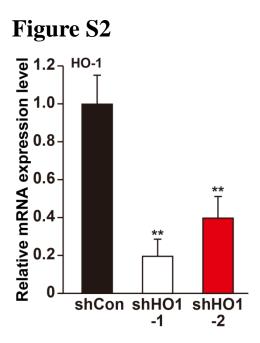
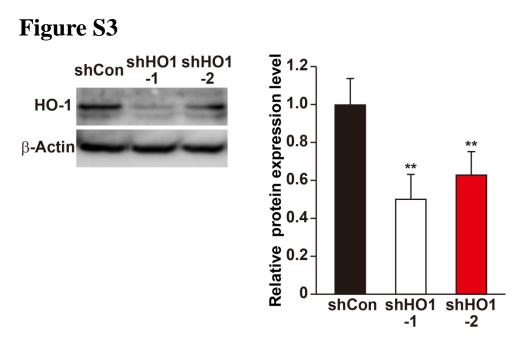
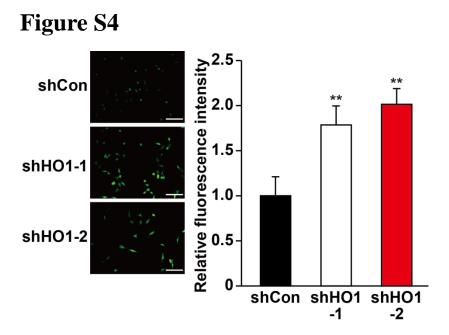

Supplementary Material


Tyrosol facilitates neovascularization by enhancing skeletal muscle cells viability and paracrine function in diabetic hind-limb ischemia mice

Jianqi Zhang, Dyah Ari Nugrahaningrum, Olivia Marcelina, Agnes Dwi Ariyanti, Guixue Wang, Caiping Liu, Shourong Wu*, and Vivi Kasim*


*Email: vivikasim@cqu.edu.cn (V.K.) shourongwu@cqu.edu.cn (S.W.)


FIGURE S1 | The effect of tyrosol on C2C12 cells mitochondrial oxidative damage. (A) Mitochondrial reactive oxygen species (ROS) level in C2C12 cells cultured under hyperglycemia, as examined using MitoSOX staining; left: representative images (scale bars: 100 μ m), right: relative fluorescence intensity quantification (n = 6). (B) mRNA expression level of Ndufaf1 in C2C12 cells cultured under hyperglycemia, as determined using quantitative reverse transcription PCR (qPCR; n = 3). β -Actin was used for normalization. (C) The level of mitochondrial membrane potential of C2C12 cells cultured under hyperglycemia, as examined with MitoTracker Red CMXRos staining; left: representative images (scale bars: 100 μ m), right: relative fluorescence intensity quantification (n = 6). Data were shown as relative to that of control, and expressed as mean ±S.D. ***P* < 0.01.

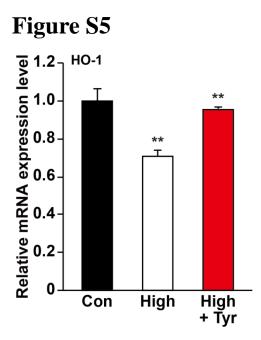

FIGURE S2 | The mRNA expression level of HO-1 in C2C12 cells transfected with shHO-1. HO-1 mRNA expression levels of C2C12 cells transfected with indicated shRNA expression vectors, as determined using quantitative reverse-transcription PCR. β -Actin was used for normalization. Data were shown as relative to that of control, and expressed as mean \pm S.D. (n = 3). ***P* < 0.01.

FIGURE S3 | The protein expression level of HO-1 in C2C12 cells transfected with shHO-1. HO-1 protein expression level in C2C12 cells transfected with indicated shRNA expression vectors, as determined using western blotting: representative images (left) and quantification results (right, n = 3) were shown. β -Actin was used as a loading control. Quantification data were shown as relative to that of control, and expressed as mean \pm S.D. ***P* < 0.01.

FIGURE S4 | The effect of knocking down *HO-1* on C2C12 cells intracellular ROS level. Intracellular ROS level in *HO-1*-silenced C2C12 cells, as determined using DCFH-DA: representative images (left, scale bars: 200 μ m); and quantification of relative fluorescence intensity (right, n = 6) are shown. Data were shown as relative to that of control, and expressed as mean \pm S.D. ***P* < 0.01.

FIGURE S5 | The effect of tyrosol on HO-1 expression level in C2C12 cells cultured under hyperglycemia. The mRNA expression level of HO-1 in C2C12 cells treated with tyrosol, as determined using qPCR. β -Actin was used for normalization. Data were shown as relative to that of control, and expressed as mean \pm S.D. (n = 3). ***P* < 0.01.

TABLE S1 | Antibodies and chemicals used for western blotting,immunofluorescence, and phalloidin staining.

Antibody	Product No.	Maker	Experiment	Dilution
anti-VEGF-A	sc-152	Santa Cruz Biotechnology	Western Blotting	1/300
anti-HO-1	sc-10789	Santa Cruz Biotechnology	Western Blotting	1/500
anti-PDGF-BB	sc-7878	Santa Cruz Biotechnology	Western Blotting	1/300
anti-β-Actin	60008-1-Ig	Proteintech	Western blotting	1/20000
anti-PECAM-1	550274	BD Pharmingen	Immunofluorescence	1/100
Monoclonal anti-murine α-SMA Cy3 conjugate	C6198	Sigma-Aldrich	Immunofluorescence	1/50
Alexa Fluor 488 Goat Anti-Rat IgG	A11006	Invitrogen	Immunofluorescence	1/100
Goat Anti-Mouse IgG	ZB2305	ZSGB-BIO	Western Blotting	1/10000
Goat Anti-Rabbit IgG	ZB2301	ZSGB-BIO	Western Blotting	1/10000
Alexa Fluor 555 Phalloidin	A34055	Invitrogen	Phalloidin staining	1/250

Control (mmol/l)				Tyrosol (mmol/l)			
No	3w HFD	1w after STZ (1d pre-surgery)	3w post- surgery	No	3w HFD	1w after STZ (1d pre-surgery)	3w post- surgery
1	8.9	21.6	20.1	1	9.7	20.7	18.7
2	6.3	18.9	18.5	2	7.9	20.9	20.3
3	8.8	20.3	19.2	3	7.4	20.2	17.3
4	8.6	21.9	20.6	4	6.9	22.8	21.5
5	6.9	24.8	24	5	8.2	25.7	24.8
Mean	7.9	21.5	20.48	Mean	8.02	22.06	20.52
Stdev	1.21	2.19	2.13	Stdev	1.06	2.26	2.87
P value		1.97E-6 [#]	0.477^{\$}	P value		3.83E-08 [#]	0.374 ^{\$}

TABLE S2 | Blood glucose concentration in diabetic hind-limb ischemia model mice during the experiment.

HFD: high fat diet; STZ: streptozotocin administration.

[#]*P* value was calculated versus 3 w HFD using one-way ANOVA.

^{\$}*P* value was calculated versus 1 w after STZ using one-way ANOVA.