Biophysical Journal, Volume 117

Supplemental Information

NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in

LPPG Micelles

Hongbo Chen, Junkun Pan, Disha M. Gandhi, Chris Dockendorff, Qiang Cui, Baron Chanda, and Katherine A. Henzler-Wildman

Figure S1. Constructs screened for optimizing Shaker-VSD expression. The highest expressing construct (217-397) was chosen for further NMR studies.

Figure S2. Shaker-VSD purification. (a) Representative gel filtration elution profile of the isolated Shaker-VSD in 0.2% LPPG on a Superdex 200 column. (b) SDS-PAGE gel of fractions from the main peak of the S200 elution profile for the isolated Shaker-VSD shows that the purified protein is a monomer with an apparent molecular mass near 20 kDa as expected.

Figure S3. Representative ¹H-¹⁵N TROSY-HSQC spectra of the isolated Shaker-VSD at pH 7.0 in different membrane mimetics tested during NMR sample optimization. All spectra were acquired on a 750MHz Bruker magnet at 45 °C, except for the DMPC/D₆PC bicelle sample, which was acquired at 37 °C.

Figure S4. ¹H-¹⁵N NMR chemical assignments of isolated Shaker-VSD at 45°C in 1.6% LPPG at pH 7.0.

Shaker-VSD	FEYPESSQA	ARVVAI <mark>IS</mark> V	FVILLS IVIFC	ETLPE <mark>FKHYK</mark> -	<mark>VFN1</mark>	TTNGTKIEEDEV	272
KvAP-VSD	VRNIGDVMEH	IPLVELGVS	YAALLSVIVVV	EYTMQLSGE			53
Kv1.2/2.1-VSD	FEYPESSGPA	RIIAIVSV	MVILISIVSFCI	ETLPIFRDEN	EDMHGGGVTFHI	YSQ-STIGYQQS	215
Shaker-VSD	PDITDPFF	ETLCIIWF	TFELTVRFLACI	NKLNFCRDVM	NVIDI TATIPYF	ITLATVVAEEED	336
KvAP-VSD	YLVRLYLV	DLILVIIL	WADYAYRAYKS	DPAGYVKKTL-	YEIPALVPAG	LLALIEGHLAGL	113
Kv1.2/2.1-VSD	TSFTDPFFI	/ETLCIIWF	SFEFLVRFFACI	SKAGFFTNI <mark>M</mark>	NIIDIVAIIPYY	VTIFLTESNKS-	278
Shaker-VSD	TLNLPKAPVS	PQDKSSNO	AMSLAILRVIR	VRVFRIFKL-S	SRHS <mark>KGLQILG</mark> R	TLKASMRELG	397
KvAP-VSD	G		LFRLVRI	LRFLRILLIIS	RGSKFLSAIAD	AADKIRFYHL	151
Kv1.2/2.1-VSD		VLQF	QNVRRVVQIFR	MRILRIFKL-S	SRHSKGLQILGC	TLKASMRELG	325
	0.0	0.2	0.4 a-helical Propensity of I	0.6 solated Shaker-VSD	0.8	1.0	

a-helical Region of KvAP-VSD or Kv1.2/2.1-VSD as Indicated by the Crystal Structures

Figure S5. Comparison of secondary structures of isolated Shaker-VSD, KvAP-VSD and Kv1.2/2.1-VSD. The sequence of Shaker-VSD, KvAP-VSD and Kv1.2/2.1-VSD are aligned with Clustal Omega and manually adjusted. The α -helical propensity of isolated Shaker-VSD based on its backbone chemical shifts as shown in Figure 2 is plotted on its sequence with a cyan to red color scale indicating the location of helical regions (0 indicating 0% tendency to form α helix while 1 indicating 100% tendency). Residues in Shaker-VSD without color indicate lack of backbone assignment. Helical regions of KvAP-VSD and Kv1.2/2.1-VSD are marked with red rectangles based on their crystal structures (10RQ and 2R9R) (1,2). The secondary structural features of isolated Shaker-VSD generally agrees with that of Kv1.2/2.1-VSD, except for S2-S3 linker and S3 transmembrane helix, which is more similar to KvAP-VSD.

b)

Figure S6: NMR titration of BrET with Shaker-VSD. (a) Structure of BrET with indole marked with *. Stacked plot of 1D ¹H NMR spectra of BrET with increasing concentration of added Shaker-VSD in the region of 10ppm. The chemical shift change of the peak corresponding to the BrET indole proton (*) upon Shaker-VSD titration shown in this figure was used to generate the binding curve in Fig. 3.

Figure S7. Effect of BrET binding as observed from the NMR spectrum of Shaker-VSD. (a) Overlay of the peak corresponding to Val257 in Shaker-VSD from a TROSY-HNCO spectrum without BrET (green) and with BrET (orange). The chemical shift perturbation is about 0.026. (b) Chemical shift perturbations are plotted on a homology model of isolated Shaker-VSD with a blue to red color scale. Small chemical shift perturbations are observed in many sites across the Shaker-VSD, suggesting that the protein undergoes a global conformational change upon binding.

Figure S8. Residues of Shaker-VSD exhibiting peak doubling in the well-resolved 3D TROSY-HNCO or TROSY-HNCA NMR spectra are highlighted in orange.

Figure S9: Sequence alignment of Kv1.2-VSD and Shaker-VSD. Residues in the transmembrane helices with different sequence are colored in red and blue.

Figure S10: Ramachandran plots of the backbone dihedral angles of the S2-S3 linker and S3 helix in different Kv-VSDs. Backbone φ and ψ angles are extracted from the deposited PDB structures and/or data in the following references: isolated Shaker-VSD (our NMR results); KvAP-VSD in full channel, X-ray (1ORQ) (1); Kv1.2/2.1-VSD in full channel, X-ray (2R9R) (2); Kv1.2/2.1-VSD in full channel, Cryo-EM (6EBK) (3); human KCNQ1-VSD, NMR (calculated with TALOS+ using backbone resonances assignment deposited in BMRB: 19708) (4); *Xenopus laevis* KCNQ1-VSD in full channel, cryo-EM (5VMS) (5); EAG-VSD in full channel, cryo-EM (5K7L) (6); HCN1-VSD in full channel, cryo-EM (5U6O) (7). The ramachandran plot is generated based on theoretical definition of backbone φ and ψ angles in different secondary structural configurations (8), with intense color indicating right-handed helix (orange color indicating favored and yellow indicating allowed regions) and pale orange and pale yellow indicating favored and allowed regions for other secondary structures. Non-helical residues are labeled in red. These analyses were used to define the secondary structure configuration of Shaker-VSD in Figure 5.

Figure S11: Comparison of backbone dihedral angles of Shaker-VSD, full-lenth KvAP and Kv1.2/2.1 in the S2-S3 linker and S3 helix. Backbone φ and ψ angles are extracted from the deposited PDB structures and/or data in the following references: isolated Shaker-VSD (our NMR results); KvAP-VSD in full channel, X-ray (10RQ) (1); Kv1.2/2.1-VSD in full channel, X-ray (2R9R) (2). The φ and ψ angles distribution pattern of Shaker-VSD is more similar with that of full-length KvAP crystal structure then that full-length Kv1.2/2.1 crystal structure, indicating that some structural features of this region in Shaker-VSD might be more similar with that of KvAP.

	Membrane Mimetics	¹⁵ N- ¹ H HSQC Spectrum Quality			
Detergent	DM		Aggregate		
Micelles	DDM		Failed to extract from membrane		
	OG		Failed to extract from membrane		
	CHAPS		Failed to extract from membrane		
	Foscholine	-12	Poor		
	LMPG		Great		
	LPPG		Great		
	LPPC		ОК		
	LPPC:LPPG	ОК			
	LPPG:Chobima	alt=4:1	ОК		
Bicelles	Long-chain Lipids	Short-chain Lipids	¹⁵ N- ¹ H HSQC Spectrum Quality		
	DMPC	D6PC	Poor		
	DMPC:DMPG=3:1	CHAPSO	Reconstitution failed		
	POPC:POPG=3:1	D6PC	Poor		
	POPC:POPA=3:1	D6PC	Poor		
	POPE:POPG=3:1	D6PC	Poor		
	DMPC:DMPA=3:1	D6PC	Poor		
	DMPG	D6PC	Poor		
	DMPG:Cholesterol=9:1	D6PC	ОК		
	DMPC:DMPA+1%PIP2	D6PC	Poor		
	DMPC:DMEPC=3:1	D6PC	Poor		
	DMPC:DMTAP=3:1	D6PC	Poor		
	DMPG:Cholesterol=9:1	D7PC	ОК		
	DMPC:DMPA=3:1	D7PC	Poor		
	DPPC	D7PC	Poor		
	DPPG	D7PC	Poor		
	DPPC:Choleterol=9:1	D7PC	Poor		
	DPPG:Cholesterol=9:1	D7PC	ОК		
Nanodiscs	Lipids	Scaffold Protein	¹⁵ N- ¹ H HSQC Spectrum Quality		
	DMPC	MSP1D1ΔH5	Poor		
	DMPG	MSP1D1∆H5	Poor		
	DMPC:DMPA=3:1	MSP1D1∆H5	Poor		
Amphipol	A8-35		Poor		

Table S1. Membrane mimetics screened for VSD Reconstitution

Supporting References:

- 1. Jiang, Y., Lee, A., Chen, J., Ruta, V., Cadene, M., Chait, B. T., and MacKinnon, R. (2003) X-ray structure of a voltage-dependent k+ channel. *Nature* **423**, 33-41
- 2. Long, S. B., Tao, X., Campbell, E. B., and MacKinnon, R. (2007) Atomic structure of a voltagedependent k+ channel in a lipid membrane-like environment. *Nature* **450**, 376-382
- Matthies, D., Bae, C., Toombes, G. E., Fox, T., Bartesaghi, A., Subramaniam, S., and Swartz, K. J. (2018) Single-particle cryo-em structure of a voltage-activated potassium channel in lipid nanodiscs. *Elife* 7
- 4. Peng, D., Kim, J. H., Kroncke, B. M., Law, C. L., Xia, Y., Droege, K. D., Van Horn, W. D., Vanoye, C. G., and Sanders, C. R. (2014) Purification and structural study of the voltage-sensor domain of the human kcnq1 potassium ion channel. *Biochemistry* **53**, 2032-2042
- 5. Sun, J., and MacKinnon, R. (2017) Cryo-em structure of a kcnq1/cam complex reveals insights into congenital long qt syndrome. *Cell* **169**, 1042-1050 e1049
- 6. Whicher, J. R., and MacKinnon, R. (2016) Structure of the voltage-gated k(+) channel eag1 reveals an alternative voltage sensing mechanism. *Science* **353**, 664-669
- 7. Lee, C. H., and MacKinnon, R. (2017) Structures of the human hcn1 hyperpolarization-activated channel. *Cell* **168**, 111-120 e111
- 8. Ramachandran, G. N., Ramakrishnan, C., and Sasisekharan, V. (1963) Stereochemistry of polypeptide chain configurations. *J Mol Biol* **7**, 95-99