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S1 Appendix. Predictions of a state-equation with a single, most-recent error-based 1 

correction term. Effects of including next-to-last error-sampling. 2 

Iteration of a 𝐾𝐴𝑚𝐺  model. We can obtain an idea of the expected responses by iteration of 3 

Equation 5. For simplicity, we drop the term involving the second-to-last error (𝐷 = 0) to obtain: 4 

𝑥(𝑛 + 1) = .𝐺(𝐴 − 𝐾)0 + {1 − (𝐴 − 𝐾)0}
𝑚

1 − (𝐴 − 𝐾)
3 + 𝐾4𝑣(𝑖)

0
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(𝐴 − 𝐾)0:7.																																				(𝐴1) 5 

We have inserted Equation 2 so that 𝑣(𝑖) represents the portion of 𝑠(𝑛) that depends on the trial 6 

number. For sinusoidal adaptation datasets, 𝑣(𝑖) = 𝑝(𝑖) ∙ sin CDEF
G
𝑖H. Equation A1 can be split into 7 

two major contributions, one involving only constant features of the disturbance (terms inside the 8 

square brackets) and another accounting for the portions of the disturbance featuring systematic 9 

variation. This structure resembles closely the two components identified in our recent 10 

phenomenological study of sinusoidal adaptation data [11,12,43,44].  11 

Baseline drift: What is 𝑚 and why do we need it?  12 

The first term of Equation A1 describes a decaying drift similar to what we observed in the data. It 13 

is interesting to note the structure of this response to no-perturbation stimulus, since the bias 𝑚 14 

accounts for intrinsic properties of the visuomotor system and the term involving the stimulus 𝑣(𝑖) 15 

has been left out. To understand better its evolution with the trial number, it can be rewritten as: 16 

𝑏(𝑛 + 1) =
𝑚

1− (𝐴 − 𝐾)
+ .𝐺 −

𝑚
1− (𝐴 − 𝐾)

3 (𝐴 − 𝐾)0																																																																																				(𝐴2) 17 

The first term of Equation A2 is independent of 𝑛 and therefore represents an asymptotic value 18 

once all dependence on the trial number had subsided. The second term has a coefficient in front 19 

that depends on the initial condition (𝐺) and, because there is no true stimulus except for that intitial 20 

value and the bias 𝑚, it will decay as the trial number progresses as long as (𝐴 − 𝐾) is smaller than 21 

1. In this case, it can be rewritten in terms of a timescale defined by the identity: 𝑒:L ≡ (𝐴 − 𝐾). Both 22 

Equation A1 and A2 indicate that (𝐴 − 𝐾)0  are coefficients that weigh the contribution of the 23 
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stimulus to the response. This convolution arises naturally as a consequence of iterating the simple 24 

version of the equation (for example, that of model 𝐾𝐴𝑚 or 𝐾𝐴𝑚𝐺). Note that, as long as 0 <25 

(𝐴 − 𝐾) < 1, the smaller the value of this first-trial weight, the faster its power will go to zero as the 26 

trial number 𝑛 increases. Thus, we define an integration window given by the number of trials that it 27 

takes for the weight to decrease to a size of 1 𝑒O . Therefore, this integration window has size equal 28 

to (𝜆):9  trials. Therefore, the closer the parameter combination given by (𝐴 − 𝐾)  gets to 1, the 29 

smaller the value of timescale 𝜆, and the larger the window of integration, over which collecting 30 

weighted contributions from the stimulus adds significantly to the response. 31 

The simplest state-equation (cf. [19] ) is recovered when 𝐴 = 1 , and 𝑚 = 0 . In that case the 32 

asymptote for our adaptation gain vanishes and one would expect the baseline to remain unchanged. 33 

However, we observed a pervasive drift towards higher hypometria across all conditions in the 34 

majority of the participants. This inward drift of the baseline can be modeled assuming that 𝑚 < 0, 35 

which could be interpreted as a systematic tendency to undershoot. As mentioned above, the 36 

sinusoidal stimulus does not contain any constant part because the disturbance is fully sinusoidal 37 

and centered at zero mean. Therefore, 𝑚 is required to model the drift that we observed in the 38 

adaptation gain.  39 

This is not the only reason why the simplest version of the state equation needs to be modified. 40 

Already in the case of a disturbance that only includes a constant part 𝑐 (of positive or negative sign 41 

for outward or inward adaptation respectively), Equation A2 will acquire an extra term proportional 42 

to that constant part, weighted by the learning rate 𝐾: 43 

𝑏(𝑛 + 1) =
𝑚

1− (𝐴 − 𝐾)
+ .𝐺 −

𝑚
1− (𝐴 − 𝐾)

3 (𝐴 − 𝐾)0 +
𝐾

1 − (𝐴 − 𝐾)
𝑐[1 − (𝐴 − 𝐾)0	]																						(𝐴3) 44 

Under the simplest state-equation (𝑚 = 0, 𝐴 = 1) all that remains from Equation A3 is 𝑏(𝑛 + 1) =45 

𝑐[1 − (1 − 𝐾)0	]. Therefore, the asymptote would become 𝑐  predicting fully complete adaptation, 46 

which is not typically observed in paradigms that employ fixed-size or random disturbances (Herman 47 

et al. 2013). The presence of 𝑚 would prevent full adaptation. Lack of full completeness of adaptation 48 
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could also be a consequence of a retention parameter 𝐴 < 1. However, because the disturbance 49 

that we used does not have a constant component, even if 𝐴 < 1, the model will not produce any 50 

drift of the baseline (cf. Equations A2 and A3). In experimental protocols that use fixed-step 51 

adaptation, where the disturbance has a constant component, this confound between the effects of 52 

𝑚 and 𝐴 cannot be avoided. Hence, in the main text, we stress the importance of 𝑚 in our model 53 

and we will discuss possible origins and alternative interpretations for such term. 54 

Stimulus convolution.  55 

The second term in the RHS of Equation A1 is a convolution of the variable part of the disturbance. 56 

For the sinusoidal disturbances used in our datasets, it produces the sinusoidal component of the 57 

oculomotor response. 58 

ℎ(𝑛 + 1) = 𝐾4𝑝(𝑖) sin(𝜔𝑖)
0

789

(𝐴 − 𝐾)0:7.																																																																																																													(𝐴4) 59 

The latest experienced stimulus (at trial 𝑛) will be fully weighted because 𝑖 = 𝑛. Increasing powers 60 

of (𝐴 − 𝐾) will progressively attenuate subsequent older instances of the stimulus until 𝑖 becomes 61 

small enough so that (𝐴 − 𝐾)0:7 becomes negligibly small. This defines a window of trials over which 62 

the stimulus contributes in a relevant manner to the oculomotor response. Note that Equation A4 63 

resembles a harmonic components expansion of a pattern with fundamental frequency given by 64 

𝜔~ 9
Z

, where 𝑇  is commensurate with the intertrial interval. By design 𝜔 = DEF
G

, where 𝑓  is the 65 

frequency of the stimulus in saccades per block. This expansion of the resulting response start with 66 

a fundamental frequency determined by the inter-trial interval 𝑇. 67 

Baseline drift in models with double error-sampling (𝐷).  68 

Next we consider, based on Equation 12, how the evolution of the baseline drift is expected to 69 

behave and how the timescale and window of integration change upon including a non-zero 𝐷. When 70 

𝐷 = 0, Equation 12 gave us the first-trial weight. We obtained all weights that enter the responses 71 

in Equation A1 and A2 (the weights that conform the impulse response or the weights of the stimulus 72 

convolution) by raising the first-trial weight to the trial number. We extracted these relations by simply 73 
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iterating Equation 5 without 𝐷. When 𝐷 is present and non zero, an expression similar to Equation 74 

A2 can be obtained, except that the term evolving with the trial number has two contributions of the 75 

form 76 

~9
D
]𝛼(𝐺9,𝐺D) _(𝐴 − 𝐾) + `(𝐴 − 𝐾)D + 4 ∙ 𝐷a

0
+ 𝛽(𝐺9,𝐺D) _(𝐴 − 𝐾) − `(𝐴 − 𝐾)D + 4 ∙ 𝐷a

0
c,         (A5) 77 

where 𝐺9and 𝐺D are the values of the gain in the first two trials (initial conditions). To visualize the 78 

changes, using the fitted values of the parameters  we computed the corresponding first-trial weights 79 

that enter Equation A2 and A5 for each participant. We then took the average of these weights in 80 

each condition and ploted the sequence given by the first-trial weight raised to the trial difference 81 

with respect the current trial. In other words, we plotted the weights that would enter a stimulus 82 

convolution or, equivalently, the weights that form the impulse response for the corresponding model. 83 

The results are shown in Fig A for models 𝐾𝐴𝑚 (solid lines) and 𝐾𝑚𝐷𝐺 (dashed lines). The plots 84 

show a sizeable increase in the window of integration in model 𝐾𝑚𝐷𝐺 with respect to that resulting 85 

for the parameters of model 𝐾𝐴𝑚, as pointed out in the Results section.  86 

 87 

Fig A. Exploration of the ‘window of integration’. Weights of the convolution term in Equation A4 and A5 (cf. also 88 
Equation 12 in the Methods section) as a function of the trial number for models 𝑲𝑨𝒎 (solid lines) and 𝑲𝒎𝑫𝑮 (dashed 89 
lines), for dataset ORIG (a) and FREQ (b) analyzed in the manuscript. To determine the weights, we used the average of 90 
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the timescales computed with the parameters fitted to the individual data in each condition. The number of trials that takes 91 
for the magnitude of the weights to decay to 1/e of its initial value gives an estimate of the window of integration. Including 92 
double error-sampling and the second learning rate 𝑫 produces a significant increase in the window of integration with 93 
respect to the model without double error-sampling. In general, in models without 𝑫 the first-trial weight always equals 𝑨 −94 
𝑲, so that higher learning rates and smaller persistence rates result in smaller integration windows. This rigidity in the 95 
weighting of the experienced stimulus can be softened by keeping memory of, and learning from further errors in the past. 96 


