | •         | •         | •                    | •               | ~               | •           | Incomplete outcome data (attrition bias)                 |
| ~             | •            | ->         | •        | ~         | •           | ~            | •        | •            | •                    | •                    | •           | •         | •         | •                    | ••              | ~               |             | Selective reporting (reporting bias)                     |
| •             | •            | •          | •        | •         | •           | •            | •        | •            | •                    | •                    | •           | •         | •         | •                    | •               | •               | •           | Other bias                                               |


Supplementary Figure 1 (A-B). Summary of risk of bias for included studies. (A). Risk of bias graph: review authors' judgements about each risk of bias item presented as percentages across all included studies. (B). Risk of bias summary: review authors' judgements about each risk of bias item for each included study.




Supplementary Figure 2. Funnel plot demonstrating bias of CCT on global cognitive function

| 2  |                                       |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |
|----|---------------------------------------|----------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----------------------|-----------------------------|
| 3  |                                       |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |
| 4  |                                       |                                        |         | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control |        | Std. Mean Difference | Std. Mean Difference        |
| 5  | Study or Subgroup                     | Std. Mean Difference                   |         | A REAL PROPERTY AND A REAL |         | Weight | IV, Random, 95% CI   | IV, Random, 95% Cl          |
| 6  | 2.7.1 Active control (Ge              | eneral cognition)                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |
| 0  | Barban 2016                           | 0.11                                   | 0.2     | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60      | 23.5%  | 0.11 [-0.28, 0.50]   |                             |
| 7  | Ciarmiello 2015                       | 0.45                                   | 0.32    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15      | 10.2%  | 0.45 [-0.18, 1.08]   |                             |
| 8  | Djabelkhir 2017                       |                                        | 0.45    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10      | 5.3%   | 0.10 [-0.78, 0.98]   |                             |
| 0  | Fiatarone Singh 2014                  | -0.27                                  |         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27      | 13.0%  | -0.27 [-0.82, 0.28]  |                             |
| 9  | Gooding 2016 study 1                  |                                        | 0.36    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10      | 8.1%   | 0.17 [-0.54, 0.88]   | •                           |
| 10 | Gooding 2016 study 2                  | 0.98                                   |         | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10      | 6.7%   | 0.98 [0.20, 1.76]    |                             |
| 10 | Hughes 2014                           | 0.58                                   | 0.46    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10      | 5.1%   | 0.58 [-0.32, 1.48]   |                             |
| 11 | Subtotal (95% CI)                     |                                        |         | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 142     | 71.9%  | 0.23 [-0.05, 0.51]   | •                           |
| 10 | Heterogeneity: Tau <sup>2</sup> = 0.0 |                                        | P = 0.2 | (3); l <sup>2</sup> = 27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |        |                      |                             |
| 12 | Test for overall effect: Z            | = 1.59 (P = 0.11)                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |
| 13 | 2.7.2 Passive control (G              | General cognition)                     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |
| 14 | Hagovsk 2016                          | 0.41                                   | 0.21    | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40      | 21.7%  | 0.41 [-0.00, 0.82]   |                             |
|    | Han 2017                              | 0.19                                   | 0.9     | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20      | 1.4%   | 0.19 [-1.57, 1.95]   |                             |
| 15 | Rozzini 2007                          | -0.49                                  | 0.58    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22      | 3.2%   | -0.49 [-1.63, 0.65]  |                             |
| 16 | Savulich 2017                         | 0.5                                    | 0.79    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21      | 1.8%   | 0.50 [-1.05, 2.05]   |                             |
|    | Subtotal (95% CI)                     |                                        |         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103     | 28.1%  | 0.31 [-0.06, 0.68]   | ◆                           |
| 17 | Heterogeneity: Tau <sup>2</sup> = 0.0 | 00; Chi <sup>2</sup> = 2.20, df = 3 (F | P = 0.5 | i3); l² = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |        |                      |                             |
| 18 | Test for overall effect: Z            | = 1.66 (P = 0.10)                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |
| 19 | Total (95% CI)                        |                                        |         | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245     | 100.0% | 0.23 [0.03, 0.44]    | ◆                           |
| 20 | Heterogeneity: Tau <sup>2</sup> = 0.0 |                                        | (P = (  | 0.39); l² = 6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |        |                      | -2 -1 0 1 2                 |
|    | Test for overall effect: Z            |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      | Favours control Favours CCT |
| 21 | Test for subgroup differe             | nces: Chi <sup>2</sup> = 0.12, df = 1  | (P = (  | J.73), I <sup>∠</sup> = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |        |                      |                             |
|    |                                       |                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |        |                      |                             |

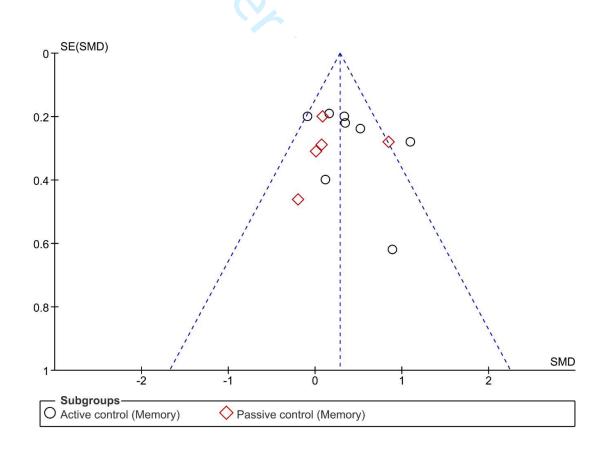
Supplementary Figure 3. Forest plot demonstrating efficacy of CCT on global cognition stratified by the type of control group



# Supplementary Figure 4. Funnel plot demonstrating bias of CCT on global cognition stratified by the type of control group



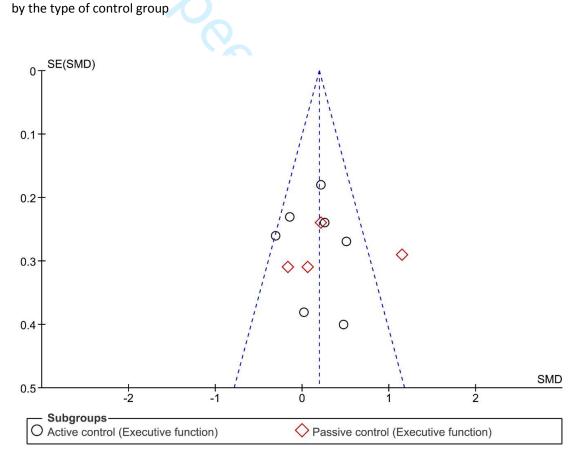
Supplementary Figure 5. Funnel plot demonstrating bias of CCT on memory, working memory and executive function


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

| Pag                                  | e |
|--------------------------------------|---|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 |   |
| 9<br>10<br>11<br>12                  |   |
| 13<br>14<br>15                       |   |
| 16<br>17<br>18<br>19                 |   |
| 20<br>21<br>22<br>23<br>24           |   |
| 24<br>25<br>26<br>27<br>28           |   |
| 29<br>30<br>31<br>32                 |   |
| 33<br>34<br>35<br>36                 |   |
| 37<br>38<br>39<br>40                 |   |
| 41<br>42<br>43<br>44                 |   |
| 45<br>46<br>47<br>48                 |   |
| 49<br>50<br>51<br>52                 |   |
| 53<br>54<br>55                       |   |

60

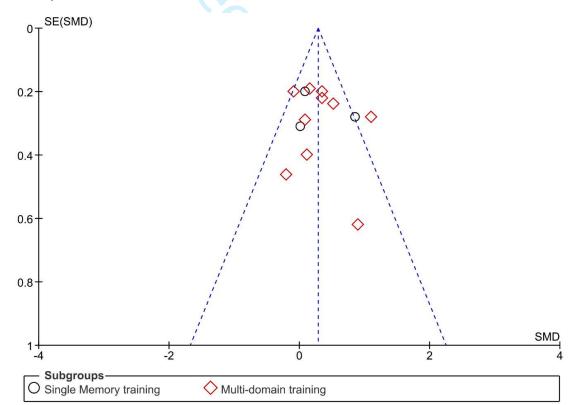
|                                                                                                                           | 121712 20 12022                                      |                 | Experimental                                |          |               | Std. Mean Difference                    | Std. Mean Difference                  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------|---------------------------------------------|----------|---------------|-----------------------------------------|---------------------------------------|
| Study or Subgroup                                                                                                         | Std. Mean Difference                                 | SE              | Total                                       | Total    | Weight        | IV, Random, 95% CI                      | IV, Random, 95% CI                    |
| 1 Active control (Mem                                                                                                     | ory)                                                 |                 |                                             |          |               |                                         |                                       |
| Barban 2016                                                                                                               | -0.09                                                | 0.2             | 46                                          | 60       | 10.5%         | -0.09 [-0.48, 0.30]                     |                                       |
| Ciarmiello 2015                                                                                                           | 0.34                                                 | 0.2             | 15                                          | 15       | 10.5%         | 0.34 [-0.05, 0.73]                      |                                       |
| Djabelkhir 2017                                                                                                           | 0.12                                                 | 0.4             | 10                                          | 10       | 4.6%          | 0.12 [-0.66, 0.90]                      |                                       |
| Fiatarone Singh 2014                                                                                                      | 0.16                                                 | 0.19            | 24                                          | 27       | 10.9%         | 0.16 [-0.21, 0.53]                      |                                       |
| Gooding 2016 study 1                                                                                                      | 0.35                                                 | 0.22            | 31                                          | 10       | 9.6%          | 0.35 [-0.08, 0.78]                      |                                       |
| Gooding 2016 study 2                                                                                                      | 0.52                                                 | 0.24            | 23                                          | 10       | 8.8%          | 0.52 [0.05, 0.99]                       |                                       |
| Herrera 2012                                                                                                              | 1.1                                                  | 0.28            | 11                                          | 11       | 7.5%          | 1.10 [0.55, 1.65]                       |                                       |
| Rosen 2011                                                                                                                | 0.89                                                 | 0.62            | 6                                           | 6        | 2.3%          | 0.89 [-0.33, 2.11]                      |                                       |
| Subtotal (95% CI)                                                                                                         |                                                      |                 | 166                                         | 149      | 64.6%         | 0.36 [0.11, 0.61]                       | •                                     |
| Test for overall effect: Z                                                                                                | 0.06; Chi² = 14.49, df = 7 (<br>2 = 2.79 (P = 0.005) | 62 T.           |                                             |          |               |                                         |                                       |
| 2 Passive control (Mer                                                                                                    | mory)                                                |                 |                                             |          |               |                                         |                                       |
| Finn 2011                                                                                                                 | -0.2                                                 | 0.46            | 8                                           | 8        | 3.7%          | -0.20 [-1.10, 0.70]                     |                                       |
| Finn 2015                                                                                                                 | 0.01                                                 | 0.31            | 12                                          | 12       | 6.6%          | 0.01 [-0.60, 0.62]                      |                                       |
| Han 2017                                                                                                                  | 0.09                                                 | 0.2             | 23                                          | 20       | 10.5%         | 0.09 [-0.30, 0.48]                      |                                       |
|                                                                                                                           |                                                      | 0.00            | 15                                          | 22       | 7.2%          | 0 00 1 0 10 0 051                       |                                       |
| Rozzini 2007                                                                                                              | 0.08                                                 | 0.29            | 15                                          | 22       | 1.2.70        | 0.08 [-0.49, 0.65]                      |                                       |
|                                                                                                                           | 0.08                                                 |                 | 21                                          | 21       | 7.5%          | 0.85 [0.30, 1.40]                       |                                       |
|                                                                                                                           |                                                      |                 |                                             |          |               |                                         | • • • • • • • • • • • • • • • • • • • |
|                                                                                                                           |                                                      | 0.28            | 21<br>79                                    | 21       | 7.5%          | 0.85 [0.30, 1.40]                       | •                                     |
| Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0                                                 | 0.85<br>0.06; Chi² = 6.99, df = 4 (F                 | 0.28            | 21<br>79                                    | 21       | 7.5%          | 0.85 [0.30, 1.40]                       | •                                     |
| Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z                   | 0.85<br>0.06; Chi² = 6.99, df = 4 (F                 | 0.28            | 21<br>79                                    | 21<br>83 | 7.5%          | 0.85 [0.30, 1.40]                       | •                                     |
| Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: Z<br>Total (95% CI) | 0.85<br>0.06; Chi² = 6.99, df = 4 (F                 | 0.28<br>P = 0.1 | 21<br>79<br>4); I <sup>2</sup> = 43%<br>245 | 21<br>83 | 7.5%<br>35.4% | 0.85 [0.30, 1.40]<br>0.20 [-0.14, 0.54] |                                       |


Supplementary Figure 6. Forest plot demonstrating efficacy of CCT on memory stratified by the type of control group



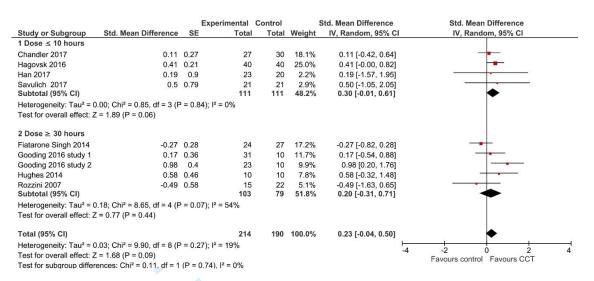
# Supplementary Figure 7. Funnel plot demonstrating bias of CCT on memory stratified by the type of control group

| 04                                                                                                                                                                                                                          | Old Mars Difference                                                                                                 |                                        | Experimental                                                    |                      |                                | Std. Mean Difference                                                                  | Std. Mean Difference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------|----------------------|--------------------------------|---------------------------------------------------------------------------------------|----------------------|
| Study or Subgroup                                                                                                                                                                                                           | Std. Mean Difference                                                                                                | SE                                     | Total                                                           | Total                | Weight                         | IV, Random, 95% CI                                                                    | IV, Random, 95% CI   |
| 1 Active control (Exec                                                                                                                                                                                                      |                                                                                                                     |                                        |                                                                 |                      |                                |                                                                                       |                      |
| Ciarmiello 2015                                                                                                                                                                                                             |                                                                                                                     | 0.27                                   | 15                                                              |                      | 9.3%                           | 0.51 [-0.02, 1.04]                                                                    |                      |
| Djabelkhir 2017                                                                                                                                                                                                             | -0.3                                                                                                                | 0.26                                   | 10                                                              | 10                   | 9.6%                           | -0.30 [-0.81, 0.21]                                                                   |                      |
| Fiatarone Singh 2014                                                                                                                                                                                                        | 0.22                                                                                                                | 0.18                                   | 24                                                              |                      | 12.9%                          | 0.22 [-0.13, 0.57]                                                                    |                      |
| Gagnon 2012                                                                                                                                                                                                                 | 0.26                                                                                                                | 0.24                                   | 12                                                              | 12                   | 10.4%                          | 0.26 [-0.21, 0.73]                                                                    |                      |
| Hughes 2014                                                                                                                                                                                                                 | 0.48                                                                                                                | 0.4                                    | 10                                                              | 10                   | 5.8%                           | 0.48 [-0.30, 1.26]                                                                    |                      |
| Hyer 2016                                                                                                                                                                                                                   | -0.14                                                                                                               | 0.23                                   | 34                                                              | 34                   | 10.8%                          | -0.14 [-0.59, 0.31]                                                                   |                      |
| Lin 2016                                                                                                                                                                                                                    | 0.02                                                                                                                | 0.38                                   | 10                                                              | 11                   | 6.2%                           | 0.02 [-0.72, 0.76]                                                                    |                      |
| Subtotal (95% CI)                                                                                                                                                                                                           |                                                                                                                     |                                        | 115                                                             | 119                  | 65.0%                          | 0.13 [-0.08, 0.35]                                                                    | •                    |
| Heterogeneity: Tau <sup>2</sup> = 0<br>Test for overall effect: 2<br>2 Passive control (Eve                                                                                                                                 | z = 1.20 (P = 0.23)                                                                                                 | P = 0.2                                | 28); 1* = 20%                                                   |                      |                                |                                                                                       |                      |
| Test for overall effect: Z                                                                                                                                                                                                  | z = 1.20 (P = 0.23)                                                                                                 | P = 0.2                                | 28); 1* = 20%                                                   |                      |                                |                                                                                       |                      |
|                                                                                                                                                                                                                             | Z = 1.20 (P = 0.23)<br>ecutive function)                                                                            | 0.29                                   | 28); 1* = 20%                                                   | 8                    | 8.6%                           | 1.15 [0.58, 1.72]                                                                     |                      |
| Test for overall effect: 2<br>2 Passive control (Exe                                                                                                                                                                        | Z = 1.20 (P = 0.23)<br>ecutive function)<br>1.15                                                                    |                                        | ,                                                               |                      | 8.6%<br>8.0%                   | 1.15 [0.58, 1.72]<br>0.06 [-0.55, 0.67]                                               |                      |
| Test for overall effect: Z<br>2 Passive control (Exe<br>Finn 2011                                                                                                                                                           | Z = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06                                                            | 0.29                                   | 8                                                               |                      |                                |                                                                                       |                      |
| Test for overall effect: Z<br>2 Passive control (Exe<br>Finn 2011<br>Finn 2015                                                                                                                                              | Z = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06                                                            | 0.29<br>0.31<br>0.24                   | 8<br>12                                                         | 12                   | 8.0%                           | 0.06 [-0.55, 0.67]                                                                    | <br>                 |
| Test for overall effect: Z<br>2 Passive control (Exe<br>Finn 2011<br>Finn 2015<br>Rozzini 2007                                                                                                                              | 2 = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06<br>0.22                                                    | 0.29<br>0.31<br>0.24                   | 8<br>12<br>15                                                   | 12<br>22             | 8.0%<br>10.4%                  | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]                                              |                      |
| Test for overall effect: Z<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% Cl)                                                                                        | 2 = 1.20 (P = 0.23)<br>ecutive function)<br>1.15<br>0.06<br>0.22                                                    | 0.29<br>0.31<br>0.24<br>0.31           | 8<br>12<br>15<br>21<br>56                                       | 12<br>22<br>21       | 8.0%<br>10.4%<br>8.0%          | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]                       |                      |
| Test for overall effect: Z<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% Cl)                                                                                        | 2 = 1.20 (P = 0.23)<br>acutive function)<br>1.15<br>0.06<br>0.22<br>-0.16<br>0.23; Chi <sup>2</sup> = 11.46, df = 3 | 0.29<br>0.31<br>0.24<br>0.31           | 8<br>12<br>15<br>21<br>56                                       | 12<br>22<br>21       | 8.0%<br>10.4%<br>8.0%          | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]                       |                      |
| Test for overall effect: 2<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0                                                 | 2 = 1.20 (P = 0.23)<br>acutive function)<br>1.15<br>0.06<br>0.22<br>-0.16<br>0.23; Chi <sup>2</sup> = 11.46, df = 3 | 0.29<br>0.31<br>0.24<br>0.31           | 8<br>12<br>15<br>21<br>56                                       | 12<br>22<br>21<br>63 | 8.0%<br>10.4%<br>8.0%          | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]                       |                      |
| Test for overall effect: 2<br>2 Passive control (Exc<br>Finn 2011<br>Finn 2015<br>Rozzini 2007<br>Savulich 2017<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = (<br>Test for overall effect: 2<br>Total (95% CI) | 2 = 1.20 (P = 0.23)<br>acutive function)<br>1.15<br>0.06<br>0.22<br>-0.16<br>0.23; Chi <sup>2</sup> = 11.46, df = 3 | 0.29<br>0.31<br>0.24<br>0.31<br>(P = 0 | 8<br>12<br>15<br>21<br>56<br>.009); I <sup>2</sup> = 74%<br>171 | 12<br>22<br>21<br>63 | 8.0%<br>10.4%<br>8.0%<br>35.0% | 0.06 [-0.55, 0.67]<br>0.22 [-0.25, 0.69]<br>-0.16 [-0.77, 0.45]<br>0.32 [-0.23, 0.87] |                      |

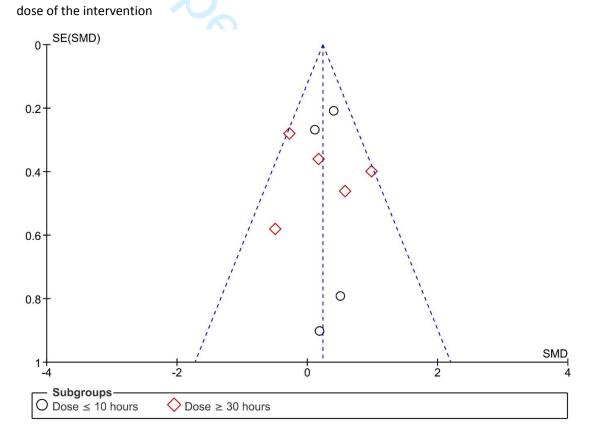

Supplementary Figure 8. Forest plot demonstrating efficacy of CCT on executive function stratified



Supplementary Figure 9. Funnel plot demonstrating bias of CCT on executive cognition stratified by the type of control group


| Study or Subgroup                    | Std. Mean Difference                    | SE              | Experimental<br>Total      |       | Weight | IV, Random, 95% C   | IV, Random, 95% CI                       |
|--------------------------------------|-----------------------------------------|-----------------|----------------------------|-------|--------|---------------------|------------------------------------------|
| 1 Single Memory traini               |                                         | JL              | Total                      | Total | weight | IV, Random, 3378 C  |                                          |
| Finn 2015                            | 0                                       | 0.31            | 12                         | 12    | 6.6%   | 0.01 [-0.60, 0.62]  |                                          |
| Han 2017                             | 0.09                                    | 0.31            | 23                         | 20    | 10.5%  | 0.09 [-0.30, 0.48]  |                                          |
| Savulich 2017                        |                                         | 0.28            | 23                         | 20    | 7.5%   | 0.85 [0.30, 1.40]   |                                          |
| Subtotal (95% CI)                    | 0.85                                    | 0.20            | 56                         | 53    | 24.5%  | 0.31 [-0.19, 0.81]  | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0. | 13: Chi <sup>2</sup> = 5.80, df = 2 (F  | 9 = 0.05        | 5): $I^2 = 66\%$           |       |        |                     | ×                                        |
| Test for overall effect: Z           |                                         |                 |                            |       |        |                     |                                          |
|                                      |                                         |                 |                            |       |        |                     |                                          |
| 2 Multi-domain training              | 9                                       |                 |                            |       |        |                     |                                          |
| Barban 2016                          | -0.09                                   | 0.2             | 46                         | 60    | 10.5%  | -0.09 [-0.48, 0.30] |                                          |
| Ciarmiello 2015                      | 0.34                                    | 0.2             | 15                         | 15    | 10.5%  | 0.34 [-0.05, 0.73]  |                                          |
| Djabelkhir 2017                      | 0.12                                    | 0.4             | 10                         | 10    | 4.6%   | 0.12 [-0.66, 0.90]  |                                          |
| Fiatarone Singh 2014                 | 0.16                                    | 0.19            | 24                         | 27    | 10.9%  | 0.16 [-0.21, 0.53]  |                                          |
| Finn 2011                            | -0.2                                    | 0.46            | 8                          | 8     | 3.7%   | -0.20 [-1.10, 0.70] |                                          |
| Gooding 2016 study 1                 | 0.35                                    | 0.22            | 31                         | 10    | 9.6%   | 0.35 [-0.08, 0.78]  | -                                        |
| Gooding 2016 study 2                 | 0.52                                    | 0.24            | 23                         | 10    | 8.8%   | 0.52 [0.05, 0.99]   |                                          |
| Herrera 2012                         | 1.1                                     | 0.28            | 11                         | 11    | 7.5%   | 1.10 [0.55, 1.65]   |                                          |
| Rosen 2011                           | 0.89                                    | 0.62            | 6                          | 6     | 2.3%   | 0.89 [-0.33, 2.11]  |                                          |
| Rozzini 2007                         | 0.08                                    | 0.29            | 15                         | 22    | 7.2%   | 0.08 [-0.49, 0.65]  |                                          |
| Subtotal (95% CI)                    |                                         |                 | 189                        | 179   | 75.5%  | 0.30 [0.08, 0.53]   | •                                        |
| Heterogeneity: Tau <sup>2</sup> = 0. | .05; Chi <sup>2</sup> = 16.28, df = 9 ( | P = 0.0         | 06); l² = 45%              |       |        |                     |                                          |
| Test for overall effect: Z           | = 2.65 (P = 0.008)                      |                 | 1998-100 (1993)            |       |        |                     |                                          |
| Total (95% CI)                       |                                         |                 | 245                        | 232   | 100.0% | 0.30 [0.11, 0.50]   | ◆                                        |
| Heterogeneity: Tau <sup>2</sup> = 0. | .06; Chi <sup>2</sup> = 22.08, df = 12  | (P = 0)         | .04); l <sup>2</sup> = 46% |       |        |                     |                                          |
| Test for overall effect: Z           | = 3.03 (P = 0.002)                      | 10 <b>4</b> -11 | noormenaar (Storright      |       |        |                     | -4 -2 0 2<br>Favours control Favours CCT |

Supplementary Figure 10 Forest plot demonstrating efficacy of CCT on memory stratified by single memory domain or multi-domain intervention




# Supplementary Figure 11 Funnel plot demonstrating bias of CCT on memory stratified by single memory domain or multi-domain intervention

| 1<br>2<br>3<br>4           |
|----------------------------|
| 5<br>6<br>7<br>8<br>9      |
| 10<br>11<br>12<br>13       |
| 14<br>15<br>16<br>17<br>18 |
| 19<br>20<br>21<br>22<br>23 |
| 24<br>25<br>26<br>27<br>28 |
| 29<br>30<br>31<br>32<br>33 |
| 34<br>35<br>36<br>37<br>38 |
| 39<br>40<br>41<br>42<br>43 |
| 44<br>45<br>46<br>47<br>48 |
| 48<br>49<br>50<br>51<br>52 |
| 53<br>54<br>55<br>56<br>57 |
| 58<br>59<br>60             |



Supplementary Figure 12 Forest plot demonstrating efficacy of CCT on global cognition stratified by



Supplementary Figure 13 Funnel plot demonstrating bias of CCT on global cognition stratified by dose of the intervention

| Supplement to: Zhang H, Huntley J, et   | al. The efficacy of Computerized Cognitive Training on cognitive outcomes in Mild Cognitive Impairment: |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------|
| A Systematic Review and Meta-Analys     | sis.                                                                                                    |
| Supplementary Table 1 Search terms      | used for literature search                                                                              |
| Supplementary Table 2 Brief description | ion of the specific outcome measures included in the meta-analysis                                      |
| Supplementary Table 3 Detailed Char     | acteristics of studies using computerised cognitive training in persons with MCI                        |
| Supplementary Appendix 1 Statistical    | l methods                                                                                               |
|                                         |                                                                                                         |
|                                         | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                               |

## Supplementary Table 1. Search terms used for literature search

| Outcome measure                                                 | Domain  | Brief Description                                                                                                                                                                                                                       | Study                                                                                                                                                         |
|-----------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mini Mental State Examination<br>(MMSE)                         | GEN COG | A 30-point questionnaire used to estimate severity of cognitive impairment including orientation and memory functions                                                                                                                   | Barben et al, 2016<br>Ciarmiello et al. 2015<br>Djabelkhir et al 2017<br>Han et al 2017<br>Hagovska et al. 2015<br>Rozzini et al 2007<br>Savullich et al 2017 |
| Modified Mini Mental State<br>Examination (mMMSE)               | GEN COG | This instrument included all items from the standard MMSE, plus the Wechsler<br>Adult Intelligence Scale–Revised Digit Span subtest and additional<br>attention/calculation and general knowledge, language, and construction<br>items. | Gooding et al 2016 study<br>1&2                                                                                                                               |
| Alzheimer's Disease Assessment<br>Scale-Cognitive (ADAS-Cog)    | GEN COG | Measuring severity of cognitive dysfunction associated with Alzheimer's disease, and is widely used in pharmacological studies of dementia and MCI. Higher scores indicate more dysfunction.                                            | Fiatarone Singh et al 201                                                                                                                                     |
| Computerised Assessment of Mild<br>Cognitive Impairment (CAMCI) | GEN COG | A battery of tests to assess cognitive performance including domains of attention, executive functioning, memory and processing speed                                                                                                   | Hughes et al 2014                                                                                                                                             |
| Milan Overall Dementia Assessment<br>(MODA)                     | GEN COG | The MODA is a paper and pencil test, composed of three sections: an autonomy scale, a section testing orientation and a section testing a wide range of cognitive domains.                                                              | Ciarmiello et al. 2015                                                                                                                                        |
| 16-item free and cued reminding test                            | MEM     | Participants search a card containing four pictures of items with matched<br>category cues before subjected to tests of free and cued recall                                                                                            | Herrera et al 2012<br>Djabelkhir et al 2017                                                                                                                   |
| BEM-144 recall test                                             | MEM     | A 12-word immediate recall test from BEM-144 memory battery                                                                                                                                                                             | Herrera et al 2012                                                                                                                                            |
| Description of the visual recognition memory task (DMS48)       | MEM     | Participants asked to remember a sample before making a delayed forced-<br>choice match to original sample                                                                                                                              | Herrera et al 2012<br>Ciarmiello et al. 2015                                                                                                                  |

Page 46 of 67

| 1<br>2                                                                                                                                                                                       |        |                                                                                                                                                                                                                                                                                                              |                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 3<br>4 Outcome measure                                                                                                                                                                       | Domain | Brief Description                                                                                                                                                                                                                                                                                            | Study                                                                |
| 6<br>7 Doors Recognition subtest                                                                                                                                                             | MEM    | Participants are shown a variety of different coloured doors which they must remember and later recognise from a selection of similar doors                                                                                                                                                                  | Herrera et al 2012                                                   |
| 8<br>9 MMSE - Recall Test<br>10                                                                                                                                                              | MEM    | Participants presented with stimuli before being asked to recall as many as possible                                                                                                                                                                                                                         | Herrera et al 2012                                                   |
| 11<br>12 Paired-associates learning (PAL)<br>13                                                                                                                                              | MEM    | Visual patterns revealed in different boxes before participant tested on where pattern originally located                                                                                                                                                                                                    | Finn & McDonald 2011<br>Finn & McDonald 2015<br>Savullich et al 2017 |
| <sup>14</sup> Pattern Recognition Memory (PRM)                                                                                                                                               | MEM    | Test of visual pattern recognition in a forced discrimination paradigm                                                                                                                                                                                                                                       | Finn & McDonald 2011                                                 |
| <sup>16</sup> Recall of Rey's Complex Figure                                                                                                                                                 | MEM    | Subjects shown complex figure and then tested on their delayed recall of the figure                                                                                                                                                                                                                          | Herrera et al 2012<br>Rozzini et al 2007                             |
| 18<br>19 Rey's figure copy<br>20                                                                                                                                                             | MEM    | Participants are to reproduce a drawing by i) copying (reproduction) and ii) memory (recall) using a 18-point scoring system                                                                                                                                                                                 | Rozzini et al 2007                                                   |
| <sup>20</sup><br>21 List Learning Memory Sum from<br>22 ADAS-Cog<br>23                                                                                                                       | MEM    | List learning assessed across the three memory recall trials of the ADAS-Cog.<br>Higher scores indicate better memory.                                                                                                                                                                                       | Fiatarone Singh et al 2014                                           |
| <ul> <li><sup>24</sup> Benton Visual Retention Test-</li> <li><sup>25</sup> Revised (BVRT-R)</li> <li>27</li> </ul>                                                                          | MEM    | BVRT-R is a visual memory test which assesses visual perception and visual constructional abilities as participants are required to draw from memory simple designs. Higher scores indicate better function.                                                                                                 | Fiatarone Singh et al 2014<br>Savullich et al 2017                   |
| <ul> <li><sup>28</sup>/<sub>29</sub> The Logical Memory subtest of the</li> <li><sub>30</sub> Wechsler Memory Scale 3rd edition</li> <li>31 (immediately and delayed)</li> <li>32</li> </ul> | MEM    | The logic memory is used to measure both immediate (I) and delayed (II)<br>memory for verbal information. Participants are presented with a simple<br>narrative and are required to recall as many details of the story as they can<br>immediately after presentation. Higher scores indicate better memory. | Fiatarone Singh et al 2014                                           |
| 33 Rey Auditory Verbal Learning Test 34 (RAVLT)                                                                                                                                              | MEM    | RAVLT includes a list of 15 words to be recalled immediately after each of the 5 verbal presentations and after a 30-min delay                                                                                                                                                                               | Barben et al, 2016<br>Ciarmiello et al. 2015                         |
| 35<br>36<br>37 Prose memory<br>38<br>3 <u>9</u>                                                                                                                                              | MEM    | A subset of The Memory Assessment Scales, is an auditory verbal prose recall<br>task which requires the subject to recall a short story. Subjects are asked to<br>recall the story from memory and are then asked nine questions about details<br>of the story.                                              | Ciarmiello et al. 2015                                               |
| 40<br>41<br>42<br>43<br>44<br>45<br>46                                                                                                                                                       | For    | peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                        |                                                                      |

Page 47 of 67

| Outcome measure                                                                          | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                      | Study                           |
|------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| visuospatial memory test<br>(VST)                                                        | MEM    | From the Cognitive Efficiency Profile                                                                                                                                                                                                                                                                                                                                                                                                  | Djabelkhir et al 2017           |
| <sup>0</sup> Buschke Selective Reminding Test<br><sup>1</sup> (BSRT)<br>3                | MEM    | The test provides 12 words which are selectively rehearsed by the subject until<br>they are memorized. That is, only those words not recalled on the immediately<br>preceding trial are presented. The subject then attends to an interference task<br>or verbal list. Subsequently, after a delay, the subject is asked to recall the<br>words.                                                                                       | Gooding et al 2016 study<br>1&2 |
| 4<br><sup>5</sup> WMS-R Visual Reproductions<br><sup>6</sup> (VR) I and II subtests<br>7 | MEM    | VR assesses visual memory. Cards with printed designs is shown to the participants. Following each exposure and a 30 minutes delay, subjects draw what they remember of the design.                                                                                                                                                                                                                                                    | Gooding et al 2016 study<br>1&2 |
| <sup>8</sup> WMS-R Logical Memory<br><sup>9</sup> (LM)Subtests I and II subtests         | MEM    | LM. The examiner reads two stories, stopping after each reading for an immediate free recall. And a 30 minutes delayed recall.                                                                                                                                                                                                                                                                                                         | Gooding et al 2016 study<br>1&2 |
| 1 Short Story                                                                            | MEM    | Participants are asked to recall a short story                                                                                                                                                                                                                                                                                                                                                                                         | Rozzini et al 2007              |
| 2<br>3<br>4<br>5<br>The Word List Memory Test (WLMT)<br>7<br>8<br>9                      | MEM    | Word list task that contains 10 semantically unrelated<br>words The words are presented to the subject one at<br>a time and are read aloud Three trials are administered<br>in this fashion, with the order of the 10 words being randomized for each trial<br>The examiner records the order of recall and notes any intrusions that might<br>occur The primary Indices of Interest are the number of words recalled on each<br>trial | Han et al 2017                  |
| <sup>0</sup> The Word List Recall Test (WLRT)<br>2                                       | MEM    | Words, displayed one at a time for one second each. Participants read each of the words, and try to remember them without taking notes.                                                                                                                                                                                                                                                                                                | Han et al 2017                  |
| 5<br>WLRcT(The Word List Recognition)<br>6<br>7                                          | MEM    | A word list was designed so that half its words would denote targets when any of a number of target classes were defined. After scanning this list for targets, subjects were unexpectedly tested on their ability to recognize the words they had scanned.                                                                                                                                                                            | Han et al 2017                  |
| 8<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>6                                                |        | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                              |                                 |

| 1<br>2                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |
|------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 3<br>4 Outcome measure                                                       | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Study                                       |
| 6<br>7 RBANS Memory Score<br>8<br>9                                          | MEM    | It consists of 12 subtests, which yield five Index scores (i.e., Attention,<br>Language, Visuospatial/Constructional, Immediate Memory, and Delayed<br>Memory) and a Total Scale score.                                                                                                                                                                                                                                                                                                                                | Rosen et al 2011                            |
| <sup>9</sup><br><sup>10</sup> Dot counting test<br>11                        | WM     | The task dot counting requires examinees to count the dots as quickly as possible by the fastest means possible.                                                                                                                                                                                                                                                                                                                                                                                                       | Lin et al 2016                              |
| 12<br>13 1-back test<br>14<br>15                                             | WM     | In the 1-Back task, participants are presented a sequence of stimuli one-by-<br>one. For each stimulus, they need to decide if the current stimulus is the same<br>as the one presented 1 trials ago.                                                                                                                                                                                                                                                                                                                  | Lin et al 2016                              |
| <sup>16</sup> Digit Span Test<br>17                                          | WM     | Sequence of digits is read aloud. Subjects asked to immediately recall digits in the correct order. If correct, a sequence with an additional digit is presented.                                                                                                                                                                                                                                                                                                                                                      | Herrera et al 2012<br>Ciarmiello et al 2015 |
| 18<br><sup>19</sup> LNS (Letter-Number Sequencing)<br>20<br>21<br>22         | WM     | The task involves listening to and remembering a string of digits and letters<br>read aloud at a speed of one per second, then recalling the information by<br>repeating the numbers in chronological order, followed by the letters in<br>alphabetical order.                                                                                                                                                                                                                                                         | Hyer et al 2016                             |
| <sup>23</sup><br><sub>24</sub> Spatial Span                                  | WM     | Participants tested on ability to remember the location of objects on a spatial grid.                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hyer et al 2016                             |
| 25<br>26<br>27<br>28<br>29 Spatial Span (Corsi test)<br>30<br>31<br>32<br>33 | WM     | Corsi is a short term memory task conceptually similar to the digit span test.<br>the experimenter (the person who carries out the study) shows nine blocks<br>arranged in front of the participant, the experimenter taps a sequence of<br>blocks (for example, the experimenter taps a sequence of 3 different blocks,<br>one after another), the participant needs to tap the blocks that the<br>experimenter showed, in the same order, steps 1-3 are repeated multiple<br>times with different lengths of blocks. | Ciarmiello et al. 2015                      |
| <sup>34</sup><br>35 Spatial working memory (SWM)                             | WM     | A test that requires retention and manipulation of visuospatial information to collect 'tokens' and fill a column                                                                                                                                                                                                                                                                                                                                                                                                      | Finn & McDonald 2011                        |
| 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46               | Fc     | or peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                             |

| 3<br>4 Outcome measure                                                                      | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Study                                                                                       |
|---------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 6<br>7<br>8<br>9<br>10 Symbol Span<br>11<br>12<br>13                                        | WM     | This subtest assesses visual working memory using novel visual stimuli.<br>Beginning with two symbols, abstract visual symbols are exposed for 5 seconds.<br>In the test phase, the participant has to correctly recall not only the correct<br>symbols from distractor items, but also the order in which they were presented<br>from left to right. The number of symbols presented increases by one at<br>intervals as the test progresses. Higher scores indicate better visual working<br>memory. | Finn & McDonald et al<br>2015                                                               |
| <sup>14</sup> Word span<br>15<br>16                                                         | WM     | Participants tested on ability to remember a list of words in order.                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ciarmiello et al. 2015                                                                      |
| 17<br>18 Alpha span task<br>19                                                              | WM     | In the alpha span test, short lists of words are presented and the participant's task is to mentally reorder the words and give them back in correct alphabetical order.                                                                                                                                                                                                                                                                                                                               | Ciarmiello et al. 2015                                                                      |
| <sup>20</sup><br><sub>21</sub> Intra-/extra-dimensional set shifting<br><sub>22</sub> (IED) | EXE    | A test of rule acquisition and reversal. It is computerised analogue of the Wisconsin Card Sorting test and measured the total errors made                                                                                                                                                                                                                                                                                                                                                             | Finn & McDonald 2011                                                                        |
| 23<br>24<br>25 Modified Dual Task<br>26<br>27                                               | EXE    | Participants completed a modified dual task consisting of a visual detection<br>task (responding to an appearance of a stimuli) and alpha-arithmetic task<br>(responding 'true' or 'false' to equations of letters and numbers e.g. 'U-1 = T')<br>simultaneously and were recorded in accuracy of responses in each task                                                                                                                                                                               | Gagnon & Belleville 2012                                                                    |
| <sup>28</sup><br>29 Raven's coloured matrices                                               | EXE    | 60 patterns present in order of difficulty. Subjects asked to identify the missing element that completes a pattern.                                                                                                                                                                                                                                                                                                                                                                                   | Rozzini et al 2007                                                                          |
| 30<br>31 Telephone Search Dual Task<br>32                                                   | EXE    | Participants complete the telephone search test whilst simultaneously counting audible tones.                                                                                                                                                                                                                                                                                                                                                                                                          | Gagnon & Belleville 2012                                                                    |
| <sup>33</sup> Telephone Search Test<br>34                                                   | EXE    | Participants circle key stimuli while searching entries in a simulated classified telephone directory.                                                                                                                                                                                                                                                                                                                                                                                                 | Gagnon & Belleville 2012                                                                    |
| 35<br>36<br>37 Trial making test<br>38<br>39                                                | EXE    | The task requires participants to 'connect the dots' in two parts, firstly numerically and secondly, alphanumerically.                                                                                                                                                                                                                                                                                                                                                                                 | Gagnon & Belleville 2012,<br>Hughes et al 2014,<br>Djabelkhir et al 2017<br>Hyer et al 2016 |
| 40<br>41<br>42<br>43<br>44<br>45<br>46                                                      | For p  | peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |

| Outcome measure                                                                                                                                         | Domain | Brief Description                                                                                                                                                                                                                                                                                                                                                                                      | Study                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Verbal fluency                                                                                                                                          | EXE    | Participants generate as many words in one minute from a given letter.                                                                                                                                                                                                                                                                                                                                 | Rozzini et al 2007,<br>Djabelkhir et al 2017        |
| Visual Elevator Test                                                                                                                                    | EXE    | Participants count up and down according to visual stimuli in an elevator, the time-per-direction-change score was calculated.                                                                                                                                                                                                                                                                         | Gagnon & Belleville 2012                            |
| <sup>1</sup> Raven's progressive matrices - non-<br><sup>2</sup> verbal test (PM47)                                                                     | EXE    | The Raven Standard Progressive Matrices (PM47) assess the measure the test taker's reasoning ability.                                                                                                                                                                                                                                                                                                  | Ciarmiello et al. 2015                              |
| <ul> <li><sup>3</sup> Rey–Osterrieth complex figure test</li> <li><sup>4</sup> (ROCF)</li> <li>6</li> <li>7</li> <li>8</li> <li>9</li> <li>0</li> </ul> | EXE    | ROCF is a neuropsychological assessment in which examinees are asked to<br>reproduce a complicated line drawing, first by copying it freehand<br>(recognition), and then drawing from memory (recall). The test therefore<br>permits the evaluation of different functions, such as such as visuospatial<br>abilities, memory, attention, planning, working memory and executive<br>functions.         | Ciarmiello et al. 2015                              |
| <sup>o</sup><br><sup>1</sup> Categorical verbal fluency (animals)<br>2                                                                                  | EXE    | Participants generate as many animal names as possible in one minute.                                                                                                                                                                                                                                                                                                                                  | Fiatarone Singh et al 2014<br>Djabelkhir et al 2017 |
| 3<br>4<br>5 Number sequencing<br>6 Number-Letter switching<br>7<br>8                                                                                    | EXE    | In Number Sequencing, the participant is asked to draw a line connecting<br>numbers in order from low to high as quickly as possible without making<br>mistakes, and is a measure of attention. In Number-Letter switching, the task is<br>to switch between connecting numbers and letters, in order, from lowest to<br>highest, e.g., 1-A, 2-B, 3-C etc., and is a measure of cognitive flexibility. | Finn & McDonald et al<br>2015                       |
| 9<br><sup>0</sup> Tracking A, Tracking B<br>1<br>2                                                                                                      | EXE    | Two tracking tasks requiring participants to (1) track numbers (from 24-1) in reverse order (Tracking A), and (2) months forward (January – December) and numbers in reverse (Tracking B).                                                                                                                                                                                                             | Hughes et al 2014                                   |
| <sub>3</sub> Useful field of view (UFOV)<br>4                                                                                                           | EXE    | UFOV is a computerized test assessing visual processing speed and attention.                                                                                                                                                                                                                                                                                                                           | Lin et al 2016                                      |
| <sup>5</sup> Verbal fluency                                                                                                                             | EXE    | Phonemic and categorical fluency                                                                                                                                                                                                                                                                                                                                                                       | Lin et al 2016                                      |
| <sup>6</sup> Cognitive control                                                                                                                          | EXE    | Set shifting and flanker tasks                                                                                                                                                                                                                                                                                                                                                                         | Lin et al 2016                                      |
| 8<br>9<br>9<br>0<br>1<br>1<br>2<br>3                                                                                                                    | Fo     | r peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                |                                                     |

- 45
- 46

Page 51 of 67

| Outcome measure                                   | Domain             | Brief Description                                                                                                                                                                                                                                                                                                                                                                                                     | Study                      |
|---------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Cross-modality dual task (Divided)                | EXE                | Participants were subjected to a dual-task simultaneously consisting of a visual detection (as above) with a digit span task (orally recalling a list of digits) and recorded span items recalled correctly in %.                                                                                                                                                                                                     | Gagnon & Belleville 2012   |
| 0<br>1<br>2 The CANTAB CRT(speed)<br>3<br>4<br>5  | EXE                | It is used to assess motor speed and thus acts as a control measure of general<br>alertness to help interpret other cognitive tasks. An arrow will appear on either<br>the left or right side of a computer screen. After the arrow appears, the<br>participant is instructed to press a corresponding left or right button, using a<br>response box, as quickly as possible.                                         | Savullich et al 2017       |
| 6<br>7 WAIS-III Similarities<br>8                 | EXE                | WAIS Similarities is a subtest from the WAIS-III used to measure verbal<br>conception formation and abstractive thinking. Higher scores indicate better<br>function.                                                                                                                                                                                                                                                  | Fiatarone Singh et al 2014 |
| 9<br>0<br>1<br>2 WAIS-III Matrices<br>3<br>4      | EXE                | WAIS Matrices is a perceptual subtest of the Wechsler Adult Intelligence Scale–<br>III and is used to assess executive functions posing four types of non-verbal<br>reasoning tasks including pattern completion, classification, abstraction and<br>serial reasoning, and all items require visual perception, organization, and<br>synthesis of visual spatial information. Higher scores indicate better function. | Fiatarone Singh et al 2014 |
| 5<br>6<br><sup>7</sup> COWAT<br>9                 | EXE                | Combined Oral Word Association Test is a language-based task assessing<br>association fluency, and is often used as a measure of executive functioning.<br>The most commonly used letters are F, A, and S. or C, F, and L, based upon<br>word prevalence rates. Higher scores indicate better function.                                                                                                               | Fiatarone Singh et al 2014 |
| 0<br>1<br>2<br>3 SDMT (Attention/speed)<br>4<br>5 | EXE                | Symbol Digit Modalities Test measures divided attention, visual scanning,<br>tracking, and motor speed. It uses a substitution format presenting symbols<br>with matching numbers, and participants are required to provide name the<br>numbers corresponding to each given symbol. Higher scores indicate better<br>function.                                                                                        | Fiatarone Singh et al 2014 |
| 6 Notes: General cognition (GEN<br>7 8            | COG), episodic mer | nory (MEM), working memory (WM), executive function (EXE)                                                                                                                                                                                                                                                                                                                                                             |                            |
| 8<br>9<br>0                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| 2                                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| 3<br>4<br>5                                       | For                | peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml                                                                                                                                                                                                                                                                                                                                                 |                            |

Supplementary Table 3. Detailed Characteristics of studies using computerised cognitive training in persons with MCI

| Author and<br>Year     | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)           | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)       | CCT type for<br>EC and type<br>of CC                                                       | Frequency, duration<br>and total hours                                          | Drop-out<br>(%)                  | Cognitive Training<br>Intervention                                                                                                                                                                                                     | Assessment<br>interval<br>(time pre or<br>post<br>intervention) | Included<br>for<br>meta-<br>analysis |
|------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| Barban et<br>al 2016   | N = 46<br>Ratio = 54.3%<br>Age = 74.4 (5.7)<br>Edu = 9 (4.3)<br>MMSE = 27.3 (2.1)    | N = 60<br>Ratio = 51.7%<br>Age = 72.9 (6.0)<br>Edu = 11 (4.7)<br>MMSE = 28.1 (1.4)    | EC: multi<br>domain<br>training.<br>CC:<br>passive(rest)                                   | 60 minute sessions, 2<br>sessions per week for 3<br>months.<br>Total = 24 hours | n/s                              | Computerised software:<br>'SOCIABLE' using touch<br>screen. Multi-component -<br>CT including Memory,<br>attentional Executive<br>Function, orientation,<br>logical reasoning,<br>constructional<br>Praxis, language.                  | Before and<br>after training,<br>follow-up<br>(n/s)             | Yes                                  |
| Chandler<br>et al 2017 | N = 27<br>Ratio = 73.3%<br>Age = 77.4 (7.2)<br>Edu = 16.2 (2.6)<br>MMSE = 26.7 (3.0) | N = 30<br>Ratio = 50.0 %<br>Age = 76.2 (7.0)<br>Edu = 16.0 (2.4)<br>MMSE = 25.8 (3.2) | EC: Auditory<br>memory<br>training<br>CC: Active(<br>Memory<br>Support<br>System<br>(MSS)) | Frequency: n/s<br>Duration: n/s<br>Total = 10 hours                             | EC:4<br>CC:3<br>Total:10.94<br>% | "Auditory Brain Training"<br>software: 6 adaptive<br>modules exercises to<br>recognize and differentiate<br>sounds, match or repeat<br>sounds, remember<br>increasingly difficult<br>directions, and remember<br>details from stories. | n/s                                                             | No*                                  |
|                        |                                                                                      | For peer                                                                              | review only - htt                                                                          | p://bmjopen.bmj.com/site/a                                                      | about/guideline                  | es.xhtml                                                                                                                                                                                                                               |                                                                 |                                      |

| Page 53 d | of 67 |
|-----------|-------|
|-----------|-------|

| Author and<br>Year          | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                                 | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)                            | CCT type for<br>EC and type<br>of CC                                                                | Frequency, duration<br>and total hours                                            | Drop-out<br>(%)               | Cognitive Training<br>Intervention                                                                                                                                                                                        | Assessment<br>interval<br>(time pre or<br>post<br>intervention)                                                       | Included<br>for<br>meta-<br>analysis |
|-----------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Ciarmiello<br>et al 2015    | N = 15<br>Ratio = 35.7%<br>Age = 71.2 (7.7)<br>Edu = 9.3 (3.02)<br>MMSE = 27.9 (1.8)                       | N = 15<br>Ratio = 46.7%<br>Age = 72.0 (7.1)<br>Edu = 7.8 (2.6)<br>MMSE = 27.8(1.9)                         | EC: multi<br>domain<br>CC: semi-<br>active<br>(meeting<br>with<br>psychologist<br>– no<br>computer) | 45 minute sessions, 2<br>days per week for 4<br>months.<br>Total = 24 hours.      | EC: 0<br>CC: 0<br>0%          | Computerised training with<br>multiple difficulty levels.<br>Includes dual-task training,<br>executive function training,<br>working memory updating,<br>visual exploration, spatial<br>orienting tasks.                  | Before and<br>after training<br>follow-up<br>(n/s)                                                                    | Yes                                  |
| Djabelkhjr<br>et al 2017    | N = 10<br>Ratio = 30.0 %<br>Age = 75.2 (6.4)<br>Edu = 60.0% (6)<br>(of college level)<br>MMSE = 27.7 (1.9) | N = 10<br>Ratio = 40.0 %<br>Age = 78.2 (7.0)<br>Edu = 44.4% (4)<br>(of college level)<br>MMSE = 27.4 (2.0) | EC: multi-<br>domain<br>CC:<br>Active(multi-<br>component)                                          | 90 mins per session<br>1 sessions/week, 12<br>weeks.<br>Total = 18 hours.         | EC: 1<br>CC: 0<br>Total: 5%   | 'KODRO' (Altera-Group,<br>Paris, France), a web-based<br>platform with several<br>applications (ie,<br>appointment and event<br>reminding, cognitive<br>games, communication,<br>entertainment, videos and<br>a library). | Before and<br>after training.<br>Follow-up<br>(n/s)                                                                   | Yes                                  |
| Fiatarone<br>et al.<br>2014 | N = 24<br>Ratio = n/s<br>Age = >55<br>Edu = n/s<br>MMSE = 28.0 (2.0)                                       | N = 27<br>Ratio = n/s<br>Age = >55<br>Edu = n/s<br>MMSE = 27.0 (2.0)                                       | EC: multi<br>domain<br>CC: active<br>(sham)                                                         | 75 minute sessions, 2<br>or 3 days per week for<br>26 weeks.<br>Total = 80 hours. | EC: 2<br>CC: 3<br>Total: 9.8% | COGPACK program:<br>Computer-based<br>multimodal and multi<br>domain exercises targeting<br>memory, executive<br>function, attention, and<br>speed of information<br>processing                                           | At baseline<br>and 6 months<br>and at least<br>72 hours after<br>the previous<br>training<br>session<br>Follow-up: at | Yes                                  |
|                             |                                                                                                            | For pee                                                                                                    | r review only - htt                                                                                 | :p://bmjopen.bmj.com/site/                                                        | about/guideline               | es.xhtml                                                                                                                                                                                                                  |                                                                                                                       |                                      |

| Author and<br>Year         | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)          | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)     | CCT type for<br>EC and type<br>of CC                  | Frequency, duration<br>and total hours                                                              | Drop-out<br>(%)               | Cognitive Training<br>Intervention                                                                                                               | Assessment<br>interval<br>(time pre or<br>post<br>intervention) | Included<br>for<br>meta-<br>analysis |
|----------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
|                            |                                                                                     |                                                                                     |                                                       |                                                                                                     |                               |                                                                                                                                                  | 18 months                                                       |                                      |
|                            |                                                                                     |                                                                                     |                                                       |                                                                                                     |                               |                                                                                                                                                  |                                                                 |                                      |
|                            |                                                                                     |                                                                                     |                                                       |                                                                                                     |                               |                                                                                                                                                  |                                                                 |                                      |
| Finn &<br>McDonald<br>2011 | N = 8<br>ratio = 37.5%<br>age = 69.0 (7.7)<br>Edu = 13.3 (2.2)<br>MMSE = 28.5 (2.3) | N = 8<br>ratio = 62.5%<br>age = 76.4 (6.5)<br>Edu = 12.0 (2.8)<br>MMSE = 27.5 (2.4) | EC: Multi-<br>domain<br>CC: Waiting<br>list (Passive) | 30 minute sessions, 4-5<br>sessions a week for an<br>average of 11.43<br>weeks.<br>Total = 25 hours | EC: 4<br>CC: 5<br>Total: 32%  | Lumosity Inc CCT package.<br>Four broad cognitive<br>domains targeted:<br>attention, processing<br>speed, visual memory and<br>cognitive control | Before and<br>after training<br>Follow-up<br>(n/s)              | Yes                                  |
| Finn &<br>McDonald<br>2015 | N = 12<br>ratio = 66%<br>age = 72.8 (5.7)<br>Edu = 13.8 (3.0)<br>MMSE = 27.8 (1.3)  | N = 12<br>ratio = 75%<br>age = 75.1 (7.5)<br>Edu = 13.7 (2.8)<br>MMSE = 27.8 (1.9)  | EC: Single<br>memory<br>domain<br>CC: Passive         | 2 sessions per week for<br>4 weeks<br>Total = n/s                                                   | EC: 4<br>CC: 3<br>Total:22.6% | Repetition-lag training to<br>improve recollection<br>memory                                                                                     | First and last<br>training<br>session<br>Follow-up<br>(n/s)     | Yes                                  |
|                            |                                                                                     |                                                                                     |                                                       |                                                                                                     |                               |                                                                                                                                                  |                                                                 |                                      |
|                            |                                                                                     |                                                                                     |                                                       |                                                                                                     |                               |                                                                                                                                                  |                                                                 |                                      |
|                            |                                                                                     | For peer                                                                            | r review only - htt                                   | p://bmjopen.bmj.com/site/a                                                                          | bout/guideline                | s.xhtml                                                                                                                                          |                                                                 |                                      |

| Page 55 | of 67 |
|---------|-------|
|---------|-------|

| Author and<br>Year               | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)         | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)    | CCT type for<br>EC and type<br>of CC                           | Frequency, duration<br>and total hours                                               | Drop-out<br>(%)                    | Cognitive Training<br>Intervention                                                                                                                 | Assessment<br>interval<br>(time pre or<br>post<br>intervention) | Included<br>for<br>meta-<br>analysis |
|----------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| Gagnon &<br>Belleville<br>2012   | N = 12<br>ratio = n/s<br>age = 67.0 (7.8)<br>Edu = 15.0 (4.6)<br>MMSE = 28.1 (1.2) | N = 12<br>ratio = n/s<br>age = 68.4 (6.0)<br>Edu = 13.1 (5.7)<br>MMSE = 27.8 (1.5) | EC: Single<br>domain(atte<br>ntional<br>control)<br>CC: Active | 60 minute sessions, 3<br>times a week for 2<br>weeks.<br>Total = 6 hours             | EC: 1<br>CC: 1<br>Total: 8%        | Programme targeting<br>attentional control using<br>Variable Priority (VP)<br>training in a dual task with<br>selected priorities and<br>feedback. | One week pre<br>and after<br>intervention<br>Follow-up<br>(n/s) | Yes                                  |
| Gooding et<br>al 2016<br>study 1 | N = 31<br>ratio = 58.1%<br>age = 75.6 (8.8)<br>Edu = 15.1 (2.6)<br>MMSE = n/s      | N = 10<br>ratio = 58.1%<br>age = 75.6 (8.8)<br>Edu = 15.1 (2.6)<br>MMSE = n/s      | EC: Multi-<br>domain<br>CC: Active                             | 60 min sessions, two<br>days per week for 16<br>weeks<br>Total = approx. 30<br>hours | EC: 12<br>CC: 1<br>Total:<br>20.3% | Posit Science's BrainFitness<br>– repeated drill-and-<br>practice adaptive exercises<br>involving memory,<br>attention and executive<br>functions. | Before and<br>after training<br>Follow-up<br>(n/s)              | Yes                                  |
| Gooding et<br>al 2016<br>study 2 | N = 23<br>ratio = 58.1%<br>age = 75.6 (8.8)<br>Edu = 15.1 (2.6)<br>MMSE = n/s      | N = 10<br>ratio = 58.1%<br>age = 75.6 (8.8)<br>Edu = 15.1 (2.6)<br>MMSE = n/s      | EC: Multi-<br>domain<br>CC: Active                             | 60 min sessions, two<br>days per week for 16<br>weeks<br>Total = approx. 30<br>hours | EC: 12<br>CC: 1<br>Total:<br>20.3% | Posit Science's BrainFitness<br>– repeated drill-and-<br>practice adaptive exercises<br>involving memory,<br>attention and executive<br>functions. | Before and<br>after training<br>Follow-up<br>(n/s)              | Yes                                  |

| Author and<br>Year     | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                                    | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)                               | CCT type for<br>EC and type<br>of CC                                                      | Frequency, duration<br>and total hours                                                  | Drop-out<br>(%)               | Cognitive Training<br>Intervention                                                                                                                                                                  | Assessment<br>interval<br>(time pre or<br>post<br>intervention) | Included<br>for<br>meta-<br>analysis |
|------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------|
| Hagovska<br>et al 2016 | N = 40<br>ratio = 55%<br>age = 68.0 (4.4)<br>Edu = 75% of<br>secondary<br>education<br>MMSE = 26.0 (2.6)      | N = 40<br>ratio = 48%<br>age = 65.9 (6.2)<br>Edu = 70% of<br>secondary<br>education<br>MMSE = 26.0 (1.5)      | EC: Multi<br>domain +<br>balance<br>training<br>CC: Passive(<br>just balance<br>training) | 30 minute sessions, 2<br>times a week for 10<br>weeks.<br>Total = 10 hours              | EC: 0<br>CC: 2<br>Total: 2.5% | CogniPlus training program<br>Battery contains<br>subprograms for attention,<br>Working Memory, long-<br>term memory, executive<br>functions, spatial<br>processing and visuomotor<br>coordination. | Before and<br>after training<br>Follow-up<br>(n/s)              | Yes                                  |
| Han et al<br>2017      | N = 23<br>Ratio = 56.5%<br>Age = 73.7 (4.8)<br>Edu = 13.5 (3.2)<br>MMSE = 25.7 (3.2)                          | N = 20<br>Ratio = 50.0%<br>Age = 74.5 (6.4)<br>Edu = 12.7 (3.7)<br>MMSE=24.5 (2.4)                            | EC: single<br>memory<br>training<br>CC: Passive<br>(Usual Care)                           | 30 min per session<br>1 hour per day<br>2 sessions/week, 4<br>weeks.<br>Total = 4 hours | EC:3<br>CC:5<br>Total:<br>16% | USMART program involving<br>spaced retrieval-based<br>memory training, using a<br>self-administered<br>application on an iPad<br>tablet.                                                            | Week 0, 5<br>Follow-up<br>(n/s)#                                | Yes                                  |
| Herrera et<br>al 2012  | N = 11<br>ratio = 54%<br>age = 75.1 (2.0)<br>Edu = 46% of<br>secondary school or<br>more<br>MMSE = 27.4 (0.5) | N = 11<br>ratio = 45%<br>age = 78.2 (1.4)<br>Edu = 63% of<br>secondary school or<br>more<br>MMSE = 27.2 (0.4) | EC:<br>Multidomain<br>CC: Active                                                          | 60 minute sessions, 2<br>days a week for 12<br>weeks.<br>Total = 24 hours               | 0%                            | Several computer-based<br>training exercises designed<br>to improve memory and<br>attention                                                                                                         | 0, 12 weeks ±<br>15 days<br>Follow-up: at<br>24 weeks           | Yes                                  |
|                        |                                                                                                               | For peer                                                                                                      | review only - htt                                                                         | p://bmjopen.bmj.com/site/a                                                              | about/guideline               | s.xhtml                                                                                                                                                                                             |                                                                 |                                      |

| Page 57  | of 67 |
|----------|-------|
| · age or | •. •. |

| Author and<br>Year   | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                   | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)              | CCT type for<br>EC and type<br>of CC                                                                       | Frequency, duration<br>and total hours                                               | Drop-out<br>(%)                   | Cognitive Training<br>Intervention                                                                                                                                                                             | Assessment<br>interval<br>(time pre or<br>post<br>intervention)              | Included<br>for<br>meta-<br>analysis |
|----------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| Hughes et<br>al 2014 | N = 10<br>ratio = 20%<br>age = 78.5 (7.1)<br>Edu = 13.8 (2.4)<br>MMSE = 27.2 (1.9)           | N = 10<br>ratio = 40%<br>age = 76.2 (4.3)<br>Edu = 13.1 (1.9)<br>MMSE = 27.1 (1.8)           | EC:<br>Multidomain<br>CC: Active                                                                           | 90 minute sessions,<br>once a week for 24<br>weeks. Total = 36<br>hours              | 0%                                | Group-based Nintendo Wii<br>sports package. Group-<br>based Interactive video<br>gaming                                                                                                                        | 0, 24 weeks±<br>1 weeks<br>Follow-up:<br>(n/s)                               | Yes                                  |
| Hyer et al.<br>2016  | N = 34<br>ratio = 50%<br>age = 75.1 (7.4)<br>Edu = 70%<br>secondary<br>MMSE = n/s            | N = 34<br>ratio = 44%<br>age = 75.2 (7.8)<br>Edu = 66%<br>secondary<br>MMSE = n/s            | EC: Single<br>domain<br>(working<br>memory)<br>CC: Active<br>(Sham)                                        | 25 days of 40 min<br>sessions, completed<br>over 5 to 7 weeks.<br>Total = 16.7 hours | EC: 4<br>CC: 5<br>Total:<br>11.7% | Cogmed – adaptive WM<br>training                                                                                                                                                                               | Before and<br>after training<br>Follow-up: 3<br>months after<br>intervention | Yes                                  |
| Lin et al<br>2016    | N = 10<br>Ratio = 50.0%<br>Age = 72.9 (8.2)<br>Edu = 90.0% of<br>college level<br>MMSE = n/s | N = 11<br>Ratio = 54.5%<br>Age = 73.1 (9.6)<br>Edu = 54.5% of<br>college level<br>MMSE = n/s | EC: Single<br>domain<br>speed-of-<br>processing<br>CC: active<br>control(ment<br>al leisure<br>activities) | 1 hour per day<br>4 days per week for 6<br>weeks in their homes.<br>Total = 24 hours | EC:2<br>CC:1<br>Total:<br>12.5%   | INSIGHT online program:<br>(vision-based speed-of-<br>processing) which included<br>five training tasks: eye for<br>detail, peripheral<br>challenge, visual sweeps,<br>double decision, and target<br>tracker. | Before and<br>after training<br>Follow-up<br>(n/s)#                          | Yes                                  |
|                      |                                                                                              | For peer                                                                                     | r review only - htt                                                                                        | p://bmjopen.bmj.com/site/                                                            | about/guidelin                    | es.xhtml                                                                                                                                                                                                       |                                                                              |                                      |

| Author and<br>Year   | Treatment Group<br>N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)           | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)    | CCT type for<br>EC and type<br>of CC                                                                                           | Frequency, duration<br>and total hours                                       | Drop-out<br>(%)                   | Cognitive Training<br>Intervention                         | Assessment<br>interval<br>(time pre or<br>post<br>intervention)              | Included<br>for<br>meta-<br>analysis |
|----------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|
| Optale et<br>al 2010 | N = 15<br>ratio = 59.1%<br>age = 78.5 (10.9)<br>Edu = 5.3 (2.4)<br>MMSE = 22.9 (5.0) | N = 16<br>ratio = 31.25%<br>age = 81.6 (5.0)<br>Edu = 6 (3.5)<br>MMSE = 21.0 (4.8) | EC: Single<br>domain -<br>Memory<br>CC: Active                                                                                 | 30 minute sessions, 3<br>times a week for 3<br>months.<br>Total = 58.5 hours | EC: 3<br>CC: 2<br>Total:<br>16.1% | A Virtual Reality-based<br>memory training<br>programme    | Before and<br>after training<br>Follow-up: 3<br>months after<br>intervention | No**                                 |
| Rosen et al<br>2011  | N = 6<br>ratio = n/s<br>age = 70.7 (10.6)<br>Edu = 16.7 (0.8)<br>MMSE = 29.3 (1.2)   | N = 6<br>ratio = n/s<br>age = 78.0 (7.9)<br>Edu = 18.3 (1.5)<br>MMSE = 27.8 (2.3)  | EC:<br>processing<br>speed and<br>accuracy in<br>auditory<br>processing<br>CC:<br>computer-<br>based<br>activities(Acti<br>ve) | 100 minute sessions, 5<br>times a week for 8<br>weeks.<br>Total = 36 hours   | 0%                                | processing speed and<br>accuracy in auditory<br>processing | Before and<br>after training<br>Follow-up<br>(n/s)                           | Yes                                  |
|                      |                                                                                      | For peer                                                                           | review only - htt                                                                                                              | p://bmjopen.bmj.com/site/                                                    | about/guidelin                    | es.xhtml                                                   |                                                                              |                                      |

|                              | N, % male, mean<br>age, mean<br>education, MMSE<br>(SD)                                                   | Control Group N,<br>ratio of male, mean<br>age, mean<br>education, MMSE<br>(SD)                          | CCT type for<br>EC and type<br>of CC                                              | Frequency, duration<br>and total hours                                                          | Drop-out<br>(%) | Cognitive Training<br>Intervention                                                                      | Assessment<br>interval<br>(time pre or<br>post<br>intervention)                                 | Included<br>for<br>meta-<br>analysis |
|------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|
| ozzini et<br>I 2007          | N = 15<br>ratio = n/s<br>age = 63 - 78<br>Edu = n/s<br>MMSE = 26.0 (1.6)                                  | N = 22<br>ratio = n/s<br>age = 63 - 78<br>Edu = n/s<br>MMSE = 26.4 (1.9)                                 | EC:<br>Multidomain<br>and<br>medication<br>CC:<br>Medication<br>only<br>(Passive) | 60 minute session, 5<br>days a week for 4<br>weeks in 3 discrete<br>blocks.<br>Total = 60 hours | 0%              | Cognitive exercises based<br>on Neuropsychology<br>Training combined with a<br>cholinesterase inhibitor | Before and<br>after training<br>Follow-up<br>(n/s)                                              | Yes                                  |
| avulich et /<br>  2017  <br> | N = 21<br>Ratio = 52.4%<br>Age = 75.2 (7.4)<br>Edu = 15.9 (1.3)<br>(Age left school)<br>MMSE = 26.6 (2.9) | N = 21<br>Ratio = 66.7%<br>Age = 76.9 (8.3<br>Edu = 16.0 (2.1)<br>(Age left school)<br>MMSE = 26.8 ± 2.2 | EC: a novel<br>memory<br>game<br>CC: negative<br>(clinic visits<br>as usual)      | 1 hour per session, 8<br>hours within 4 weeks.<br>Total = 8 hours.                              | 0 %             | Gameshow program:<br>Computer-based episodic<br>memory training.                                        | At a<br>maximum of<br>4 weeks after<br>the baseline<br>testing<br>session<br>Follow-up<br>(n/s) | Yes                                  |

## **Supplementary Appendix 1**

#### **Statistical methods**

### Effect size calculation

Jon 5.5. , these are most likely , . RevMan is as follows: 3/(4N-9)] Effect sizes were calculated using RevMan software version 5.3. Standardised mean differences were calculated using Hedges' adjusted g<sup>1</sup>.

Pre-intervention standard deviations were used as these are most likely to be comparable across studies and therefore provide the most

accurate estimate of effect size.<sup>3</sup>

The Hedges' adjusted g formula used in RevMan is as follows:

g= [M<sub>post intervention</sub> – M<sub>post control</sub>/SD<sub>pre-pooled</sub>]\*[1- 3/(4N-9)]

Where N= n<sub>intervention group</sub> + n<sub>control group</sub>

and

 $SD_{pre-pooled} = V [((n_{intervention-1}) SD_{pre intervention}^2 + (n_{control-1}) SD_{pre control}^2)/N-2]$ 

#### Meta-analyses

#### BMJ Open

 Meta-analyses were performed using RevMan software version 5.3. A random effects method as described by DeSirmonian and laird<sup>4</sup> was used, adjusting standard errors of the effect sizes in each study to account for the heterogeneity for intervention effects observed between different studies.

The pooled effect size of each meta-analysis was calculated by attributing a weight to the average effect size in each study according to sample size. The z statistic was used to evaluate whether the pooled effect size was significantly different to no effect.

Heterogeneity was quantified using the I<sup>s</sup> statistic.

### Composite measure calculation

Composite scores were calculated where a study reported multiple outcomes falling within a particular outcome domain (e.g. objective cognitive performance). This approach was pragmatic in allowing one score to represent each intervention in the meta-analysis regardless of the number of outcomes reported. In turn this prevents more weight being given to studies with multiple outcomes.<sup>2</sup>The variance of the sum of variables was calculated as described below.

Using the example of a study with two relevant outcomes, there will be two effect sizes, namely  $y_1$  and  $y_2$ . The overall mean effect size for the composite measure will be:

 $\bar{y} = 1/2(y_1 + y_2)$ 

The variance of this mean is calculated as follows:

 $V_{\bar{y}} = \frac{1}{4} (V_{Y1} + V_{y2} + 2r^* \sqrt{V_{Y1}}^* \sqrt{V_{y2}}),$ 

 where r is the correlation coefficient describing to what extent  $y_1$  and  $y_2$  co-vary.

If the correlation is set at 0, the outcomes are essentially treated as independent of each other and if the correlation is set at 1, the variance is an average of each outcome's variance. The former will lead to an underestimate of the variance and overestimate of precision while the latter will have the opposite effect. Consequently, in the absence of existing literature to identify a suitable correlation, we reported composite effect sizes calculated using a correlation of 0.5.

1. Hedges LV, Olkin I. Statistical methods for meta-analysis. New York, Academic Press 1985.

2. Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to Meta-Analysis. Chichester, John Wiley & Sons, Ltd 2009.

3. Morris S. Estimating Effect Sizes From Pretest-Posttest-Control Group Designs. Organ. Res. Meth 2008;11 (2):364-386.

4. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7(3):177-188

#### PRISMA checklist

| Section/topic             | Checklist item                                                                                                                                                                                                                                                                                              | Page number/<br>Figure/Table |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Title                     |                                                                                                                                                                                                                                                                                                             |                              |
| Title                     | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                                                         | 1                            |
| Abstract                  |                                                                                                                                                                                                                                                                                                             |                              |
| Structured summary        | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 2-3                          |
| Introduction              |                                                                                                                                                                                                                                                                                                             |                              |
| Rationale                 | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                                              | 4-6                          |
| Objectives                | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).                                                                                                                                                  | 6                            |
| Methods                   |                                                                                                                                                                                                                                                                                                             |                              |
| Protocol and registration | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.                                                                                                                               | n/a                          |
| Eligibility criteria      | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                                                      | 8                            |
| Information sources       | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                                                  | 8                            |
| Search                    | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                                               | Supplementary                |

| 1<br>2<br>3<br>4                |                  |
|---------------------------------|------------------|
| 5<br>6<br>7<br>8                |                  |
| 1                               | 0<br>1<br>2<br>3 |
| 14<br>13<br>10<br>11            | 4<br>5<br>6      |
| 1<br>1<br>2<br>2                | 8<br>9<br>0<br>1 |
| 2<br>2<br>2<br>2<br>2<br>2<br>2 | 2<br>3<br>4<br>5 |
| 2<br>2<br>2<br>2<br>2<br>2<br>3 | 7<br>8<br>9      |
| 3<br>3<br>3<br>3                | 1<br>2<br>3<br>4 |
| 3:<br>3:<br>3:<br>3:            | 6<br>7<br>8      |
| 39<br>40<br>41<br>42<br>42      | 0<br>1<br>2      |
| 4<br>4<br>4<br>4<br>4           | 4<br>5<br>6      |

| Section/topic                         | Checklist item                                                                                                                                                                                                         | Page number/<br>Figure/Table |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|                                       |                                                                                                                                                                                                                        | Table 1                      |
| Study selection                       | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                              | 9                            |
| Data collection<br>process            | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.                                             | 9                            |
| Data items                            | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.                                                                                  | n/a                          |
| Risk of bias in<br>individual studies | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 9                            |
| Summary measures                      | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                          | 9                            |
| Synthesis of results                  | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I <sup>2</sup> ) for each meta-analysis.                                                     | 9                            |
| Risk of bias across<br>studies        | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).                                                                           | 9                            |
| Additional analyses                   | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.                                                                       | 10                           |
| Results                               |                                                                                                                                                                                                                        |                              |
| Study selection                       | Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.                                                        | Figure 1                     |

| Section/topic         | Checklist item                                                                                                                     | Page number/  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                       |                                                                                                                                    | Figure/Table  |
| Study characteristics | For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide      | Table 1       |
|                       | the citations.                                                                                                                     | 11-12         |
| Risk of bias within   | Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).                          | Supplementary |
| studies               |                                                                                                                                    | Figure 1      |
| Results of individual | For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention            | Figs 2-3      |
| studies               | group (b) effect estimates and confidence intervals, ideally with a forest plot.                                                   |               |
|                       |                                                                                                                                    |               |
| Synthesis of results  | Present results of each meta-analysis done, including confidence intervals and measures of consistency.                            | 13-14         |
| Risk of bias across   | Present results of any assessment of risk of bias across studies (see Item 15).                                                    | Supplementary |
| studies               |                                                                                                                                    | Figure 1      |
| Additional analysis   | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).              | 13-14         |
| Discussion            |                                                                                                                                    |               |
| Summary of            | Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key              | 16            |
| evidence              | groups (e.g., healthcare providers, users, and policy makers).                                                                     |               |
| Limitations           | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified | 16-17         |
|                       | research, reporting bias).                                                                                                         |               |
| Conclusions           | Provide a general interpretation of the results in the context of other evidence, and implications for future research.            | 19            |
| Funding               |                                                                                                                                    |               |
|                       | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the            | n/a           |

**BMJ** Open

| Section/topic | Checklist item                                                            | Page number/<br>Figure/Table |
|---------------|---------------------------------------------------------------------------|------------------------------|
|               | systematic review.                                                        |                              |
|               |                                                                           |                              |
|               |                                                                           |                              |
|               | For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml |                              |

Page 67 of 67

#### The PRISMA for Abstracts Checklist

| TITLE                                     | CHECKLIST ITEM                                                                                                                                                                                       | REPORTED<br>ON PAGE # |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1. Title:                                 | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                  | 3                     |
| BACKGROUND                                |                                                                                                                                                                                                      |                       |
| 2. Objectives:                            | The research question including components such as participants, interventions, comparators, and outcomes.                                                                                           | 3                     |
| METHODS                                   |                                                                                                                                                                                                      |                       |
| 3. Eligibility criteria:                  | Study and report characteristics used as criteria for inclusion.                                                                                                                                     | 3                     |
| 4. Information sources:                   | Key databases searched and search dates.                                                                                                                                                             | 3                     |
| 5. Risk of bias:                          | Methods of assessing risk of bias.                                                                                                                                                                   | 3                     |
| RESULTS                                   |                                                                                                                                                                                                      |                       |
| 6. Included studies:                      | Number and type of included studies and participants and relevant characteristics of studies.                                                                                                        | 3                     |
| 7. Synthesis of results:                  | Results for main outcomes (benefits and harms), preferably indicating the number of studies and participants for each. If meta-analysis was done, include summary measures and confidence intervals. | 3                     |
| 8. Description of the effect:             | Direction of the effect (i.e. which group is favoured) and size of the effect in terms meaningful to clinicians and patients.                                                                        | 3                     |
| DISCUSSION                                |                                                                                                                                                                                                      |                       |
| 9. Strengths and Limitations of evidence: | Brief summary of strengths and limitations of evidence (e.g. inconsistency, imprecision, indirectness, or risk of bias, other supporting or conflicting evidence)                                    | 3                     |
| 10. Interpretation:                       | General interpretation of the results and important implications                                                                                                                                     | 3                     |
| OTHER                                     |                                                                                                                                                                                                      |                       |
| 11. Funding:                              | Primary source of funding for the review.                                                                                                                                                            | NA                    |
| 12. Registration:                         | Registration number and registry name.                                                                                                                                                               | NA                    |