Both Ligands and Macromolecular Crowders Preferentially Bind to Closed Conformations of Maltose Binding Protein

Archishman Ghosh^{\dagger ‡}, Pieter E. S. Smith^{\dagger}, Sanbo Qin^{\dagger ‡}, Myunggi Yi[§], and Huan-Xiang Zhou^{\dagger ‡*}

[†] Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 30302, United States

[‡] Department of Chemistry and Department of Physics, University of Illinois at Chicago,

Chicago, Illinois 60607, United States

§ Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea

*E-mail: hzhou43@uic.edu

Supporting Information

Two-state model for wild-type MBP ^a				
Titrant	$K_{d;app} (\mu M) \text{ or} \ K_{d}^{C} (mM)^{b}$	$\lambda_{f} \text{ or } \lambda_{P}$ (nm)	$\lambda_b \text{ or } \lambda_{CP}$ (nm)	
Maltose ([C] _T =0)	$1.2 \pm 0.1^{\circ}$	345.8 ± 0.1	350.0 ± 0.1	
Maltose ([C] _T =100 g/L)	1.9 ± 0.3	344.0 ± 0.1	349.8 ± 0.2	
Maltose ($[C]_T$ =200 g/L)	3.9 ± 0.2	343.0 ± 0.1	349.9 ± 0.1	
Maltose ($[C]_T$ =300 g/L)	8 ± 1	343.0 ± 0.1	350.3 ± 0.1	
Ficoll ($[L]_T=0$)	2.0 ± 0.5	345.6 ± 0.1	341.5 ± 0.4	

Three-state model for wild-type MBP^a

	$K_{\rm d}(\mu { m M})$ or	$\lambda_{P}(nm)$	λ_b or λ_{CP}
	K_{d}^{C} (mM)		(nm)
Maltose and Ficoll	1.3 ± 0.1	345.8 ± 0.1	350.0 ± 0.1
	1.5 ± 0.2		$\textbf{341.8} \pm \textbf{0.2}$

Two-state model for A96F				
Maltose ($[C]_T=0$)	0.33 ± 0.05	345.9 ± 0.1	349.3 ± 0.1	
Maltose ($[C]_T$ =50 g/L)	0.67 ± 0.05	344.0 ± 0.1	349.4 ± 0.1	
Maltose ([C] _T =100 g/L)	0.91 ± 0.09	343.5 ± 0.1	349.2 ± 0.1	
Maltose ([C] _T =200 g/L)	1.6 ± 0.2	342.6 ± 0.1	349.7 ± 0.2	
Maltose ($[C]_T$ =300 g/L)	2.2 ± 0.1	341.8 ± 0.1	349.6 ± 0.1	
Ficoll ([L] _T =0)	0.54 ± 0.09	346.1 ± 0.3	342.3 ± 0.2	

Three-state model for A96F			
Maltose and Ficoll	0.42 ± 0.04	346.1 ± 0.1	349.4 ± 0.1
	0.91 ± 0.09		343.2 ± 0.1

Two-state model for A96W				
Maltose ([C] _T =0)	0.036 ± 0.006	346.5 ± 0.1	349.3 ± 0.1	
Maltose ($[C]_T$ =100 g/L)	0.053 ± 0.003	344.0 ± 0.04	349.3 ± 0.04	
Maltose ([C] _T = 200 g/L)	0.097 ± 0.010	343.5 ± 0.1	349.1 ± 0.1	
Maltose ([C] _T =300 g/L)	0.22 ± 0.02	343.3 ± 0.1	349.3 ± 0.1	
Ficoll ([L] _T =0)	0.35 ± 0.04	346.1 ± 0.2	343.6 ± 0.1	

Three-state	model	for	A96W
-------------	-------	-----	------

The estate model for 11900			
Maltose and Ficoll	0.019 ± 0.002	346.4 ± 0.1	349.3 ± 0.1
	0.47 ± 0.05		343.2 ± 0.1

<i>Two-state model for 1329W</i>				
Maltose ($[C]_T=0$)	0.014 ± 0.009	346.4 ± 0.04	349.7 ± 0.03	
Maltose ([C] _T =100 g/L)	0.030 ± 0.006	344.4 ± 0.1	350.1 ± 0.1	
Maltose ($[C]_T$ =200 g/L)	0.056 ± 0.011	344.4 ± 0.1	350.6 ± 0.1	
Maltose ($[C]_T$ =300 g/L)	0.12 ± 0.01	343.6 ± 0.1	350.8 ± 0.1	
Ficoll ($[L]_T=0$)	0.65 ± 0.11	346.4 ± 0.2	343.1 ± 0.2	

Two-state model for I329W

Three-state model for I329W				
Maltaga and Eisall	0.012 ± 0.002	346.4 ± 0.1	349.7 ± 0.1	
Manose and Picon	0.70 ± 0.11		343.2 ± 0.1	
<i>Tw</i>	vo-state model for A	<u>96W/I329W</u>		
Ficoll ($[L]_T=0$)	0.45 ± 0.11	348.9 ± 0.3	345.9 ± 0.3	
Two-st	ate model for MBP-	NBD in Ficoll70		
	$K_{d;app}$ (μ M)			
	Peak wavelength	Fluo. intensity at		
	with 280 nm	550 nm with 500		
	excitation	nm excitation		
Maltose ([C] _T =0)	5.8 ± 0.4	29 ± 1		
Maltose ($[C]_T$ =50 g/L)	14 ± 1	30 ± 1		
Maltose ($[C]_T$ =100 g/L)	30 ± 2	61 ± 1		
Maltose ([C] _T = 200 g/L)	61 ± 3	145 ± 3		
Two-state model for MBP-NBD in BSA				
Maltose ($[C]_T=0$)		26 ± 0.7		

	J		
Maltose ([C] _T =0)		26 ± 0.7	
Maltose ($[C]_T$ =50 g/L)		219 ± 14	
Maltose ($[C]_T$ =100 g/L)		469 ± 22	

^aTaken from Miklos et al. (2013).

 ${}^{b}K_{d;app}$ (µM) applies to rows where maltose is the titrant; K_{d}^{C} (mM) applies to rows where Ficol70 is the titrant.

^cBold entries are obtained in both two-state and three-state fits. Whereas the two-state model was used to independently fit five or six titration curves, the three-model in essence provides a constrained, simultaneous fit of all these titration curves. The degree of agreement between the corresponding parameters in the two- and three-state fits is thus a measure of the soundness of the three-state competitive model.

Figure S1. (A) Two-state fit of binding isotherms from titrating maltose into the A96F mutant in the absence or presence of fixed concentrations of Ficoll70. (B) Two-state fit of the binding isotherm from titrating Ficoll70. (C) Three-state fit of all the binding isotherms.

Figure S2. (A) Two-state fit of binding isotherms from titrating maltose into the I329W mutant in the absence or presence of fixed concentrations of Ficoll70. (B) Two-state fit of the binding isotherm from titrating Ficoll70. (C) Three-state fit of all the binding isotherms.

Figure S3. Linear dependence of the apparent maltose dissociation constants on Ficoll70 concentration, expected for a three-state competitive model. (A) Wild-type MBP. (B) A96F mutant. (C) A96W mutant. (D) I329W mutant.

Figure S4. Two-state fit of the binding isotherm from titrating Ficoll70 into the A96W/I329W mutant.

Figure S5. FMAP calculation of the protein-crowder interaction energies. An MBP molecule (green) is fictitiously placed into many locations inside a cubic box with side length of 200 Å containing eight BSA molecules (gray), representing a concentration of 110 g/L. The interaction energies within a slice of the crowder solution are displayed as colors according to a scale (in kcal/mol) shown on the right. The particular MBP molecule displayed is within a "hot" region (center of blue rectangle). An enlarged view of the pose with this MBP molecule docked to a neighboring BSA molecule is shown at lower bottom.

Figure S6. Histograms of MBP-BSA pairwise interaction energies. MBP is either in the closed form (blue curve) or open form (red curve). By the FMAP method, 2×10^6 MBP placements in a box of BSA molecules with the lowest interaction energies were obtained. Out of these, the interaction energies were further calculated by an atom-based method and the results were collected for 1.52×10^5 MBP placements (the remaining placements were newly found to have clashes with the crowders). The latter results were grouped into bins with 0.02 kcal/mol width, and the count in each bin is displayed.