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Supplementary Results

Inhibitors of KLK5

Four hits identified in the KLKS5 screen (indicated in fig. S5A) were characterized in detail based
on the inhibition efficiency and SAR data. Specifically, the two peptides 20-Y-R-C and 20-W-R-
C cyclized with linker 5 were characterized in detail because they belong to a group of
macrocycle hits that share a similar structure, differing in only the second amino acid position
(right upper corner in fig. S5A). The two peptides R-75-G-C and R-75-20-C cyclized with linker
6 were analyzed in detail because of their good activity, the latter one being the best hit of the
screen, and the high structural similarity (the only amino acid position that differs is occupied by
the similar residues Gly and pAla). The chemical structures, the analytical HPLC
chromatograms, and the KLKS5 inhibition data of the four macrocycles, with and without the
Gly-Gly-Trp tag, are shown in fig. S6C. The four macrocycles synthesized without the Gly-Gly-
Trp tag showed Kjs in the medium micromolar range and thus weaker activities than expected
based on the extent of inhibition observed in the screen (fig. S6C). We speculated that the GGW
tag, that is conjugated to the macrocycles in the high-throughput screen, contributes to the
binding. Indeed, when the four macrocycles were synthesized with the Gly-Gly-Trp tag, the
macrocycles inhibited KLKS5 with K;s in the high nanomolar to low micromolar range (fig. S6C).
The best inhibitor was R-75-20-C+6, showing a K; of 144 £15 nM. This macrocycle was the best
hit in the high-throughput screen, confirming that the screening strategy enables the
identification of the most active macrocycles.

Overall structure of human a-thrombin

Human a-thrombin consists of two polypeptide chains of 36 (L-chain) and 259 amino acid
residues (H-chain) covalently linked via a disulfide bridge (Cys122 of H-chain with Cys1 of L-
chain). The L-chain of human a-thrombin can be traced unambiguously from GlulC to Gly14M.
The first five amino terminal residues (ThrlH to GlylD) and the carboxyl-terminal residue
Arg15 are undefined and not visible in the Fourier map. The electron density of the H-chain is
clearly visible for all residues with the exception of eight amino acids part of the surface flexible

autolysis loop (Thrl47 to Lys149E). The carboxyl-terminal residue Glu247 lacks adequate



electron density. The H- and L-chains of human a-thrombin are not organized in separate
domains and form a single contiguous spherical molecule that exhibits the characteristic
topology of a trypsin-like serine protease. The L-chain is mainly organized in a multiple-turn
conformation and is positioned along the H-chain molecular surface opposite to the active-site
cleft. The H-chain structure consists of two opposed six-stranded [-barrels that are folded in an
antiparallel manner and connected by turn structures and four helical regions (Ala56 — Leu59,
Argl126 — Leul29C, Argl65 — Serl71 and Val231 — GIn244). Like other serine proteases, the
human a-thrombin has three disulfide bridges (Cys42 — Cys58, Cys168 — Cys182 and Cys191 —
Cys220) and an active site containing the catalytic triad His57, Asp102 and Ser195 residues that
are located at the junction of both barrels. The overall structure of human a-thrombin in complex
with P2 does not show any striking rearrangements of the main backbone if compared to other
human a-thrombin structures that were determined alone or in complex with different inhibitors.
Indeed, a structural similarity search against the PDB archive done by the server Dali showed
that our structure displayed root mean square deviations (RMSD) of the Ca-atoms never
exceeding 0.6 A within the first 120 closest structural neighbors, composed of a pool of
representative human a-thrombin structures obtained from crystals belonging to the same or

different space groups in complex with a variety of inhibitors.

Overall structure of P2 macrocycle

The electron density of the macrocycle P2 is well-defined allowing an unambiguous assignment
of group orientations. The numbering of the atoms in P2 is shown in fig. S7. No classical
secondary structure elements are found in the molecule. The side chains of Arg, B-
hydroxyproline, Cys and the N-2-(hydroxymethyl)benzyl group point in opposite directions. The
-homoproline is in the cis-configuration and its pyrrolidine ring (C8 — C11) forms a plane with
the C23 — C28 phenyl ring of the linker 2. The two rings are perpendicular to both hydroxyl
methyl-benzyl and arginine guanidine groups. The macrocycle forms an extended structure with
two intra-molecular interactions that appear to confer structural constrains to the molecule (Table
S3A). The hydroxy group (O3) of the hydroxymethyl-benzyl substituent forms an intra-
molecular hydrogen bond with the main chain nitrogen (N6). Additionally, the hydroxy group
(O3) forms a hydrogen bond with the main chain carbonyl oxygen (02). Intriguingly, the



macrocycle exhibits two slightly different conformations in the two-thrombin molecules present
within the asymmetric unit. This could be attributed to a certain degree of flexibility existing at
the level of the main chain amide bond connecting the B-hydroxyproline and the arginine groups
of the macrocycle. In one conformation, the main chain oxygen O1 of P2 points toward the main
chain nitrogen of Gly216 (Gly216 N) whereas in the flipped conformation the nitrogen N4 of P2
is oriented toward the main chain oxygen of the same Gly216 (Gly216 O). Based on the quality
of the electron density maps we can conclude that, in the tested conditions, the latter
conformation involving a hydrogen bond between N4 of P2 and the oxygen of Gly216 residue is
less represented in the asymmetric unit and thus slightly less favored in the formation of the

complex.

Interactions between human o-thrombin and P2

The P2 macrocycle fits very well into the cleft formed by the active site and the surrounding
substrate pockets covering a protein surface of 201 A2 (Table S3D). The pyrrolidine and
aromatic rings are perfectly oriented to form a large number of hydrophobic interactions with the
adjacent enzyme residues whereas the guanidine group and the main chain backbone are engaged
in hydrogen bonds with nearby enzyme residues. Most interactions of P2 with human a-thrombin
are mediated by the guanidine group of arginine that accommodates in the primary specificity S1
pocket. The guanidine group forms a salt bridge with the side chain carboxylic group of Asp189
(P2 N1 with Asp189 OD2) and two hydrogen bonds with the main chain oxygen of Gly219 (P2
N1 with Gly219 O) and a molecule of water (P2 N2 with H,O 10). Additionally, the guanidine
group forms two polar contacts with the main chain oxygen of Alal190 (P2 N1 with Alal90 O)
and the side chain carboxylic group of Aspl189 (P2 N2 with Asp189 OD1). The main chain
oxygen O1 and O5 of P2 form hydrogen bonds with the main chain nitrogen of Gly216 (Gly216
N) and Gly219 (Gly219 N), respectively (Table S3B). The macrocycle’ conformations and
interactions are very similar in the two active sites of the two-thrombin molecules present in the
asymmetric unit. P2 folds in very similar fashion in the two sites and the hydrogen-bonding
networks are highly conserved. The only exception is the hydrogen bond existing between the
main chain oxygen O1 of P2 and Gly216 N in one conformation and the hydrogen bond between
the main chain nitrogen N4 of P2 and Gly216 O in the flipped conformation (Table S3B).



Importantly, the binding of P2 to human a-thrombin is mediated by multiple hydrophobic
interactions as summarized in Table S3C. The P2 B-hydroxyproline pyrrolidine ring (C8 — C11)
point towards the hydrophobic cage shaped by the side chains of residues His57, Tyr60A,
Trp60D (proximal S2 pocket) and Leu99 (distal S3 pocket). The aromatic ring (C15 — C20) of
the P2 hydroxyl methyl-benzyl group forms hydrophobic interactions with main and side chains
of nearby residues Trp96, Arg97, GIu97A, Asn98 and Leu99. Additionally, the C23 — C28
phenyl ring establishes hydrophobic interactions with side chains of adjacent Gly216 and
Glu217, and residues of the lyophilic distal S3 pocket (Thrl72, Trp215). Furthermore, the
residues of the S3 pocket mediate interaction with ten atoms of P2 (N1, N2, N3, O1, 05, C1, C4,
C5, C22 and C33). Three P2 atoms (N1, C1 and N2) interact with the side chain of Asp189 (S1
pocket). Lastly, five atoms (C1, C2, N1, N2 and N3) form interactions with both main and side
chains of Alal90, a residue that differentiates the specificity of thrombin from trypsin.
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Fig. S1. Reaction kinetics of the thiol-to-amine cyclization reaction. (A) Inter-molecular
alkylation reaction. The N-terminally capped peptide Ac-Gly-Cys containing a Gly-Trp C-
terminal appendix (Trp was appended to facilitate detection at 280 nm) at a concentration of 10
uM was incubated with different concentrations of linker 1 for 5 min at 30 °C, and the reaction
stopped by addition of excess benzyl mercaptan (800 uM). The reactions were analyzed by RP-
HPLC. (B) The concentration of peptide-1-thiobenzyl adduct, quantified by integrating the area
under the peaks, is shown in dependence of the linker 1 concentrations in the reaction. (C)
Reaction kinetics of the macrocyclization reaction. The peptide Gly-Cys containing a Gly-Gly-
Trp C-terminal appendix at a concentration of 100 uM was incubated with 800 uM linker 1 at 30
°C for different time periods and the reaction quenched by addition of excess benzyl mercaptan
(8 mM). The reactions were analyzed by RP-HPLC. (D) The concentration of the expected
macrocyclic product, quantified by integrating the area under the peaks, is shown in dependence

of the reaction time. Mean values and variations of two measurements are shown.
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Fig. S2. Thiol-to-nitrogen cyclization reagents and side products. (A-B) Thiol-to-nitrogen
cyclization reaction with reagents 8-16. Chemical structures are shown in (A) and the yields of
the desired macrocycle products are shown as percentage of peptide incubated with the linkers in
(B). Black and white indicate 100% and 0% macrocyclization product, respectively. R = GGW,



R;1 = GW. N.D. = not determined. (C) Products and potential side products of the thiol-to-
nitrogen macrocyclization reaction illustrated with the dipeptide Gly-Cys and linker reagent 1.
The indicated colors and letters are the same as those used to highlight the HPLC peaks in the
chromatograms and to indicate the products in the tables of the Supplementary Data S1. The
peptide Met-Cys is used to illustrate the cyclic sulfonium side product (e). (D—E) Incubation of
Met-Cys-R (R = GGW) with di-eletrophiles yielded cyclic sulfonium products in most cases. (D)
LC-MS analysis of Met-Cys-R (100 uM) incubated with 1 (800 uM) for 1 hr at 30 °C.
Absorption (upper panel) and total ion count (lower panel) were recorded. Two peaks with
products having the mass of the desired macrocyclic product were observed (highlighted in green
and blue). (E) MS analysis of the first peak (green) showed a singly and doubly charged
molecule that is expected for the cyclic sulfonium product. (F) MS analysis of the second peak
(blue) showed a singly charged molecule expected for the thiol-to-amine cyclized peptide.
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Fig. S4. Characterization of trypsin and thrombin hits. (A) Macrocycles based on tri-peptide
20-19-25 and inhibition of trypsin. The chemical structure and the inhibition constant for trypsin
(K;) are shown on the left. The last number in the macrocycle name indicates the chemical linker.



Mean values and SD of three measurements are indicated for the Kjs. Analytic HPLC
chromatograms of the macrocycles and trypsin inhibition dose-response curves are shown in the
middle and on the right hand side. (B) Thrombin inhibitor 20-19-C+7 identified in the pilot-scale
library. The chemical structure and the K; (top right), analytical HPLC chromatogram (middle
right) and the trypsin inhibition dose-response curve (bottom right) are shown. The mean value

and SD of the K; were determined based on three measurement.
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Fig. S5. KLKS5 screen and HPLC analysis of thrombin hits. (A) KLKS5 inhibitor screen. 8988
macrocycles of the 12 formats shown on the top were screened. The macrocycles are composed
of an arginine residue for potential binding to S1 substrate binding pocket of KLK5, one of 107
amino acids with diverse side chains or structures (indicated with X; Table S1), a glycine or -
alanine (20) residue, a cysteine and one of the linkers 1-7. The library was screened against
KLKS5 using a fluorogenic protease substrate and macrocycle concentrations of 13 uM (or
slightly lower depending on the macrocyclization yields). The extent of KLKS5 inhibition is
indicated with color (linear black-red-white gradient for 100% to 0% inhibition). Reaction
products that were characterized further are indicated with arrows and are labeled with names
(the number and letters indicate amino acids and the last number the linker). (B—C) Analysis of
thrombin hits. Reversed-phase HPLC and MS analysis of peptides G-37-R-C and G-52-R-C
reacted with linker 2. The yields of P1-P4 are indicated as % of total peptide products. The

chemical structures of reagent 2 hydrolyzed once or twice are indicated. (B) The two peptides



carrying a GGW appendix were incubated with reagent 2 using exactly the same conditions as in
the screen (concentrations, solvents, volumes, pipetting order) and the products analyzed by LC-
MS. (C) The reaction of the peptide G-52-R-C without GGW appendix reacted with reagent 2
was analyzed by analytical RP-HPLC. The products of the equivalent experiment with G-37-R-C
is shown in Fig. 3B.
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Fig. S6. Structures, HPLC analysis, and activities of macrocycles. (A) Structures and
activities of peaks 1-4 (P1-P4) obtained by reacting peptides G-37-R-C and G-52-R-C with
reagent 2. The masses of P3 and P4 correspond to macrocycles that contain an additional linker 2
connecting two nucleophilic groups. While the first nucleophilic group is most likely the
secondary amine of glycine, the nature of the second nucleophilic group is not known. Kjs are
mean values of three measurements and SD are indicated. Analytic HPLC chromatograms and
thrombin inhibition dose-response curves are shown. (B) Structure-activity relationship (SAR)
analysis of P2. Structures and activities of P2 variants shown in Fig. 3C. Kjs are mean values of
three measurements. The SD is indicated. Analytic HPLC chromatograms and thrombin
inhibition dose-response curves are shown. (C) Structures and activities of KLK5 hits indicated
on fig. SBA. The macrocycles were synthesized with and without the GGW appendix and
characterized. K; values are means of three measurements. SDs are indicated. Analytic HPLC

chromatograms and KLKS5 inhibition dose-response curves are shown.
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Fig. S6. Continued
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Fig. S7. Chemical structure of P2. Atom numbers used in the PDB file are indicated. Intra-
molecular hydrogen bonds are shown as green dashed lines. Inter-molecular hydrogen bonds are
shown as dashed light green lines. The macrocycle exhibits two slightly different conformations
in the two-thrombin molecules present within the asymmetric unit. In one conformation, the
main chain oxygen O1 of P2 points toward the main chain nitrogen of Gly216 (Gly216 N)
whereas in the second conformation, the nitrogen N4 of P2 is oriented toward the main chain
oxygen of Gly216 (Gly216 O).
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Table S1. Chemical structures and codes of amino acids. The codes correspond to the

numbers in position X of macrocycles in the large-scale library.




Data collection *

Wavelength (A)
Space group
Cell parameters
a, b, c(A); o B,y ()
Resolution (A)

1.0725
P212124

55.94, 80.91, 159.43; 90, 90, 90
79.71—2.30 (2.38 — 2.30)

Independent reflections 32984 (3269)
Multiplicity 5.7 (5.9)
Rmerge 0.10 (0.65)
Rpim 0.068 (0.44)
<l /o(l)> 9.0 (2.0)
Completeness (%) 99.90 (99.91)
Refinement
No. reflections (Used for Ry calculation) 32984 (3269)
Ruwork / Réree 0.20/0.236
Number non-hydrogen atoms 4975
protein (chains A, B, H, L) 4636
ligand (YW6) 141
solvent 150
others (EDO, NAG, Na) 48
Geometry
RMSD values
bond lengths (A) 0.007
bond angles (°) 1.26

Ramachandran plot (%)




most favored 96.89

additionally allowed 3.11

outliers 0.0
Rotamers outliers (%) 1.58
Average B-factor 47.85

Table S2. Statistics on X-ray structure data collection and refinement. 3300 frames were
measured in 0.1° oscillation steps. (*). A single crystal was used to collect all diffraction data.

Highest-resolution shell statistics are shown within brackets. Atoms with multiple conformations
are counted as multiple and distinct scatterers.



P2 atom 1 P2 atom 2 Distance (A) Interaction
03 N6 3.0 HB
03 02 3.1 Pl
P2 atom thrombin atom / residue  Distance (A) Interaction
01 N/ Gly216 3.04 HB*
05 N/ Gly219 3.30 HB
N1 O/ Alal90 3.10 Pl
N1 O/ Gly219 3.02 HB
N1 OD2/ Asp189 2.72 SB
N2 OD1/ Asp189 3.40 Pl
N2 H,0 10 2.90 HB
N4 O/ Gly216 3.05 HB*
P2 atom thrombin atom / residue Distance (A)
C9 CG / His57 3.84
C9 CD2 / His57 3.43
C9 NE2 / His57 3.80
C10 CE2/ Tyr60A 3.50
C10 CZ / Tyr60A 3.74
C10 CZ2 / Trp60D 3.88
C11 CZ2/ Trp60D 3.64
C10 CH2 / Trp60D 3.77
C11 CH2 / Trp60D 3.70
C17 O/ Trp96 3.73
C18 O/ Trp96 351
C18 O/ Arg97 3.63



C17
C18
C17
C18
C17
C17
C17
C17
Cl6
C8
C25
N1
C1
N1
N2
C1
N1
C1
C1
C2
N1
N2
N3
N2
C2
Cc7
01
01
N2
01

C/GIu97A
C/GIu97A
O/ GIu97A
O/ GIu97A

N/ Asn98
CA/ Asn98
C/Asn98

N/ Leu99
CG/ Leu99
CD1/ Leu99
OG1/Thrl72
CG/ Aspl89
OD1/ Asp189
OD1/ Aspl89
OD1/ Aspl89
OD2 / Asp189
OD2 / Aspl189
C/ Alal90
O/ Ala190
O/ Alal90
O/ Ala190
O/ Ala190
O/ Alal90
CB/ Alal90
CA/Cys191
O/ Ser214
CA [/ Trp215
C/Trp215
O/ Trp215
CB/ Trp215

3.71
3.72
3.55
3.45
3.56
3.46
3.67
3.67
3.90
3.64
3.75
3.37
3.72
3.38
3.39
3.69
2.72
3.89
3.33
3.85
3.15
3.81
3.68
3.90
3.85
3.66
3.33
3.70
3.69
3.36



C24 CE3/ Trp215 3.87

C24 Cz3/Trp215 3.85
N3 N/ Gly216 3.85
01 N/ Gly216 3.04
c1 CA/Gly216 3.85
N1 CA/Gly216 3.80
C4 C/Gly216 3.89
c22 0/ Gly216 3.42
c23 0/ Gly216 3.88
C33 0/ Gly216 3.72
C4 0/ Gly216 3.01
C5 0/ Gly216 3.76
01 0/ Gly216 3.15
05 0/ Gly216 3.47
C25 CB/Glu217 3.60
C26 CB/Glu217 3.72
C25 CG/Glu217 3.79
C26 CG / Glu217 3.36
c27 CG/Glu217 3.63
C26 CD/ Glu217 3.38
C25 OE1/ Glu217 3.50
C26 OE1/Glu217 3.31
05 N / Gly219 3.30
05 CA/Gly219 3.63
c1 0/ Gly219 3.89
Cc2 0/ Gly219 3.27
c4 0/ Gly219 3.74
N1 0/ Gly219 3.02
Cc2 SG / Cys220 3.68

N2 CA/ Gly226 3.65




D Thrombin P2 Complex
Volume (A% 41442 831 42337
Surface area (A% 11271 598 11070

Table S3. Interactions between P2 and thrombin. (A) Atoms forming intra-molecular
interactions in the macrocycle P2. Optimal inter-molecular hydrogen bond (HB) and polar
interaction (P1) were identified and measured with the program PYMOL. (B) Atoms of the
macrocycle P2 forming inter-molecular interactions with atoms and residues of human o-
thrombin (chymotrypsin numbering). Optimal inter-molecular hydrogen bonds (HB), salt bridges
(SB) and polar interactions (PI) were defined using the web server PROFUNC. Note: H-bonds
present exclusively in one of the two conformations explored by P2 are indicated as * and #,
respectively. (C) Atoms of the macrocycle P2 forming hydrophobic interactions with atoms and
residues of human a-thrombin (chymotrypsin numbering). Interactions have distances shorter
than 4.0 A and were defined using the software LIGPLOT+ by the web server PROFUNC. (D)
The solvent excluded volume and the corresponding buried surface were calculated using the 3V
web server and a spherical probe of 1.5 A radius. The buried surface area between human a-
thrombin and P2 is 201 A,



Captions for Supplementary Data

Data S1. Raw data of peptide macrocyclization reactions.

Raw data of peptide macrocyclization reactions. The numbers in the tables indicate the quantities
of the macrocyclic product and side products that were formed with the indicated cyclization
reagents. The reactions were analyzed by LC-MS monitoring the absorption at 220 nm and
measuring the total ion count (TIC) in positive mode. The quantity of macrocycle and side
products were determined based on the area under the peaks and is indicated as percentage of
total peptide products. Peptides with a Gly-Gly-Trp (R) or Gly-Trp (R;) appendix were used as
substrates. For each cyclization reagent, the RP-HPLC and MS chromatograms are shown for the
peptide Gly-Cys-R as an example below the tables. The peak of the desired cyclic peptide
product is colored in blue. The peaks of frequently found side products are shown in different
colors as illustrated with the example of the peptide Gly-Cys-R and the reagent 1 in fig. S2C.
The peaks of less often observed side products are shown in green. They are a) dehydroalanine
derivative, b) disulfide-linked peptide, ¢) modification with two linkers, d) modification with two
linkers of which one has reacted with NHj3, €) cyclic sulfonium. The peaks of side products that
were not identified but are suspected to contain a peptide moiety (based on the mass) are colored
in grey. Abbreviations of amino acids: hCys = homocysteine, Mnv = 5-mercapto norvaline,

MeCys = N-methyl cysteine.

Data S2. Poster showing all 432 different macrocycle scaffolds in the pilot-scale library.

Poster showing the skeletal diversity of macrocycles in the pilot-scale library. The chemical
structures of all different backbones are shown and the names of macrocycles containing the
backbones are indicated below. The letters and numbers in the names indicate the amino acids

and cyclization linkers.
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