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I. MEAN FIELD THEORY

Here, we develop a mean field theory with some improvements with respect to our previous

work [1]. In particular we solve the mean field ordinary differential equation (ODE) with

periodic boundary conditions (instead of open boundary conditions, as previously done) and

in the presence of topoisomerases.

We consider the case N = n = 1, where N is the number of RNAP and n is the number of

genes. Besides, we consider a static polymerase (i.e. v = 0) at the lattice position x = 0. If L

is the length of the lattice, we assume boundary conditions σ(0) = 0 and σ(L/2) = σ(−L/2).

In steady state (∂σ/∂t = 0), Eq. (1) reads:

∂2σ(x)

∂x2
− J0
D

kinτ

kinτ + 1

∂δ(x)

∂x
− ktopo

D
σ(x) = 0 (S1)

where we have made the mean field approximation

Jtr(x, t)

D
→ J0

D

kinτ

kinτ + 1
δ(x) ≡Mδ(x) (S2)

with kinτ/(kinτ + 1) the fraction of time the system spends in the transcribing state.

As the flux term acts only at x = 0, solving the model in the mean field approximation

is equivalent to solving the following ODE:

∂2σ(x)

∂x2
− ktopo

D
σ(x) = 0 x 6= 0

∂σ(x)

∂x

∣∣∣∣
x=0

= Mδ(0)

σ (L/2) = σ (−L/2) .

(S3)

Since both σ(x) and σ(−x) are solution of the ODE for x 6= 0 the unique solution of

Eq. (S3) is a linear combination of σ(x) and σ(−x). It can be shown that only the antisym-

metric combination fulfils the periodic boundary conditions, with σ(L/2) = σ(−L/2) = 0.

The solution of Eq. (S3) with the appropriate parity and boundary conditions is given
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by:

σ(x) =
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2

sinh
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ktopo
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)]
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ktopo
D

L

2

] sgn(x), (S4)

where sgn(x) is the sign function. From Eq. (S4) it can be easily shown that in the limit

ktopo → 0 we obtain:

σ(x) =
M

2

(
1− 2|x|

L

)
sgn(x). (S5)

The term proportional to 1/L is the correction due to the periodic boundary conditions,

that disappears for L → ∞, recovering the solution in Ref. [1]. In the limit L → ∞, with

finite ktopo, we have

σ(x) =
M

2
exp

(
−
√
ktopo
D
|x|

)
sgn(x). (S6)

The validity of this mean field theory can be determined by comparing it to the time-

average supercoiling profile in our single gene simulations.

Interestingly, from our simulations we found that the point along the gene at which the

time-averaged supercoiling profile crosses zero is ∼ 2λ/3, independently of the parameter

used. The correct mean field profile of supercoiling for a moving polymerase is then computed

by substituting |x| → |x− 2λ/3|.

II. THE MODIFIED IPP PROCESS

The mechanism which leads to bursty dynamics for transcription in living cells is still not

well understood, though several hypothesis have been made. In our model, we have seen

that both the action of topoisomerases (1-gene model) and the interaction among genes

(10-gene model) can yield bursts, in absence of external factors. The nontrivial nonlinear

behaviour predicted by our model can be captured by a simpler kinetic scheme: the In-

terrupted Poisson Process (IPP). By solving the IPP equations, one can explicitly obtain

the double-exponential distribution of waiting times between events, that, when appropriate

conditions on the kinetics rates are met, leads to bursting. In this section we modify the IPP

equations. Nevertheless, the resulting distribution is still a double-exponential (see below),

with the exception of the two timescales, which are different from those found in [2].
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FIG. S1: Scheme of the discrete states in a modified IPP. Each box represent a state, with

ε ∈ {0, 1}. The index n labels the number of initiation events.

We define (as in Fig. 1a of the main text) an active (ON , or ε = 1) and an inactive

(OFF , or ε = 0) state of the gene promoter according to the local supercoiling density

(i.e., if the supercoiling density is below (1 − (k0τ2)
−1)/α, then the promoter is ON). We

then associate the rates kOFF and kON with the ON → OFF and OFF → ON transitions

respectively. The gene oscillates between the two states, tracking the typical trajectories of

a Random Telegraph Process (see Fig. 1a, BOTTOM). Whilst in the ON state, the gene

is able to transcribe with rate ki. Given a time series of events, the waiting time tn is the

elapsed time between two consecutive transcriptions, say the (n−1)-th and the n-th. In the

IPP, the waiting time tn is drawn by the same probability distribution function (pdf ) for

each n (this may not be true in general in our stochastic model for supercoiling-dependent

transcription). Moreover, in the standard IPP prescription the OFF → ON transition

occurs between states labelled by the same n, see Ref. [2]. Differently, in our modified IPP

description, the transition OFF → ON is triggered by transcription (see Fig. S1), meaning

that the transition and the first event in the burst occur at the same time. By labelling

possible states with the instantaneous value of ε (gene ON/OFF) and by the index n, which

keeps count of the number of transcriptions, we denote the probability of being in the state

{n, ε} at time t by pn,ε(t). Then, the set of master equations for our modified IPP is:
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

dp1,1(t)

dt
= −(ki + kOFF ) p1,1(t)

dpn,1(t)

dt
= kipn−1,1(t) + kONpn−1,0(t)− (ki + kOFF )pn,1(t), n = 2, 3, . . .

dpn,0(t)

dt
= kOFF pn,1(t)− kON pn,0(t) n = 1, 2, . . .

(S7)

with the initial condition p1,1(t = 0) = 1. Clearly, the pdf associated with the first tran-

scription event after initialisation (n = 2) corresponds to the distribution of waiting times,

that is

f(t) = ki p1,1(t) + kON p1,0(t). (S8)

In order to find p1,1(t) and p1,0(t), and therefore f(t), we need to solve just the following

two first order coupled ODEs:
dp1,1(t)

dt
= −(ki + kOFF ) p1,1(t),

dp1,0(t)

dt
= kOFF p1,1(t)− kON p1,0(t).

(S9)

By solving Eq. (S9) and using Eq. (S8), we have

f(t) = w1r1e
−r1t + w2r2e

−r2t, (S10)

with rates r1,2

r1 = ki + kOFF , r2 = kON , (S11)

and weights w1,2

w1 =
ki − r2
r1 − r2

, w1 ∈ [0, 1] , (S12)

w2 = 1− w1. (S13)

In our stochastic model used in the main text, we can identify kON ∼ k0. Conversely, it

is not easy to find a value for the rate kOFF without fitting the data, since the transition

ON → OFF is mainly due to fluctuations, that, in the bursty phase, relax the system

towards the initial value of the supercoiling σ0.

III. 1-GENE ARRAY: BURST PARAMETERS AND ADDITIONAL FIGURES

In our work we use the sequence-size function, Φ(τ), to analyse burst significance. Al-

though this method has been presented in previous works [2, 3], it has not previously been
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applied to simulation of the dynamics of transcription which does not use predetermined

kinetic rates for the process.

We use the parameter ξ as defined in Eq. (7) in the main tex, which is different from the

parameter proposed in [2], (τ2 − τ1)/τ2. Indeed, the former parameter does show variation

within the bursty phase, whereas the latter does not. Our parameter ξ yields a reasonable

estimate of burst significance, as (i) it is still proportional to τ2 − τ1 and (ii) it fulfils the

intuitive expectation that the burst significance should decrease if the system spends more

time in intermediate states, at fixed τ2 − τ1.

The analysis of the ssf allows us to readily compute other relevant burst parameters in a

relatively simple way. The time separation between the two timescales is just τx = (τ1+τ2)/2

and, from the definition of the ssf, we can estimate the mean burst size (the average number

of transcriptions in a single burst) as β = Φ(τx). This is a useful parameter, since it provides

a simple basis to compare with experimental data. As we can see from Fig. S2 higher values

of β (β > 4− 5) correspond to less significant bursting (see main text, Fig. 2). Conversely,

in the region of higher ξ (J̄/D ∼ 1.5− 2), the burst size β ' 2.2 is short and close to that

experimentally observed in E. Coli [4]. The burst duration – i.e. the time duration of a
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FIG. S2: Burst size and burst duration for a single gene. (a) Here, we show the burst size β

up to J̄/D = 2.72, in order to highlight the region of higher burst significance (J̄/D ∼ 1.5− 2), in

which β is in agreement with experimental measurement of the same parameter [4]. (b) Duration

of bursts T . We find that in the same region the duration of bursts is also consistent with [4], as

T ∼ 3− 4 min.
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single burst – is estimated by βτx: in the same parameter region it is also consistent with

experimental results [4, 5], T ∼ 3− 4 min.

In Fig. S3a,b we present the typical probability distribution of supercoiling at the pro-

moter, respectively in the bursty and non-bursty phases. Within our stochastic model, the

supercoiling at the promoter is directly linked to the probability of initiation, and therefore

its distribution encodes all of the information about the process. As expected, for bursty

dynamics we observe a bimodal distribution of σp, while for non-bursty dynamics we have

a unimodal distribution, with fluctuations approximately Gaussian.

For completeness, in Fig. S4 we consider a situation where there is a single gene but

three polymerases. The rationale is that in vivo, at any given time, there can be more than

one polymerase available for a given gene, even if the ratio of the total number of RNAP

and genes is small. In this multiple polymerase case we find qualitatively similar results to

the single polymerase case treated in the text, but only if we increase ktopo by a factor of

10. However, the burst significance is remarkably smaller than the case studied in the main

text. Nevertheless, the physical features of the bursts are consistent with those of the single

polymerase case: e.g., for J̄/D ∼ 1 we find β ∼ 3 and T ∼ 2 min.
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FIG. S3: Probability distribution for supercoiling at the promoter. (a) In the bursty

phase, supercoiling at the promoter is strongly peaked at σp ∼ 0. Another peak appears for more

negative value of supercoiling, due to occupation of the ON state. Inset: log-linear plot of the pdf

in the main panel. (b) In the non-bursty phase the distribution is unimodal, with one gaussian

tail. The gene tends to more often be in a state with less negative supercoiling for longer time; this

results in a non-gaussian positive tail, with a nonzero kurtosis (see main text). (c) Time profile of

the supercoiling at the promoter in the non-bursty regime. Clearly, the gene is always ON , as the

supercoiling does not relax to the initial value σ0 = 0.
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FIG. S4: Burst parameters for a single gene and three polymerases. (a) Burst significance

ξ. There are still two phases separated by a crossover. (b,c) Burst size β and bursts duration

T . With respect to the single gene case, here we have a large region of very high values (not

biologically relevant) for both the burst size and the duration. However, these correspond to a

region of low burst significance; in the region where burst significance is maximal we again find

values for β and T consistent with experiments (β ∼ 3, T ∼ 2 min).
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IV. MULTIPLE GENE SIMULATIONS: ADDITIONAL FIGURES

We present some additional results from the 10-gene array simulations for the case ktopo =

0, for which the main results are presented in the main text.

In the case of tandem genes, for the configuration shown in the main text (see Fig. 5a) the

genes 1, 6 and 10 are upregulated by supercoiling. These genes have a larger space upstream

of them, so are less affected by the repressive action of positive supercoils generated at

their upstream neighbour. This occurs, albeit to a much lesser extent, even in the relaxed

regime. This relatively small upregulation is sufficient to yield a sizeable change in the burst

significance (see main text, Fig. 5b).
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FIG. S5: Supercoiling dynamics at the promoter gene 4 in a 10-gene array. (a) Promoter

supercoiling versus time in the bursty regime. For J̄/D sufficiently small correlation between

neighbours genes are established. Positive supercoiling produced by gene 3 transcription often

freezes gene 4, yielding the supercoiling value transiently to the absorbing state (σ0 = 0.01, kin = 0).

(b) Promoter supercoiling versus time in the supercoiling-regulated regime. In this regime the

correlation spreads through the whole lattice, creating a transcription wave. Supercoiling at the

promoter now oscillates in time.

In Fig. S5a we show a typical time series for the supercoiling at the promoter of the gene

4 (which is not upregulated), when the burst significance is high (J̄/D = 0.68, that is in

the bursty transcriptional regime). In Fig. S5b we show the supercoiling time series in the

wavy regime: a periodic pattern appears so that the dynamics is no longer bursty. In Figure
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Fig. S6 we show the probability of transcription for each gene, in the bursty regime, for two

different values of the flux J̄/D.

In Fig. S7 we show the mean size of bursts β and the duration of bursts T for simulations

of tandem genes. Even in this case we have a good agreement with the results for a single

gene. Indeed we find that in the region of higher burst significance we have β & 2 and

T ∼ 4− 5 min.

For completeness, in Fig. S8 we show the non-Gaussian parameters for the distribution

of the supercoiling at the promoter σp, already computed for a single gene in the main text.

The skewness and the kurtosis are not well-correlated to the burst significance, and the

values depend strongly on the particular gene considered in a given configuration. However,

for each gene individually, the skewness/kurtosis displays a decreasing/increasing trend as

a function of ξ.

In arrays with a pair of divergent genes, the transcription probability for different genes

starts to differ as soon as the value of the flux is large enough to give rise to supercoiling

mediated interaction (positive feedback loop) between the two divergent genes, Fig. S9a. As

a consequence, the burst significance ξ also differs among the genes. Since for high value of

the flux (J̄/D ∼ 1) the transcription across all genes is almost totally dominated by the pair

of divergent genes, we find that the latter behave like a single upregulated gene. This can
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FIG. S6: Transcriptional probability in the tandem 10-gene array. The histograms show

the transcription probability for each gene, for two different values of the flux, J̄/D = 0.034 and

J̄/D = 1.02, that are the bottom and the top part of the diagram in Fig. 5b in the main text,

respectively.
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FIG. S7: Burst size and burst duration in a 10 genes array. (a) Burst size β. (b) Burst

duration T .

be seen by looking at the distribution of waiting times of one of the two genes (Fig. S9b),

which clearly does not display two separate timescales.

As for the tandem setup, we show the burst parameters β and T in the presence of a pair
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FIG. S8: Non-Gaussian parameters for simulations with tandem genes. (a) Skewness and

(b) kurtosis as a function of ξ. For each gene the slowness and the burst significance are computed

for different value of the flux J̄/D. For each gene the skewness decreases as the bursts significance

decreases, whereas the kurtosis increases.
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FIG. S9: Transcription probability and waiting times distribution for gene 6 in a 10

gene array, with a pair of divergent genes. (a) Transcription probability for each gene. For

small values of the flux (J̄/D = 0.2, purple boxes) genes are almost equally transcribed. As the

flux increases, divergent genes start to dominate the dynamics, and their transcription probability

increases, while the others are virtually silenced (J̄/D = 1.02, yellow boxes). (b) Log-linear plot

of the waiting time distribution. The system does not display any bistability. Instead, the system

visits several states, each of them described by a particular value of supercoiling at the promoter

and a corresponding typical waiting time. Inset: the second derivative of Φ(τ) does not display

zeros, corresponding with the absence of two separate timescales.

of divergent genes (genes 5 and 6, see Fig. S10). We note that the size of bursts is barely

greater than 2 for high values of J̄/D, since bursty genes are strongly down-regulated.
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FIG. S10: Burst size and burst duration in the presence of divergent genes. (a) Burst

size β and (b) Burst duration T .
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[2] M. Dobrzyńsky, and F. J. Bruggerman, Proc. Natl. Acad. Sci., 106, 2583 (2009).

[3] N. Kumar, A. Singh, and R. V. Kulkami, PLoS Comput. Biol., 11, 1004292 (2015).

[4] I. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox, Cell, 123, 1025 (2005).

[5] S. Chong, C. Chen, H. Ge, and X. S. Xie, Cell, 158, 314 (2014).

15


	bpj_9666_mmc1.pdf
	MEAN FIELD THEORY
	THE MODIFIED IPP PROCESS
	1-GENE ARRAY: BURST PARAMETERS AND ADDITIONAL FIGURES
	MULTIPLE GENE SIMULATIONS: ADDITIONAL FIGURES
	References


