Supporting Information

Automated design of diverse stand-alone riboswitches

Michelle J Wu¹, Johan O L Andreasson^{2,3}, Wipapat Kladwang³, William Greenleaf^{2,4}, Rhiju Das^{3,4,*}

1 Program in Biomedical Informatics, Stanford University, Stanford, CA, USA

2 Department of Genetics, Stanford University, Stanford, CA, USA

- 3 Department of Biochemistry, Stanford University, Stanford, CA, USA
- 4 Department of Applied Physics, Stanford University, Stanford, CA, USA
- 5 Department of Physics, Stanford University, Stanford, CA, USA
- * Corresponding author: rhiju@stanford.edu

Predicted activation ratios for Kellenberger et al riboswitches. Using our thermodynamic framework, we predicted activation ratios for the cyclic di-AMP biosensors described by Kellenberger et al.

Reproducibility of experimental measurements. K_d (A) and activation ratio (B) values measured over two replicates correlate with an r^2 (in log space) of 0.94 and 0.84, respectively. The color represents the minimum number of clusters across the two replicates. The dotted lines denote the boundary for error within a factor of 2 between the two measurements.

Figure S3 On and off state K_d 's for RiboLogic small molecule riboswitches. K_d^{ON} vs. K_d^{OFF} plots show that most designs achieve K_d^{ON} within a factor of 10 of the intrinsic K_d of the MS2 protein under conditions where they should be activated (dotted lines).

Intrinsic K_d values for aptamers. Chemical mapping was used to determine intrinsic K_d for the FMN, theophylline, and tryptophan aptamers used in the riboswitch designs.

Activation ratios relative to thermodynamic maximum. Using the intrinsic K_d 's for the FMN, theophylline, and tryptophan aptamers, we computed the optimal activation ratio as $\frac{[L]}{K_d^L}$ +1. The activation ratios achieved by RiboLogic are plotted relative to these maxima (solid black line).

Number of iterations to convergence. The number of iterations of Monte Carlo to reach constraint satisfaction varied across different ligands. On average, every 1,000 iterations took about 2 minutes on one core.

Secondary structure features and activation ratio. The data show that some secondary structure features correlate significantly (Fisher z-transform) with activation ratio. These include the number of bulges and number of hairpin/internal/multi loops in the absence of ligand as well as the number of internal loops in the presence of ligand. Further, more shared base pairs between states was correlated with higher activation ratios.

Comparison of predicted and measured K_d **values.** For both small molecule (A) and miRNA (B) riboswitches, there is a significant correlation between predicted and measured K_d values, but the degree of correlation is poor.

Summary statistics for activation ratios for RiboLogic and baseline.

	RiboLogic				baseline			
Design	max	median	standard deviation	count	max	median	standard deviation	count
FMN OFF	9.74	0.987	0.878	1357	1.15	0.869	0.144	524
FMN ON	14.4	1.46	1.33	849	2.90	1.15	0.308	524
theophylline OFF	9.92	1.73	1.60	97	4.62	1.22	0.369	366
theophylline ON	15.4	0.991	1.65	99	1.33	0.820	0.155	366
tryptophan OFF	4.29	1.17	0.632	89	2.47	1.01	0.206	392
tryptophan ON	4.55	1.08	0.576	94	1.97	0.988	0.181	392
miRNA OFF	21.8	0.825	1.68	188	4.95	0.819	0.483	188
miRNA ON	20.0	1.17	2.20	98	4.26	1.23	0.584	98

Summary of statistical tests comparing RiboLogic activation ratios. All comparisons used a two-sided Wilcoxon rank sum test.

design	RiboLogic vs	RiboLogic vs non-switching
	baseline	(activation ratio 1)
FMN OFF	8.0 x 10 ⁻⁴¹	1.1 x 10 ⁻⁶
FMN ON	8.5 x 10 ⁻⁵⁸	2.8 x 10 ⁻¹³⁰
Theophylline OFF	3.5 x 10 ⁻¹³	3.0 x 10 ⁻¹⁶
Theophylline ON	2.0 x 10 ⁻¹⁰	0.071
Tryptophan OFF	3.4 x 10 ⁻¹³	1.8 x 10 ⁻¹⁰
Tryptophan ON	6.0 x 10 ⁻¹⁴	1.5 x 10 ⁻³
miRNA OFF	0.98	7.4 x 10 ⁻⁷
miRNA ON	0.15	1.7 x 10 ⁻⁴

Comparisons to baseline distribution.

design	total number	total number	percentage	total number	percentage
	of designs	above	above	above	above
	-	baseline	baseline	baseline 95 th	baseline 95th
		median	median	percentile	percentile
FMN OFF	1357	944	70%	627	46%
FMN ON	849	703	83%	252	30%
Theophylline OFF	97	72	74%	46	47%
Theophylline ON	99	74	75%	42	42%
Tryptophan OFF	89	72	81%	36	40%
Tryptophan ON	94	58	62%	27	29%
miRNA OFF	188	93	49%	13	7%
miRNA ON	98	45	46%	10	10%

Summary of best-of-ten analysis. All values are based on 1,000 bootstrap samples of 10 designs each. Comparisons were made using a two-sided Wilcoxon rank sum test.

design	RiboLogic	Baseline	p-value
-	median	median	-
FMN OFF	2.57	1.01	< 2 x 10 ⁻³⁰⁸
FMN ON	3.89	1.69	1.8 x 10 ⁻²⁵²
Theophylline OFF	4.86	1.72	3.3 x 10 ⁻²⁸¹
Theophylline ON	3.44	1.04	< 2 x 10 ⁻³⁰⁸
Tryptophan OFF	2.28	1.24	2.4 x 10 ⁻²⁶⁴
Tryptophan ON	2.08	1.23	3.7 x 10 ⁻²³⁷
miRNA OFF	1.66	1.52	8.5 x 10 ⁻⁶
miRNA ON	2.84	2.10	7.2 x 10 ⁻²⁶

Supplemental Data

RiboLogic-solves_190327.txt (tab-delimitted text file) contains all sequences used in this study, along with predicted secondary structures and predicted and observed dissociation constants for the output MCP protein.