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ABSTRACT We analyze transcriptional bursting within a stochastic nonequilibrium model, which accounts for the coupling be-
tween the dynamics of DNA supercoiling and gene transcription. We find a clear signature of bursty transcription when there is a
separation between the timescales of transcription initiation and supercoiling dissipation (the latter may either be diffusive or
mediated by topological enzymes, such as type I or type II topoisomerases). In multigenic DNA domains, we observe either
bursty transcription or transcription waves; the type of behavior can be selected for by controlling gene activity and orientation.
In the bursty phase, the statistics of supercoiling fluctuations at the promoter are markedly non-Gaussian.
INTRODUCTION
Transcription, the mechanism through which DNA is read
by a polymerase to create a messenger RNA, is a crucial
process in living cells, and its regulation is an important
determinant of cell function (1). The dynamics of transcrip-
tion are inherently stochastic because its initiation requires
an RNA polymerase (RNAP) and associated cofactors to
bind at the promoter of a gene (2). Not only can the copy
numbers of RNAPs and transcription factors be low, but
the mechanism through which they find their specific bind-
ing sites (a combination of three-dimensional diffusion
through the nucleoplasm or cytoplasm and one-dimensional
diffusion along the genome (3,4)) leads to a broad distribu-
tion of search times. As a consequence, transcription initia-
tion is a rare event with rates of the order of inverse hours in
mammals (5), whereas in bacteria, tens of minutes may
elapse between successive initiation events at the same pro-
moter (6).

An intriguing feature of transcription as a stochastic pro-
cess is that it is often ‘‘bursty.’’ This means that when
recording transcription events for a given gene in a given
cell, one observes clusters of closely spaced events sepa-
rated by longer dormant periods in which the gene is silent,
and the distribution of interval times is non-Poissonian.
Transcription bursts are common to both bacterial and
eukaryotic cells; this phenomenon is thought to provide a
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potential basis for the variability in behavior, which is
observed in genetically identical cells within the same envi-
ronment (2). Bursting may therefore play a key role in the
pathway through which a cell can spontaneously break sym-
metry, for instance to choose its fate early in development in
higher eukaryotes (7).

From a general point of view, a dynamical system yields
bursty behavior when there is intermittent switching be-
tween states with high and low activity (8,9). But what is
the biophysical mechanism underlying such intermittency?
Several possibilities have been proposed in the literature,
and they may differ in different organisms. In mammals,
proposed mechanisms for bursting are typically gene spe-
cific (10); cycles of higher transcription activity may be
due to chromatin remodeling (11) or to the action of cis-reg-
ulatory DNA elements (10). In both cases, refractory periods
during which genes are silent last for hours. In bacteria, re-
fractory timescales only span tens of minutes, and other sce-
narios may be more relevant. For instance, pausing of an
RNAP along a gene may lead to the formation of a queue
of multiple RNAPs behind it, producing bursts of transcripts
(12,13). This mechanism requires that the gene in question
is highly expressed so that multiple polymerases can be re-
cruited to its promoter within minutes. Recently, a set of ex-
periments (14) has demonstrated that transcriptional bursts
in DNA plasmids in vitro are associated with DNA super-
coiling (15), which is the extent of over- or underwinding
of the two strands in a DNA double helix. Specifically, it
was shown that the buildup of positive supercoiling (DNA
overtwisting) stalls transcription, and the addition of gyrase
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(which relaxes this supercoiling) leads to transcriptional
bursts (14). The conclusions of this work are consistent
with the hypothesis in the earlier rate-based theoretical
model in (9), which suggested that the timescales observed
in bacterial bursts are compatible with supercoiling-depen-
dent initiation.

Here, we consider a stochastic model, which couples the
dynamics of supercoiling and transcription in DNA (first
introduced in (16)) and ask whether, and under which con-
ditions, supercoiling may lead to transcriptional bursts. Our
main result is that supercoiling can induce bursts in a wide
range of parameter space. Perhaps surprisingly, bursts occur
only when the overall transcriptional rate is low and are ab-
sent when it is high. When gene density is low (e.g., if we
model a single gene), significant bursting is primarily found
in the presence of topological enzymes, which relax super-
coiling at a fixed rate. For higher gene density, highly signif-
icant bursts can also arise in the absence of topoisomerases
through the action of a self-organized nonequilibrium regu-
latory network mediated by supercoiling. Intriguingly, this
same pathway can also generate transcription waves and up-
regulate divergent transcription, both of which eventually
disrupt the bursty behavior. A final key finding is that
bursting leaves a detectable signature in the distribution of
supercoiling at the promoter; it leads to a nonnormal distri-
bution and the appearance of a singularity or small peak in
the tails of the distribution. Observation of such signatures
may be an aim of future experiments, along the lines of ex-
isting ones, performed either in vitro (14) or in vivo (17,18).
MATERIALS AND METHODS

Model

The key dynamical variable in our model is a one-dimensional scalar field

s(x,t), which denotes the local supercoiling density at a point x on the DNA.

This is the local analog of the global supercoiling density, defined as

(Lk�Lk0)/Lk0, where Lk is the linking number of a DNA molecule (which

can be decomposed into twist and writhe (15)) and Lk0 is the linking num-

ber of a torsionally relaxed B-DNA (i.e., 1 for every 10.5 base pairs [bps]).

Because both Lk and Lk0 can be defined for a segment of the DNA mole-

cule, an analogous formula can be used to define s locally; doing this is

analogous to approximating writhe with a local field (19). The dynamics

are then described in continuous space by

vsðx; tÞ
vt

¼ v

vx

�
D

v

vx
sðx; tÞ � Jtrðx; tÞ

�
� ktoposðx; tÞ; (1)

where the three terms on the right-hand side represent diffusion of super-

coiling, supercoiling flux generated by transcription, and supercoiling dissi-

pation due to topological enzymes. Below, we will discuss each term in

turn. Although we have written Eq. 1 as continuous in space, we solve it

on a lattice of length L¼ 15 kbp with spacingDx¼ 15 bp (which is approx-

imately the footprint size of an RNAP).

If we consider a closed DNA loop, then in the absence of topological en-

zymes, the total level of supercoiling is conserved (it is a topological

invariant of the system). Therefore, we require that supercoiling obeys

‘‘model B’’ (conserved) dynamics (20). Further, the free-energy density

of supercoiling (twist and writhe) f is, to a good approximation, quadratic
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in the supercoiling density (15,16); so the chemical potential ðvf =vsÞ is

linear in s. Because the flux in model B dynamics is proportional to the

gradient of the chemical potential, this results in a diffusion equation

(when the mobility is constant) (16), giving the first term on the right of

Eq. 1. Single-molecule measurements of the dynamics of plectonemic

supercoils in vitro (21) and studies of transcription in vivo (22) are also

consistent with a diffusive dynamics for supercoiling.

The second term in Eq. 1 represents supercoiling fluxes due to transcrip-

tion. Through this term, we couple the supercoiling dynamics to stochastic

transcriptional kinetics, where each of N RNAPs can bind at the promoters

of n genes (each of size l ¼ 66Dxz 1000 bp) located at lattice positions yj,

j ¼ 1 ,., n. Transcription initiates stochastically when an inactive RNAP

binds at gene j with rate kin, j. The RNAP then elongates with velocity v

(positive or negative depending on the direction of transcription) such

that at a time ti after initiating it is located at position xiðtiÞ¼ yj þ vti (where

the index i labels the RNAP). Transcription terminates (and the promoter

becomes again available for initiation) once the RNAP reaches the end of

a gene. The total flux is then given by

Jtrðx; tÞ ¼
XN
i¼ 1

JiðtiÞdðx � xiðtiÞÞhiðtÞ; (2)

where the sum is over all RNAPs, JiðtiÞ is the flux generated by RNAP i, and

the function hiðtÞ represents its state, taking a value of zero if it is unbound

and one if it is actively transcribing. The initiation dynamics is coupled

back to the supercoiling by making kin, j a function of the supercoiling at

the promoter,

kin;jðtÞ ¼ k0max
�
1� as

�
xj; t

�
; 0
�
; (3)

where a is a coupling parameter (it represents the sensitivity of RNAP-

DNA binding to the level of supercoiling).

According to the twin supercoiling domains model (23), a moving RNAP

generates a supercoiling flux if its rotation is hindered because as the

enzyme progresses, the DNA has to locally unwind. (The rotational drag

on the RNAP in vivo is likely to be large in view of its size and of its inter-

actions with other macromolecules). As a result, positive supercoiling is

generated in front of the RNAP and negative supercoiling behind. More

specifically, as the RNAP moves, all the DNA twist in front of it (minus

any rotation of the RNAP if present) is pushed forward. This reasoning sug-

gests that the flux generated will depend on the level of twist ahead of the

RNAP, which might in principle vary (12). However, to obtain a tractable

model, we assume the flux to be constant. In practice, this approximation

is likely good because DNA can only support small levels of twist before

writhing (24).

A final complication is that the diffusion of supercoils through the RNAP

also requires its rotation; hence, we expect this effect to be small. We could

prohibit flux through the RNAPs by introducing no-flux boundary condi-

tions at the points xi, but an alternative, which yields a more tractable

model, is to instead ramp up the flux as transcription progresses; to do

this we set

JiðtiÞ ¼ J0

�
1þ jv j ti

Dx

	
: (4)

The sign of J0 depends on the direction of transcription. Any residual net

diffusive leak only plays a minor role because it is small compared to J0.

(Additionally, a small leak of supercoiling may not be unrealistic even

for a polymerase acting as a topological barrier for twist, if the region of

DNA containing it writhes in three dimensions). In what follows, we define

J ¼ J0½1þ l=ð2DxÞ�; this is a useful quantity because it is the average value
of the supercoiling flux generated during a transcription event.

The third term on the right of Eq. 1 represents the loss of supercoiling due

to the action of topoisomerases (such as, e.g., topoI, topoII, gyrase). This is
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introduced in the model in a minimal way as a first-order reaction where

both positive and negative supercoiling relax at the same rate ktopo. In gen-

eral, this term does not conserve the total supercoiling; however, here, we

start with a uniform initial condition sðx; t ¼ 0Þhs0, where s0 ¼ 0, so

in this case, the total supercoiling is conserved.

This model was first described in (16). In that work, it was found that by

increasing the ratio J=D, there is a crossover from a relaxed regime in which

transcription is virtually Poissonian to a supercoiling-regulated regime in

which transcription of neighboring genes is highly correlated. In this

work, we examine under what conditions the coupling between supercoil-

ing and transcription can lead to bursty dynamics.
Key model quantities and parameter values

Keyquantities that control themodel behavior are the ratios J=D and ktopo/k0.

In the results section below,wewill explore the ability of themodel to exhibit

bursty behavior at different points within the J=D–ktopo/k0 parameter space

for different gene arrangement cases. Although the values that these quanti-

ties have in vivo have not yet been well characterized experimentally, here,

we discuss what ranges of values might be relevant based on available evi-

dence. For our simulations, we vary several parameters to get an understand-

ing of how such a system might behave under different conditions.

The diffusion constant for supercoiling is difficult to measure, not least

because one would expect very different values for twist and writhe. Intu-

itively, one would expect twist to diffuse very quickly (12), whereas writhe

diffusion would be much slower because it requires more global DNA rear-

rangements. Also, it has been shown that DNA is unable to support much

deviation of twist from its relaxed state: the theory in (24) (and the refer-

ences therein) indicate that it will writhe if the supercoiling density exceeds

0.01. This suggests that the slower diffusion of writhe will dominate the dy-

namics. Single-molecule experiments presented in (21), which measured

the motion of plectonemes in a stretched DNA molecule, indeed obtained

a relatively small diffusion coefficient, with a value significantly less than

1 kbp2/s (see Fig. 3 F in (21)). Specifically, when a DNA molecule is sub-

jected to tensions of less than 1–2 pN, plectoneme diffusivity is at most

�0.1 kbp2/s. Taking this value and a typical size for a bacterial gene of
a

b c
l z 1 kbp, the time it takes for supercoiling to diffuse away from the pro-

moter after transcription terminates is l2/2D z 5 s. In vivo, macromolec-

ular crowding is likely to further slow down writhe/supercoiling

diffusion, so for our simulations, we consider values for D that are between

�4 and �40 times smaller than the value quoted above. Specifically, we

consider D z 2.25 � 10�2 kbp2/s in Fig. 1 and D z 2.25 � 10�3 kbp2/s

in other figures. Both values allow the supercoiling generated during tran-

scription of a gene to dissipate in at most minutes after transcription termi-

nation (the smaller value was used for the more systematic analyses because

it enables more efficient simulations using a larger value for the time step).

The typical RNAP velocity in bacteria is 100 bp/s (1), so that the time

taken to transcribe a l ¼ 1 kbp gene is t � l / n � 10 s. Then, through

dimensional analysis, we expect an order-of-magnitude estimate for the J
to be � l2 / t or nl � 0.1 kbp2/s; notably, this is the same order of magni-

tude as D. Thus, in our simulations, we explore a range of values for J=D,

which is typically between 0.34 and 3.4.

Turning now to the dynamics of transcription initiation, measured

RNAP initiation rates can vary widely, and typical values are in the

range 1 s�1 to 1 h�1 are observed (see (16,25–27)). Likewise, the number

of RNAPs has a large variability. For example, in the bacteria Escherichia

coli, there are an estimated 1000–10,000 RNAPs per cell (28) and �5000

genes. To reflect this ratio, we take one RNAP per gene in our simulations

unless otherwise stated (see Fig. S4). The rate of topoisomerase action

in vivo is equally difficult to estimate. Reference (29) counts �500 topo-

isomerase I per cell in E. coli. Assuming that approximately half the en-

zymes are bound and that there are two genomes per cell on average, we

arrive at �100 topoisomerase proteins bound per genome or 0.02 per gene.

Assuming additionally that each enzyme can on average relax 1–10 super-

coils per second (30) and that the baseline bacterial supercoiling is equal

to �0:05, we get ktopoz0:005–0.05 s�1. We note this rough estimate is

within the physiological value of the baseline transcriptional rate (in our

simulations, k0). Because of this and because the values of ktopo and k0
are not known accurately, in our simulations, we have systematically

varied their ratio ktopo/k0 between 0 and 1.4. (Specifically we set

k0 ¼ 0:001 s�1 and varied ktopo.) In this way, we can examine all possible

scenarios concerning the balance between initiation and topoisomerase

relaxation rates.
FIGURE 1 Transcriptional bursts and the

sequence-size function (ssf). (a) A time series

for a simulation with J=D ¼ 1:7, ktopo/k0 ¼ 1.4.,

is shown. Transcription events (top) are often

grouped in bursts. Transcription initiation depends

on the level of supercoiling at the gene promoter

(middle). The state of the system (bottom) is

defined as OFF if spRð1� ðk0t2Þ�1Þ=a and ON

otherwise. (b) The negative logarithm of the pdf

of waiting times is shown. The existence of two

linear regions characterizes the dynamics as

bursty. (c) The second derivative of the ssf is

shown: the existence of roots at t1 and t2 demon-

strates the presence of two timescales. The inset

shows the zoom of the intersection of this second

derivative with the x axis close to t2. To see this

figure in color, go online.
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To determine whether supercoiling can affect RNAP initiation at a pro-

moter, we need to consider the time it takes for supercoiling generated

by a previous transcription event to diffuse away and the typical initiation

rate (kin, j in our model). In (16), a mean field model was used to estimate

the extent of residual supercoiling at the promoter, and this was given by



sp



x J

2D
k0t: (5)

If this quantity is larger than a�1 (see Eq. 3 for the definition of a),

then supercoiling can indeed increase the rate at which RNAP binds the

promoter, leading to a positive feedback. Experiments in bacterial genes

suggest that a supercoiling density of sp %� 0:01 is sufficient to enhance

RNAP binding (see (16,31,32)), so in our simulations, we have set a¼ 100.

These considerations explain why J=D and k0nt are key dimensionless

quantities in our model.

Inwhat follows,wegive parameter values either inphysical units or in terms

of dimensionless ratios. When required, the physical values of all parameters

can be reconstructed by referring back to this section.As noted above, to solve

Eq. 1 numerically, we discretize space into a lattice with 15-bp spacing; we

discretize time into steps of between 0.1 and 1 s, chosen to balance efficiency

and numerical stability (which depends on the other parameters).
The sequence-size function

A classic model to describe transcriptional bursting is the interrupted Pois-

son process (33) (see Supporting Materials and Methods, Section SII),

which describes transitions between an active (ON) and an inactive

(OFF) state with Poissonian rates kON and kOFF, as in a random telegraph

process (8), together with transcription at a constant rate ki while the system

is in the ON state. The process can be characterized by the probability dis-

tribution function (pdf) f(t) of waiting times, the time intervals between two

consecutive transcriptional events, which is given by a double exponential

(33), where the two characteristic times are related to the interval between

transcriptions in a single burst and the interval between two consecutive

bursts (see Eqs. S10–S13).

To determine whether our system is bursty for a given set of parameters

(J=D and ktopo/k0), we measure the distribution f(t). We then analyze the

so-called sequence-size function (ssf) (33,34), which is defined in terms

of f(t) as

FðtÞ ¼ 1

1� R t

0
f ðtÞdt: (6)

This is the inverse of the probability of observing a waiting time larger

than t or, equivalently, the proportion of transcriptional event intervals

that are longer than t. If the dynamics are bursty, we expect two well-sepa-

rated timescales for the decay of f(t); correspondingly, F will display a

plateau and two inflection points. These points, t1 and t2 > t1, can be found

as the zeros in the second derivative of F; these values also approximate the

two timescales for f(t) (this is not a strict equality but rather an order-of-

magnitude estimate). The value of F in the middle of the plateau,

(FðtxÞ ¼ ðFðt1ÞþFðt2ÞÞ=2), then yields the average number of transcrip-

tional events in a burst or burst size, b (33). If the dynamics are not bursty,F

will have no more than one inflection point. An analysis of f(t) and F(t)

shows that these criteria work qualitatively well for our model. For suffi-

ciently large values of ktopo, we find that the dynamics are indeed bursty

(Fig. 1): f(t) has two characteristic timescales (Fig. 1 b), and FðtÞ has

two well-defined inflection points (Fig. 1 c). For small ktopo and high values

of the flux, there are no well-defined timescales in f(t) or inflection points in

FðtÞ; inspection of the transcriptional dynamics show this is not bursty (see

Fig. S3 c).

To quantify the burstiness of a transcriptional time series, we define the

following parameter,
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x ¼ F0ðt1Þ � F0ðt2Þ
F0ðt1Þ ; (7)

which measures the area under F00ðtÞ between the two inflection points

(when they exist), normalized by F0ðt1Þ so that the result remains between

0 and 1 (prime and double prime denote the first and second derivatives,

respectively). x is zero when the dynamics are not bursty and increases as

the separation between the two characteristic timescales t1 and t2 becomes

clearer: we refer to this parameter as the burst significance.
RESULTS AND DISCUSSION

A single gene

We first consider the case of a single gene. By computing x

from simulations with different values of J=D and ktopo/k0,
we find two distinct regimes (Fig. 2 a): the nonbursty
regime, identified by x ¼ 0, and the bursty regime, for
x > 0 (a mean field theory gives a good prediction of the
boundary between the two). In the most significant region
(ktopo=k0 � 1:4, J=D � 1:5), the burst size is between 2
and 3, close to that measured in E. coli in vivo (6). Estimates
of the other bursts parameters (i.e., burst duration and OFF-
state duration) are given in Supporting Materials and
Methods (Section SIII) and are also in good agreement
with experimental results (6,14). However, we note that
the burst size depends on the model parameters: the system
can produce bursts of significantly more than two to three
events (at most �10 on average in our simulations). How-
ever, this only occurs in the transition region between the
nonbursty and bursty regimes (see Fig. S2 a). In this transi-
tion region, burst significance is smaller, which means that
the separation between timescales is less marked.

The results in Fig. 2 a also show that when the positive
feedback between supercoil generation and transcription
initiation is strong (for large J=D and ktopo ¼ 0, identified
as the supercoiling-regulated regime of (16)), the dynamics
are never bursty; bursts are most significant when this feed-
back is much weaker (but nonzero). The reason for this
seemingly surprising result is that if supercoiling upregu-
lates transcription too much, the gene is essentially always
on and the transcriptionally silent state is absent (see
Fig. S3 c).

Our results show that topoisomerase action favors bursti-
ness. In other words, although the dynamics can be bursty
for ktopo ¼ 0, burst significance is larger when ktopo s 0.

Since bursting is generally due to switching back and
forth between two transiently stable states, it is natural to
ask whether there are any signatures of bistability in the sto-
chastic transcriptional process we simulate. As we show in
Fig. 2 b, one such signature can be obtained from moments
of the distribution of supercoiling at the promoter sp. For
nonbursty behavior, sp exhibits close-to-Gaussian fluctua-
tions about an average value (see Fig. S3 b). For bursty tran-
scription, this distribution is more markedly non-Gaussian
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FIGURE 2 Burstiness for a single gene. (a) A

phase diagram shows the burst significance as a

function of model parameters. A nonbursty regime

is indicated by x ¼ 0 (black), whereas x > 0 indi-

cates a bursty regime (yellow-red). The dashed

green line is the boundary predicted via mean field

(see Supporting Materials and Methods, Section

SI). (b) Non-Gaussian parameters of the distribu-

tion of the supercoiling at the promoter sp as a

function of x, for different values of J=D and

ktopo/k0 are shown. The kurtosis (skewness) is

correlated (anticorrelated) with x. To see this figure

in color, go online.

Transcription Bursts due to Supercoiling
and bistable (see Fig. S3 a). Quantitatively, burst signifi-
cance correlates with the magnitude of non-Gaussianity pa-
rameters such as kurtosis and skewness (Fig. 2 b; Fig. S3).
Multiple genes

The single-gene case considered above is an important start-
ing point for our model and could be relevant to the exper-
imental investigation in (6), where the transcription of a
gene on a bacterial plasmid was monitored. However, it is
also of interest to consider the case of multiple genes.
This is because gene density is variable both across organ-
isms and within genomes: for instance, in both yeast and
bacteria, gene density is high so that transcription is likely
to affect neighboring genes. This is also relevant for under-
standing synthetic DNA constructs containing multiple
genes, which can be used in biotechnology applications.
a b

dc
In this section, we study the burstiness in arrays of multiple
genes without topoisomerases (i.e., ktopo ¼ 0).

In Fig. 3, we consider the supercoiling-coupled transcrip-
tional dynamics within an array of genes, which have the
same orientation (we refer to these as ‘‘tandem’’ genes). We
find that bursts are typically more significant than in the sin-
gle-gene case. For instance, for J=D ¼ 1 and ktopo ¼ 0, the
single-gene case was only weakly bursty (x z 0.23, burst
size bz 1.53, and duration Tz100 s (see Fig. S2)), whereas
for an array of 10 tandem genes, the same parameters give
rise to bursting, which is approximately twice as significant
(x z 0.4�0.5 for the most bursty genes, burst size b z 2,
and duration T z 3–4 min (see Fig. S7)). This is because
transcription generates positive supercoils ahead of a gene,
which act to downregulate its downstream (right) neighbor
(while upregulating the upstream [left] neighbor). As a result,
some genes may be transiently ‘‘switched off’’; this can be
FIGURE 3 Bursty and wavy regimes for an

array of 10 tandem genes. (a) A kymograph in

the bursty regime ðJ=D ¼ 0:68Þ is shown. For

clarity, we only show the negative supercoiling

range. There are correlations between neighboring

genes but no clear periodic pattern. Note that genes

1 and 10 turn red more often (compare to genomic

map in Fig. 5 a) because they are slightly upregu-

lated. (b) A plot of the pdf of waiting times in the

bursty regime, showing the emergence of two

timescales is shown. The inset shows the second

derivative of the ssf, which displays two zeros.

(c) A kymograph in the supercoiling-regulated

regime ðJ=D ¼ 2:38Þ is shown. For high values

of the flux, the bursty dynamics are replaced by

transcription waves. (d) The pdf of waiting times

in the supercoiling-regulated regime is shown.

The new timescale associated with the wave mod-

ifies the shape of the distribution, giving rise to a

‘‘bump’’ at �4 � 103 s (local minimum in linear-

log plot). The inset shows the second derivative

of ssf. In the physically relevant range of waiting

times (t(103 s), the function asymptomatically

approaches zero without crossing the axis

ðt2/þ NÞ.To see this figure in color, go online.
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appreciated, for instance, by inspecting the time series of
supercoiling at the promoter, which at times can take suffi-
ciently positive values such that kinðtÞ ¼ 0, see Fig. S5 a.
Just as in the case of a single gene with ktopos0, the activity
of each gene is effectively described by a two-state dynamics
(ON4OFF), and bursts can occur (Fig. 3 a). As expected, the
pdf of waiting times is well described by a double exponential
(see Fig. 3 b) and F00ðtÞ displays two zeros (Fig. 3 b, inset).

As for the single-gene case, in the multigene system,
bursting does not occur for largevalues of J=D. In this regime,
the supercoiling-mediated intergenic interactions instead give
rise to transcription waves, which travel in the opposite direc-
tion to transcription (Fig. 3, c andd). Transcriptionwaves arise
because transcription of a gene upregulates its upstream (left)
neighbor (16): as a consequence, transcription of gene i is fol-
lowed by that of gene i�1, then i�2, and so on. We find that
the wave velocity is v � D/l, independent of k0 (Fig. 4, inset;
l ¼ 100Dx is the mean separation between promoters in our
simulations). Given our parameter choice, the wave speed is
between 0.5 and 3.0 bp/s, and the time needed to trigger activ-
ity of the neighboring upstream gene is between 6 and 12min.
The scaling of v can beunderstoodbyassuming that supercoil-
ing propagates diffusively over the distance l between a gene,
and its upstream-neighbor; simulation show that the prefactor
in this relationship is slightly larger than one. When in the
‘‘wavy’’ regime, the system can no longer be mapped onto a
telegraph-like process, and bursts are no longer observed
(accordingly, x ¼ 0 becauseFðtÞ does not have two inflection
points; see Fig. 3 d).

Transcription waves only arise for arrays of tandem genes
and do not occur (or do so only transiently) for genes of
FIGURE 4 Wave velocity and scaling relation. Wave velocity for different

values of D ðJ ¼ 25:5Þ and k0 so that we span a large range of J=D values

between 1.7 and 12.7. Values of D are given in simulation units (i.e., in units

of Dx2=Dt). Simulation data are well fitted by a straight line (orange),

whereas the simple scaling theory discussed in the text underestimates the

data slightly (dashed black line). To see this figure in color, go online.
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differing orientation. In that case, transcription-generated
supercoiling upregulates pairs of divergent genes at the
expense of other (convergent or tandem) genes, which are
downregulated (16): this renders the situation qualitatively
closer to that of a single gene (see Supporting Materials
and Methods, Section SIV). For either kind of gene orienta-
tion, burstiness is gene dependent, and the values of x for
different genes are substantially different from each other
(Fig. 5). Note that even for small J=D, some genes are
slightly upregulated than others (as shown in the kymograph
in Fig. 3 a) because of the particular position in the array.
We find that x is anticorrelated with the overall transcription
rate so that the genes that are expressed more (e.g., genes 1,
6, and 10 in the tandem setup or genes 5 and 6 in the diver-
gent setup; see Figs. 5 a, S6, and S9 a) are less bursty (Fig. 6
a). Burst size is also different in the tandem and bidirec-
tional setups, being substantially smaller in the latter case
(b( 2; see Fig. S7 a). Burst sizes measured experimentally
in E. Coli (6) are closer to the value for single or tandem
genes ðbx2:2Þ; this is reasonable because they refer to
the transcription of operons, which are normally made up
from tandem genes controlled by a single promoter.

An analysis of the distribution of supercoiling values at the
promoter shows that these differ qualitatively for the cases of
multiple genes and a single gene (e.g., compare Fig. 6 with
Fig. S3). Unlike in the single-gene case, the non-Gaussian pa-
rameters for the distribution of supercoiling at the promoter
now only weakly correlate with the burst significance (see
Fig. S8). This is because the supercoiling-mediated interac-
tion between genes give rise to non-Gaussian fluctuations
even for nonbursty genes. Nevertheless, for both the tandem
and divergent gene cases, bursting leaves a detectable signa-
ture in the tails of the distribution.

For the bursty transcription case, there is a singularity or a
bump, whereas for nonbursty transcription, the curve is
smooth, as shown in Fig. 6 b for a divergent geometry and
in Fig. 6 c for a tandem array. The singular point is located
at spzð1� ðk0txÞ�1Þ=a, where tx ¼ ðt1 þ t2Þ=2. We note
that similar changes in the behavior of large fluctuations
were linked to phase transitions in other systems (35,36).
CONCLUSIONS

In summary, we have studied the occurrence of transcrip-
tional bursts in a nonequilibrium model for supercoiling-
regulated transcription, first introduced in (16). For an
isolated gene, we found that significant bursting occurs pri-
marily in the presence of topological enzymes, which relax
positive and negative supercoiling. This is qualitatively
consistent with experimental evidence that bursts in
E. coli arise because of the action of the DNA gyrase
enzyme, which can relax positive supercoiling (14). It is
interesting to note that in the region of parameter space
where bursts are most significant, the properties of the bursts
generated in the model (size, duration, and interburst time)



a

b c
FIGURE 5 Burstiness for a multiple-gene array. (a)

A map of gene positions for tandem (top) and diver-

gent geometry (bottom) is shown. (b and c) A plot

of x for tandem geometry (b) and divergent geometry

(c) (geometries used are in a) is shown. The range of

J=D (0.06–1.02) is chosen so that the system is in the

bursty regime. To see this figure in color, go online.

Transcription Bursts due to Supercoiling
match well with those found in bacteria in vivo (6). Notably,
topoisomerase action is not required for highly significant
bursting in gene clusters because there, supercoiling can
mediate transient inhibition of the neighbors of highly active
genes. We considered both tandem and bidirectional gene
geometries, which could be recreated synthetically using
plasmids of selected sequence in the presence of the tran-
scriptional machinery. We found that the existence of
bursting is intimately linked to the nature of fluctuations
of supercoiling at gene promoters: bursting becomes most
significant when these are strongly non-Gaussian. It would
be of interest to look for such effects in experiments with
populations of synthetic DNA loops for which psoralen
a b

c

binding (17,18) might, in principle, be used to monitor av-
erages and distributions of supercoiling along the DNA.

Although additional ingredients may be required to under-
stand transcriptional bursts in eukaryotes, in which stochastic
promoter-enhancer interactions or other regulatory processes
are known to play a key role (2,13,37), our current results un-
cover a possible mechanism for transcriptional bursts in bac-
teria based on the interplay between transcription initiation,
supercoiling, and topological enzymes.Our results are consis-
tent with the work in (9), which identified supercoiling as one
potentialmechanism for bursting based on the comparison be-
tween experimental data and a simplified kineticmodel; in our
case, we consider a full stochastic dynamics for supercoiling
FIGURE 6 Bursty and wavy regimes for an

array of 10 tandem genes. (a) The burstiness, x,

is plotted for a different value of the overall

time-averaged transcription rate ktr for tandem

(red squares) and bidirectional (blue circles) genes

(each point represents a gene; points are shown for

different values of J=D between 0.06 and 1.02).

The inset shows that for a given value of J=D, x de-

pends linearly on ktr (each point represents a gene).

(b) A log-linear plot of the distribution of sp is

shown. For bursty genes (gene 9, which is not

part of the divergent pair), this distribution shows

a singularity or bump. Such a singularity does

not appear for highly transcribed genes (gene 6,

in the divergent pair). (c) For a given gene (gene

4, tandem geometry), the slope of the negative

tail of the distribution depends on J=D. For small

x (small J=D), the bump disappears. To see this

figure in color, go online.
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and elucidate the role of topoisomerases. As discussed in the
Introduction, a related study (12) instead analyzed the inter-
play between supercoiling and transcriptional elongation,
providing a complementary mechanism to the one identified
here; that model may be particularly relevant for the case of
ribosomal genes for which expression is extremely high,
whereas our work concerns more moderate expression for
which there is not significantly more than one polymerase
transcribing the same gene at once.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.04.023.
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I. MEAN FIELD THEORY

Here, we develop a mean field theory with some improvements with respect to our previous

work [1]. In particular we solve the mean field ordinary differential equation (ODE) with

periodic boundary conditions (instead of open boundary conditions, as previously done) and

in the presence of topoisomerases.

We consider the case N = n = 1, where N is the number of RNAP and n is the number of

genes. Besides, we consider a static polymerase (i.e. v = 0) at the lattice position x = 0. If L

is the length of the lattice, we assume boundary conditions σ(0) = 0 and σ(L/2) = σ(−L/2).

In steady state (∂σ/∂t = 0), Eq. (1) reads:

∂2σ(x)

∂x2
− J0
D

kinτ

kinτ + 1

∂δ(x)

∂x
− ktopo

D
σ(x) = 0 (S1)

where we have made the mean field approximation

Jtr(x, t)

D
→ J0

D

kinτ

kinτ + 1
δ(x) ≡Mδ(x) (S2)

with kinτ/(kinτ + 1) the fraction of time the system spends in the transcribing state.

As the flux term acts only at x = 0, solving the model in the mean field approximation

is equivalent to solving the following ODE:

∂2σ(x)

∂x2
− ktopo

D
σ(x) = 0 x 6= 0

∂σ(x)

∂x

∣∣∣∣
x=0

= Mδ(0)

σ (L/2) = σ (−L/2) .

(S3)

Since both σ(x) and σ(−x) are solution of the ODE for x 6= 0 the unique solution of

Eq. (S3) is a linear combination of σ(x) and σ(−x). It can be shown that only the antisym-

metric combination fulfils the periodic boundary conditions, with σ(L/2) = σ(−L/2) = 0.

The solution of Eq. (S3) with the appropriate parity and boundary conditions is given
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by:

σ(x) =
M

2

sinh

[√
ktopo
D

(
L

2
− |x|

)]

sinh

[√
ktopo
D

L

2

] sgn(x), (S4)

where sgn(x) is the sign function. From Eq. (S4) it can be easily shown that in the limit

ktopo → 0 we obtain:

σ(x) =
M

2

(
1− 2|x|

L

)
sgn(x). (S5)

The term proportional to 1/L is the correction due to the periodic boundary conditions,

that disappears for L → ∞, recovering the solution in Ref. [1]. In the limit L → ∞, with

finite ktopo, we have

σ(x) =
M

2
exp

(
−
√
ktopo
D
|x|

)
sgn(x). (S6)

The validity of this mean field theory can be determined by comparing it to the time-

average supercoiling profile in our single gene simulations.

Interestingly, from our simulations we found that the point along the gene at which the

time-averaged supercoiling profile crosses zero is ∼ 2λ/3, independently of the parameter

used. The correct mean field profile of supercoiling for a moving polymerase is then computed

by substituting |x| → |x− 2λ/3|.

II. THE MODIFIED IPP PROCESS

The mechanism which leads to bursty dynamics for transcription in living cells is still not

well understood, though several hypothesis have been made. In our model, we have seen

that both the action of topoisomerases (1-gene model) and the interaction among genes

(10-gene model) can yield bursts, in absence of external factors. The nontrivial nonlinear

behaviour predicted by our model can be captured by a simpler kinetic scheme: the In-

terrupted Poisson Process (IPP). By solving the IPP equations, one can explicitly obtain

the double-exponential distribution of waiting times between events, that, when appropriate

conditions on the kinetics rates are met, leads to bursting. In this section we modify the IPP

equations. Nevertheless, the resulting distribution is still a double-exponential (see below),

with the exception of the two timescales, which are different from those found in [2].
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FIG. S1: Scheme of the discrete states in a modified IPP. Each box represent a state, with

ε ∈ {0, 1}. The index n labels the number of initiation events.

We define (as in Fig. 1a of the main text) an active (ON , or ε = 1) and an inactive

(OFF , or ε = 0) state of the gene promoter according to the local supercoiling density

(i.e., if the supercoiling density is below (1 − (k0τ2)
−1)/α, then the promoter is ON). We

then associate the rates kOFF and kON with the ON → OFF and OFF → ON transitions

respectively. The gene oscillates between the two states, tracking the typical trajectories of

a Random Telegraph Process (see Fig. 1a, BOTTOM). Whilst in the ON state, the gene

is able to transcribe with rate ki. Given a time series of events, the waiting time tn is the

elapsed time between two consecutive transcriptions, say the (n−1)-th and the n-th. In the

IPP, the waiting time tn is drawn by the same probability distribution function (pdf ) for

each n (this may not be true in general in our stochastic model for supercoiling-dependent

transcription). Moreover, in the standard IPP prescription the OFF → ON transition

occurs between states labelled by the same n, see Ref. [2]. Differently, in our modified IPP

description, the transition OFF → ON is triggered by transcription (see Fig. S1), meaning

that the transition and the first event in the burst occur at the same time. By labelling

possible states with the instantaneous value of ε (gene ON/OFF) and by the index n, which

keeps count of the number of transcriptions, we denote the probability of being in the state

{n, ε} at time t by pn,ε(t). Then, the set of master equations for our modified IPP is:
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

dp1,1(t)

dt
= −(ki + kOFF ) p1,1(t)

dpn,1(t)

dt
= kipn−1,1(t) + kONpn−1,0(t)− (ki + kOFF )pn,1(t), n = 2, 3, . . .

dpn,0(t)

dt
= kOFF pn,1(t)− kON pn,0(t) n = 1, 2, . . .

(S7)

with the initial condition p1,1(t = 0) = 1. Clearly, the pdf associated with the first tran-

scription event after initialisation (n = 2) corresponds to the distribution of waiting times,

that is

f(t) = ki p1,1(t) + kON p1,0(t). (S8)

In order to find p1,1(t) and p1,0(t), and therefore f(t), we need to solve just the following

two first order coupled ODEs:
dp1,1(t)

dt
= −(ki + kOFF ) p1,1(t),

dp1,0(t)

dt
= kOFF p1,1(t)− kON p1,0(t).

(S9)

By solving Eq. (S9) and using Eq. (S8), we have

f(t) = w1r1e
−r1t + w2r2e

−r2t, (S10)

with rates r1,2

r1 = ki + kOFF , r2 = kON , (S11)

and weights w1,2

w1 =
ki − r2
r1 − r2

, w1 ∈ [0, 1] , (S12)

w2 = 1− w1. (S13)

In our stochastic model used in the main text, we can identify kON ∼ k0. Conversely, it

is not easy to find a value for the rate kOFF without fitting the data, since the transition

ON → OFF is mainly due to fluctuations, that, in the bursty phase, relax the system

towards the initial value of the supercoiling σ0.

III. 1-GENE ARRAY: BURST PARAMETERS AND ADDITIONAL FIGURES

In our work we use the sequence-size function, Φ(τ), to analyse burst significance. Al-

though this method has been presented in previous works [2, 3], it has not previously been

5



applied to simulation of the dynamics of transcription which does not use predetermined

kinetic rates for the process.

We use the parameter ξ as defined in Eq. (7) in the main tex, which is different from the

parameter proposed in [2], (τ2 − τ1)/τ2. Indeed, the former parameter does show variation

within the bursty phase, whereas the latter does not. Our parameter ξ yields a reasonable

estimate of burst significance, as (i) it is still proportional to τ2 − τ1 and (ii) it fulfils the

intuitive expectation that the burst significance should decrease if the system spends more

time in intermediate states, at fixed τ2 − τ1.

The analysis of the ssf allows us to readily compute other relevant burst parameters in a

relatively simple way. The time separation between the two timescales is just τx = (τ1+τ2)/2

and, from the definition of the ssf, we can estimate the mean burst size (the average number

of transcriptions in a single burst) as β = Φ(τx). This is a useful parameter, since it provides

a simple basis to compare with experimental data. As we can see from Fig. S2 higher values

of β (β > 4− 5) correspond to less significant bursting (see main text, Fig. 2). Conversely,

in the region of higher ξ (J̄/D ∼ 1.5− 2), the burst size β ' 2.2 is short and close to that

experimentally observed in E. Coli [4]. The burst duration – i.e. the time duration of a
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FIG. S2: Burst size and burst duration for a single gene. (a) Here, we show the burst size β

up to J̄/D = 2.72, in order to highlight the region of higher burst significance (J̄/D ∼ 1.5− 2), in

which β is in agreement with experimental measurement of the same parameter [4]. (b) Duration

of bursts T . We find that in the same region the duration of bursts is also consistent with [4], as

T ∼ 3− 4 min.
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single burst – is estimated by βτx: in the same parameter region it is also consistent with

experimental results [4, 5], T ∼ 3− 4 min.

In Fig. S3a,b we present the typical probability distribution of supercoiling at the pro-

moter, respectively in the bursty and non-bursty phases. Within our stochastic model, the

supercoiling at the promoter is directly linked to the probability of initiation, and therefore

its distribution encodes all of the information about the process. As expected, for bursty

dynamics we observe a bimodal distribution of σp, while for non-bursty dynamics we have

a unimodal distribution, with fluctuations approximately Gaussian.

For completeness, in Fig. S4 we consider a situation where there is a single gene but

three polymerases. The rationale is that in vivo, at any given time, there can be more than

one polymerase available for a given gene, even if the ratio of the total number of RNAP

and genes is small. In this multiple polymerase case we find qualitatively similar results to

the single polymerase case treated in the text, but only if we increase ktopo by a factor of

10. However, the burst significance is remarkably smaller than the case studied in the main

text. Nevertheless, the physical features of the bursts are consistent with those of the single

polymerase case: e.g., for J̄/D ∼ 1 we find β ∼ 3 and T ∼ 2 min.
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FIG. S3: Probability distribution for supercoiling at the promoter. (a) In the bursty

phase, supercoiling at the promoter is strongly peaked at σp ∼ 0. Another peak appears for more

negative value of supercoiling, due to occupation of the ON state. Inset: log-linear plot of the pdf

in the main panel. (b) In the non-bursty phase the distribution is unimodal, with one gaussian

tail. The gene tends to more often be in a state with less negative supercoiling for longer time; this

results in a non-gaussian positive tail, with a nonzero kurtosis (see main text). (c) Time profile of

the supercoiling at the promoter in the non-bursty regime. Clearly, the gene is always ON , as the

supercoiling does not relax to the initial value σ0 = 0.
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FIG. S4: Burst parameters for a single gene and three polymerases. (a) Burst significance

ξ. There are still two phases separated by a crossover. (b,c) Burst size β and bursts duration

T . With respect to the single gene case, here we have a large region of very high values (not

biologically relevant) for both the burst size and the duration. However, these correspond to a

region of low burst significance; in the region where burst significance is maximal we again find

values for β and T consistent with experiments (β ∼ 3, T ∼ 2 min).
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IV. MULTIPLE GENE SIMULATIONS: ADDITIONAL FIGURES

We present some additional results from the 10-gene array simulations for the case ktopo =

0, for which the main results are presented in the main text.

In the case of tandem genes, for the configuration shown in the main text (see Fig. 5a) the

genes 1, 6 and 10 are upregulated by supercoiling. These genes have a larger space upstream

of them, so are less affected by the repressive action of positive supercoils generated at

their upstream neighbour. This occurs, albeit to a much lesser extent, even in the relaxed

regime. This relatively small upregulation is sufficient to yield a sizeable change in the burst

significance (see main text, Fig. 5b).
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FIG. S5: Supercoiling dynamics at the promoter gene 4 in a 10-gene array. (a) Promoter

supercoiling versus time in the bursty regime. For J̄/D sufficiently small correlation between

neighbours genes are established. Positive supercoiling produced by gene 3 transcription often

freezes gene 4, yielding the supercoiling value transiently to the absorbing state (σ0 = 0.01, kin = 0).

(b) Promoter supercoiling versus time in the supercoiling-regulated regime. In this regime the

correlation spreads through the whole lattice, creating a transcription wave. Supercoiling at the

promoter now oscillates in time.

In Fig. S5a we show a typical time series for the supercoiling at the promoter of the gene

4 (which is not upregulated), when the burst significance is high (J̄/D = 0.68, that is in

the bursty transcriptional regime). In Fig. S5b we show the supercoiling time series in the

wavy regime: a periodic pattern appears so that the dynamics is no longer bursty. In Figure
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Fig. S6 we show the probability of transcription for each gene, in the bursty regime, for two

different values of the flux J̄/D.

In Fig. S7 we show the mean size of bursts β and the duration of bursts T for simulations

of tandem genes. Even in this case we have a good agreement with the results for a single

gene. Indeed we find that in the region of higher burst significance we have β & 2 and

T ∼ 4− 5 min.

For completeness, in Fig. S8 we show the non-Gaussian parameters for the distribution

of the supercoiling at the promoter σp, already computed for a single gene in the main text.

The skewness and the kurtosis are not well-correlated to the burst significance, and the

values depend strongly on the particular gene considered in a given configuration. However,

for each gene individually, the skewness/kurtosis displays a decreasing/increasing trend as

a function of ξ.

In arrays with a pair of divergent genes, the transcription probability for different genes

starts to differ as soon as the value of the flux is large enough to give rise to supercoiling

mediated interaction (positive feedback loop) between the two divergent genes, Fig. S9a. As

a consequence, the burst significance ξ also differs among the genes. Since for high value of

the flux (J̄/D ∼ 1) the transcription across all genes is almost totally dominated by the pair

of divergent genes, we find that the latter behave like a single upregulated gene. This can
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FIG. S6: Transcriptional probability in the tandem 10-gene array. The histograms show

the transcription probability for each gene, for two different values of the flux, J̄/D = 0.034 and

J̄/D = 1.02, that are the bottom and the top part of the diagram in Fig. 5b in the main text,

respectively.
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FIG. S7: Burst size and burst duration in a 10 genes array. (a) Burst size β. (b) Burst

duration T .

be seen by looking at the distribution of waiting times of one of the two genes (Fig. S9b),

which clearly does not display two separate timescales.

As for the tandem setup, we show the burst parameters β and T in the presence of a pair
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FIG. S8: Non-Gaussian parameters for simulations with tandem genes. (a) Skewness and

(b) kurtosis as a function of ξ. For each gene the slowness and the burst significance are computed

for different value of the flux J̄/D. For each gene the skewness decreases as the bursts significance

decreases, whereas the kurtosis increases.
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FIG. S9: Transcription probability and waiting times distribution for gene 6 in a 10

gene array, with a pair of divergent genes. (a) Transcription probability for each gene. For

small values of the flux (J̄/D = 0.2, purple boxes) genes are almost equally transcribed. As the

flux increases, divergent genes start to dominate the dynamics, and their transcription probability

increases, while the others are virtually silenced (J̄/D = 1.02, yellow boxes). (b) Log-linear plot

of the waiting time distribution. The system does not display any bistability. Instead, the system

visits several states, each of them described by a particular value of supercoiling at the promoter

and a corresponding typical waiting time. Inset: the second derivative of Φ(τ) does not display

zeros, corresponding with the absence of two separate timescales.

of divergent genes (genes 5 and 6, see Fig. S10). We note that the size of bursts is barely

greater than 2 for high values of J̄/D, since bursty genes are strongly down-regulated.
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FIG. S10: Burst size and burst duration in the presence of divergent genes. (a) Burst

size β and (b) Burst duration T .
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