
Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
In the manuscript by Xiao, Dai, and Locasale, the authors describe the analysis of single cell RNA 
sequencing data from the perspective of metabolic genes. They use the enhanced resolution of 
single cell data to tease apart the contribution of variation in metabolic gene expression to tumor-
specific gene expression changes. The authors report that the majority of the variation in the data 
is associated with mitochondrial metabolic gene expression. They go on to analyze metabolic gene 
expression programs of specific malignant and immune cell types. While the analysis is novel, 
several aspects of it are confusing, and more importantly it appears that few specific conclusions 
are drawn from the results.  
 
Major Comments:  
1. I understand the premise that it is inherently interesting to study metabolic genes, because 
inferences could potentially be made on metabolic pathway activity from gene expression data. 
However, what is unclear to me is whether there is anything inherently "special" about metabolic 
genes. For example, in Fig 1d/e, the authors show that malignant cells cluster according to tumor 
when running tSNE on metabolic genes. Is this property of clustering within tumor-of-origin unique 
to metabolic genes, or would a randomly selected set of genes also exhibit this pattern?  
 
2. Can the authors explain why the results of Figure 2a/b appear so imbalanced? I was surprised 
to observe that malignant cells generically appear to upregulate a large variety of metabolic 
pathways, but downregulate comparatively few (with the opposite trend of a vast downregulation 
of metabolic pathways in the other cell types). Is this a real effect, or an artifact? Is it associated 
with the library size/number of reads of each cell? It may be useful in this scenario to repeat the 
analysis on non-metabolic pathways. If the same phenomenon is observed across all pathways, it 
would suggest the effect is artifactual.  
 
3. Related to the above comments, is it possible to ascribe some sort of p-value/measure of 
statistical significance to the pathway scores in Figure 2a/b?  
 
4. Related to the comment above, assuming the reported pathway changes are not artifactual, 
what are we to conclude from them? The authors write that the malignant cells undergo a "global 
up-regulation of metabolic activity." I understand that it is not feasible to measure flux at this kind 
of resolution, but it seems suspect to conclude that simply because gene expression levels are 
higher, that the corresponding flux through a metabolic pathway is similarly higher. This is a tough 
comment to respond to, and I don't expect the authors to be able to address it head-on, but I 
think a careful and clear clarification of the conclusions of this analysis in the text is called for. If 
we cannot infer changes in flux, what is it that we should conclude from these findings?  
 
5. I found the analysis of metabolic variation intriguing, but the methodological approach puzzling. 
If the question is to understand which metabolic genes contribute the greatest amount to the 
variation in the data, why not simply calculate this quantity directly using the gene expression 
data, e.g. by calculating the coefficient of variation on the log(transcripts per million) of each 
gene? Summing the absolute values of the loadings in the first few principal components is an 
alternative approach, but it feels both (1) indirect, and (2) inappropriate because PCA inherently is 
looking for linear combinations of (rather than individual) metabolites which maximize variance. 
Does running GSEA using a metric like the coefficient of variation produce similar results? Related 
to this, I would also ask the authors to confirm that their results are not corrupted by total 
average expression (i.e. the sum of TPMs) of the constituent genes in their geneset. OXPHOS is 
itself among the most highly expressed sets of genes in many cell types, and if this is not properly 
accounted for, it could appear that it is driving the majority of variation in gene expression simply 
because it is so highly expressed.  
 



6. Given that the expression of genes involved in glycolysis and OXPHOS is correlated to hypoxia, 
could the authors describe the gene expression signature of OXPHOS low/glycolysis low/hypoxia 
low cells?  
 
7. The analysis of metabolic programs in immune cells was again novel, but also felt lacking a 
conclusion. Is there any functional data, either already-published or newly produced by the 
authors, which can help to validate and give additional context to the findings reported in Figure 
5b/c/d/e? Do these pathways truly carry different levels of flux in different cell types? If this is not 
possible, is there any additional data on metabolite levels in these cell types which would offer 
(albeit indirect) supportive evidence of distinct metabolic activity in OXPHOS and other pathways 
across CD8+/CD4+ or Th/Treg cell types?  
 
8. Despite many of my critical comments above, I would also like to commend the authors. They 
have organized, annotated, and released their code on Github, which is valuable to many others 
who will seek to apply reproduce and build on their approach in other datasets.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
Xiao et al investigate previously published single-cell RNA-seq data aiming to better understand 
the heterogeneity of tumour metabolism, taking into account both the cancer and normal cell 
compartments. This work is timely complement to the original reports of the single-cell RNA-seq 
measurements, which were based on a global analysis of the gene expression profiles leaving open 
the investigation of the tumour metabolism. Using their computational analysis Xia et al uncover 
some interesting features about the metabolism of cancer cells and anon-cancerous cells in human 
tumours that cannot be deduced from the bulk gene expression profiles of tumours. The 
observation that, at the single cell level, the gene signatures of hypoxia positively correlate with 
those of oxidative phosphorylation is interesting and it should be motivation for future in vitro or in 
vivo experimental work. There are however a number of points where further work is required to 
support the conclusions made.  
 
1- Section starting at line 79. Since the metabolic analysis is based on a subset of the genes, it is 
important to understand up to what extent the expression profiles associated with metabolic gene 
set are statistically similar or different to the expression profiles from the whole set of genes. 
Specifically, how the clustering in Fig. 1d-g compares to the same clustering using as input the 
expression profiles of all genes? The comparison could be done using relative mutual information 
I(A,B)/max{I(A,B)}, where A ad B are the two different clustering, I(A,B) is the observed mutual 
information between the two clusterings and max{I(A,B)} its expected maximum.  
 
2- Line 162. At this point the authors investigate differences between observations made using 
single cell vs bulk gene expression profiles. As a reference the use bulk gene expression profiles 
from the TCGA. This is not a proper design to make that test because we cannot warranty that the 
TCGA samples are statistically equivalent to the bulk expression profiles of the samples for which 
single cell data is available. Although there is no bulk data for the latter, the authors can 
computationally reconstruct the bulk gene expression profiles by adding the single cell gene 
expression profiles associated with each tumour, weighting each cell compartment by the 
corresponding fraction of the total tumour mass. Then the authors should compare the analysis 
made on the single cell data with that made on the reconstructed bulk gene expression profiles. In 
this way the authors will eliminate any confounding factors due to that analysis of different tumour 
samples and different experimental protocols.  
 
3- Line 210. The authors report: “To our surprise, we also found that OXPHOS significantly 
correlated with glycolysis”. I understand there is a common credo that OXPHOS and glycolysis 
antagonize each other, but that that is mostly based on assumptions from propagation of ideas in 



the “old” literature. The authors should provide a level of reference to evaluate the significance of 
that surprise. For example, the authors could repeat the same analysis using gene expression 
profiles for a panel of cancer cell lines cultured in vitro (e.g., Cancer Cell Line Enciclopedia). If in 
the latter the OXPHOS gene signature is not correlated to the glycolysis gene signature than we 
can say that the correlation is linked to the tumour microenvironment.  
 
4- The overall impression from this investigation is that OXPHOS and glycolysis are the major 
drivers of the inter- and intra- metabolic heterogeneity of tumours, both in malignant and non-
malignant cells within the tumour. This should be stressed in a summary Figure. I note that 
information is somehow depicted in Fig. 2a,b, but there is too much distraction in that figure. For 
example, the data represented in the glycolysis and OXPHOS lanes in Fig. 2a,b could be plotted 
using a box plot format. That would give a better idea about the magnitude of the differences 
reported, from the malignant cells to the non-malignant cells and between non-malignant cells. 
This way of plotting the data will also allow for a better sense of up to what extent some of the 
reported changes are trends or actually significant. For example, in line 283 it is reported that 
glycolysis is upregulated in CAFs relative to myofibroblast with a significance of 0.048. We need to 
see the boxplot with outliers highlighted as scatter to get a better idea of whether that is 
significant.  
 



Responses to both reviewers: 

We thank the reviewers for their helpful comments and constructive suggestions and the positive 
evaluation of our work. When additional analysis was conducted, the data are presented both in the 
revised manuscript and also in response figures shown below.  Modifications to the text are shown in 
yellow font. 

Since both reviewers have raised the comment regarding the difference between metabolic genes and 
non-metabolic genes in generating the clustering patterns of the malignant and non-malignant cells, 
we have repeated the t-SNE analysis in (1) a randomly selected set of genes (Response Figure 1a-d); (2) 
the complete set of genes included in the single-cell RNA-seq datasets (Response Figure 1e-h), and 
compared the resulting clustering patterns with that generated using the metabolic genes using the 
relative mutual information metric (Response Table 1). We found that for both melanoma and HNSCC, 
clustering patterns of the random gene set and the complete gene set are both highly consistent with 
that generated with metabolic genes (relative mutual information close to 1), in which malignant cells 
were clustered according to their tumor-of-origin while non-malignant cells were clustered by cell type.  

Taken together, these results suggest that the distinct clustering patterns of malignant cells and non-
malignant cells reflect the relationship between cell phenotypes and the tumor microenvironment. 
Gene expression programs in malignant cells are in general more flexible and responsive to alterations 
in genetic and environmental factors that affect both metabolic and non-metabolic pathways. We have 
included the additional analyses and relevant discussions in the revised manuscript. 

 

Response Figure 1 (now Supplementary Figure 3) t-SNE plots generated using different gene sets. 
(a) t-SNE plot of expression profiles of randomly selected genes in malignant cells from the melanoma 
dataset. The color of each dot indicates the tumor from which the cell was derived. (b) same as in (a) 
but for non-malignant cells. (c) same as in (a) but for the HNSCC dataset. (d) same as in (b) but for the 
HNSCC dataset. (e) same as in (a) but for the complete gene set. (f) same as in (b) but for the complete 
gene set. (g) same as in (c) but for the complete gene set. (h) same as in (d) but for the complete gene 
set. 



Response Table 1 (now Supplementary Table 1). Relative mutual information between t-SNE results 
generated using different gene sets 

Data set 
Metabolic gene set 

vs 
Complete gene set 

Metabolic gene set 
vs 

Random gene set 

Melanoma 
Malignant cells 

Non-malignant cells 

1 

0.96 

1 

0.96 

HNSCC 
Malignant cells  

Non-malignant cells 

1 

1 

1 

1 

 

Reviewer #1 (Remarks to the Author): 

 
In the manuscript by Xiao, Dai, and Locasale, the authors describe the analysis of single cell RNA 
sequencing data from the perspective of metabolic genes. They use the enhanced resolution of single cell 
data to tease apart the contribution of variation in metabolic gene expression to tumor-specific gene 
expression changes. The authors report that the majority of the variation in the data is associated with 
mitochondrial metabolic gene expression. They go on to analyze metabolic gene expression programs of 
specific malignant and immune cell types. While the analysis is novel, several aspects of it are confusing, 
and more importantly it appears that few specific conclusions are drawn from the results. 

We thank the reviewer for the positive remarks and constructive suggestions. We have included 
additional analysis and clarification in the revised manuscript to address the reviewer’s concerns. 

Major Comments: 

 
1. I understand the premise that it is inherently interesting to study metabolic genes, because inferences 
could potentially be made on metabolic pathway activity from gene expression data. However, what is 
unclear to me is whether there is anything inherently "special" about metabolic genes. For example, in Fig 
1d/e, the authors show that malignant cells cluster according to tumor when running tSNE on metabolic 
genes. Is this property of clustering within tumor-of-origin unique to metabolic genes, or would a 
randomly selected set of genes also exhibit this pattern? 

We thank the reviewer for raising this comment. We completely agree that it is important to compare 
the single-cell transcriptomic landscape between metabolic genes and non-metabolic genes. Since 
another reviewer has also raised this concern, we have responded to it in the section ‘Responses to both 
reviewers’ at the beginning of the response letter. Please refer to our general responses for more details. 

2. Can the authors explain why the results of Figure 2a/b appear so imbalanced? I was surprised to 
observe that malignant cells generically appear to upregulate a large variety of metabolic pathways, but 
downregulate comparatively few (with the opposite trend of a vast downregulation of metabolic pathways 
in the other cell types). Is this a real effect, or an artifact? Is it associated with the library size/number of 
reads of each cell? It may be useful in this scenario to repeat the analysis on non-metabolic pathways. If 
the same phenomenon is observed across all pathways, it would suggest the effect is artifactual.  

We thank the reviewer for raising this concern. In the previous version of manuscript, we had made 
attempts to avoid artifacts by applying appropriate data normalization method that resulted in similar 
distributions of relative gene expression across cell types (deconvolution method, Supplementary 



Figure 4). After the data normalization, all cell types show similar extent of up- and down-regulation 
of gene expression. Thus, we believe that the imbalanced distribution of pathway score for metabolic 
pathways in malignant cells indicates global up-regulation of metabolic pathways.  

To further clarify this point and exclude the possibility of artifacts, we have now extended the analysis 
of pathway scores to non-metabolic pathways (Response Figure 2). We found that the distributions of 
pathway scores in non-metabolic pathways were similar among all cell types with median values close 
to 1 (i.e. no global up-regulation or down-regulation of pathway activities in any cell type), indicating 
that the global up-regulation in malignant cells is a unique feature of metabolic pathways. We have 
included these results as Supplementary Figure 6 in the revised manuscript. 

Moreover, we agree with the reviewer that sequencing depths and library sizes are important factors to 
consider to fully exclude artifacts. However, these variables are currently not available. The gene 
expression levels in these two datasets are quantified using TPM values in which the variation in 
sequencing depth has already been corrected for. It is also worth noting that for single cell RNA-seq 
data, the relative gene expression level and pathway score could be greatly affected by genes with low 
expression level or high drop-out rates, thereby biasing the pathway scores towards values much 
higher than 1. Thus, in the revised manuscript, we have also re-evaluated the pathway scores after 
including an additional step of removing outliers defined by genes whose relative expression levels are 
higher than 3 times 75th percentile or below 1/3 times 25th percentile in each pathway. The resulting 
metabolic pathway activities still exhibit the pattern of global up-regulation in malignant cells. The 
updated results are included in the revised manuscript (Figure 2). 

3. Related to the above comments, is it possible to ascribe some sort of p-value/measure of statistical 
significance to the pathway scores in Figure 2a/b? 

Response Figure 2 (now Supplementary Figure 6) Pathway activity score distributions of 
metabolic and non-metabolic pathways in cell types. (a) Distributions of metabolic pathway 
activity score in cell types in the melanoma dataset. (b) Same as in (a) but for HNSCC dataset. (c) 
Distributions of non-metabolic pathway activity scores in cell types in the melanoma dataset. (d) 
Same as in (c) but for the HNSCC dataset. 



We thank the reviewer for this suggestion and apologize for the confusion. In the original manuscript, 
we have already evaluated the statistical significance of pathway scores using a random permutation 
test, in which we randomly shuffled the cell type labels to generate a null distribution of pathway 
scores (details in the section ‘Calculation of pathway activity’).  Only pathway scores with statistical 
significance (p-value<0.05) were shown in the heatmaps in Figure 2a and b. In the revised manuscript, 
we have included additional clarification of this point and reported the pathway scores and associated 
p-values as a supplementary file (Supplementary Table 2). 

4. Related to the comment above, assuming the reported pathway changes are not artifactual, what are we 
to conclude from them? The authors write that the malignant cells undergo a "global up-regulation of 
metabolic activity." I understand that it is not feasible to measure flux at this kind of resolution, but it 
seems suspect to conclude that simply because gene expression levels are higher, that the corresponding 
flux through a metabolic pathway is similarly higher. This is a tough comment to respond to, and I don't 
expect the authors to be able to address it head-on, but I think a careful and clear clarification of the 
conclusions of this analysis in the text is called for. If we cannot infer changes in flux, what is it that we 
should conclude from these findings? 

We thank the reviewer for the helpful suggestion and thoughtful remarks. We completely agree with 
the reviewer that metabolic gene expression levels and metabolic fluxes are not equivalent. The key 
point here is to what extent changes in metabolic gene expression reflect changes in metabolic fluxes. 
Although measurements of metabolic fluxes at the single-cell level are currently not available due to 
technical limitations, evidence from bulk measurements of metabolic gene expression, metabolic flux 
and metabolite abundance has suggested positive correlation between expression levels of metabolic 
genes, metabolic fluxes and abundance of metabolites (e.g. Mehrmohamadi et al, Cell Reports 2014, 
PMID: 25456139; Peng et al, Cell Reports 2018, PMID: 29617665). Thus, we believe that the 
metabolic gene expression features we identified in this study indicate overall trends of metabolic 
activities in single malignant and non-malignant cells. We have included additional discussion about 
this point in the revised manuscript. 

5. I found the analysis of metabolic variation intriguing, but the methodological approach puzzling. If the 
question is to understand which metabolic genes contribute the greatest amount to the variation in the data, 
why not simply calculate this quantity directly using the gene expression data, e.g. by calculating the 
coefficient of variation on the log(transcripts per million) of each gene? Summing the absolute values of 
the loadings in the first few principal components is an alternative approach, but it feels both (1) indirect, 
and (2) inappropriate because PCA inherently is looking for linear combinations of (rather than individual) 
metabolites which maximize variance. Does running GSEA using a metric like the coefficient of variation 
produce similar results? Related to this, I would also ask the authors to confirm that their results are not 
corrupted by total average expression (i.e. the sum of TPMs) of the constituent genes in their geneset. 
OXPHOS is itself among the most highly expressed sets of genes in many cell types, and if this is not 
properly accounted for, it could appear that it is driving the majority of variation in gene expression 
simply because it is so highly expressed. 

We thank the reviewer for raising this concern.  

We used PCA loadings to identify the highly variable genes and control for potential confounders such 
as baseline expression levels and noise in gene expression. A strategy similar to our PCA-based 
approach has also been applied to select highly variable genes and identify cell subpopulations based 
on single cell RNA-seq datasets in other studies (e.g. Fan et al. Nature Methods 2016, PMID: 
26780092). Coefficient of variation (CV), on the other hand, tends to be higher for genes with lower 
expression levels. To clarify this point, we have evaluated the correlation between baseline gene 
expression levels and heterogeneity metrics including PCA score, CV and standard deviation (SD) 



(used to quantify heterogeneity in gene expression for example in Elham et al. Cell 2018, PMID: 
29961579). We found that CV monotonically decreased with increasing expression level, meaning that 
genes with higher CV tend to have lower expression levels (Response Figure 3a). On the other hand, 
correlations between average expression and SD (Response Figure 3b) or PCA score (Response Figure 
3c) were lower, and genes with the highest PCA scores or SD values were neither these with highest 
expression levels nor those with lowest expression. Thus, we believe that the PCA score and SD are 
better metrics for heterogeneity in gene expression since they are less sensitive to confounding by 
changes in average gene expression level.  

We have also repeated the GSEA analysis for highly heterogenous genes identified using CV and SD 
(Response Figure 3d,e) and found that the enriched pathways were highly consistent between the PCA 

Response Figure 3 (now supplementary Figure 9) Comparison of PCA score, CV and SD for 
quantifying intratumoral heterogeneity. (a) Scatter plot comparing mean gene expression and 
coefficient of variation (CV) in malignant cells from the melanoma tumor MEL3. (b) Same as in (a) 
but for standard deviation (SD). (c) Same as in (a) but for PCA score. (d) Metabolic pathways 
enriched in genes with highest CV in melanoma dataset. (e) Same as in (d) but for genes with highest 
SD. (f) Same as in (d) but for genes with highest PCA score. (g) Swarm plots comparing distributions 
of gene expression levels in OXPHOS and steroid hormone biosynthesis. 



score (Response Figure 3f) and SD, while steroid hormone biosynthesis, the top pathway associated 
with high CV, had much lower gene expression levels and visibly less variation in gene expression 
compared to OXPHOS, the top heterogenous pathway identified by SD and the PCA score (Response 
Figure 3g). We have added these results to the revised manuscript as Supplementary Figure 9. 

6. Given that the expression of genes involved in glycolysis and OXPHOS is correlated to hypoxia, could 
the authors describe the gene expression signature of OXPHOS low/glycolysis low/hypoxia low cells?  

We thank the reviewer for this helpful suggestion. We have included additional analysis to identify the 
gene expression signatures of OXPHOS low/glycolysis low/hypoxia low cells (Response Figure 4) in 
the revised manuscript. Briefly, we identified genes differentially expressed between the two groups of 
cells with the highest or lowest expression levels of genes in OXPHOS, glycolysis and hypoxia and 
applied GO enrichment analysis to identify biological functions enriched in genes up-regulated in cells 
with lowest expression levels of genes in OXPHOS, glycolysis and hypoxia pathways. We found that in 
both melanoma and HNSCC, genes up-regulated in the OXPHOS low/glycolysis low/hypoxia low cells 
were related to the GO term ‘negative regulation of execution phase of apoptosis’, suggesting that this 
subpopulation of cells is associated with reduced apoptosis which may facilitate cancer progression. 
These results are included in the revised manuscript as Figure 3g, h and Supplementary Figure 11.  

7. The analysis of metabolic programs in immune cells was again novel, but also felt lacking a conclusion. 
Is there any functional data, either already-published or newly produced by the authors, which can help to 
validate and give additional context to the findings reported in Figure 5b/c/d/e? Do these pathways truly 
carry different levels of flux in different cell types? If this is not possible, is there any additional data on 
metabolite levels in these cell types which would offer (albeit indirect) supportive evidence of distinct 
metabolic activity in OXPHOS and other pathways across CD8+/CD4+ or Th/Treg cell types? 

We thank the reviewer for raising this concern. First, as we noted previously, although measurements 
of metabolic fluxes at the single-cell level are currently unavailable, there is evidence supporting a 
positive correlation between metabolic gene expression levels and metabolic fluxes. Thus, we expect 
that the directions of changes we observed with metabolic gene expression levels are consistent with 

Response Figure 4 (now 
Figure 3g-h) Gene 
expression signature of 
cells with lowest 
expression levels of 
OXPHOS, glycolysis, 
and hypoxia pathways. 
(a) GO terms enriched in 
genes up-regulated in cells 
with lowest expression 
levels of glycolysis, 
OXPHOS and hypoxia 
pathways for the 
melanoma dataset. (b) 
Same as in (a) but for the 
HNSCC dataset.  



that of metabolic fluxes. Moreover, there is also evidence from experimental studies that validates our 
computational analysis. For instance, there are studies showing that mitochondrial metabolism is up-
regulated in Tregs compared to Ths (e.g. Weinberg et al, Nature 2019, PMID: 30626970; Angelin et al. 
Cell Metabolism 2017, PMID: 28416194), which is consistent with our analysis.  We have included 
additional references and discussion in the revised manuscript. 

8. Despite many of my critical comments above, I would also like to commend the authors. They have 
organized, annotated, and released their code on Github, which is valuable to many others who will seek 
to apply reproduce and build on their approach in other datasets. 

We thank the reviewers for the positive comment. We are delighted to see that our code is helpful to 
others in the field. 

 

Reviewer #2 (Remarks to the Author): 
 
Xiao et al investigate previously published single-cell RNA-seq data aiming to better understand the 
heterogeneity of tumour metabolism, taking into account both the cancer and normal cell compartments. 
This work is timely complement to the original reports of the single-cell RNA-seq measurements, which 
were based on a global analysis of the gene expression profiles leaving open the investigation of the 
tumour metabolism. Using their computational analysis Xiao et al uncover some interesting features about 
the metabolism of cancer cells and anon-cancerous cells in human tumours that cannot be deduced from 
the bulk gene expression profiles of tumours. The observation that, at the single cell level, the gene 
signatures of hypoxia positively correlate with those of oxidative phosphorylation is interesting and it 
should be motivation for future in vitro or in vivo experimental work. There are however a number of 
points where further work is required to support the conclusions made. 

We thank the reviewer for the positive evaluation of our work and the constructive suggestions. We 
have included additional analysis as the reviewer suggested in the revised manuscript. 
 
1- Section starting at line 79. Since the metabolic analysis is based on a subset of the genes, it is important 
to understand up to what extent the expression profiles associated with metabolic gene set are statistically 
similar or different to the expression profiles from the whole set of genes. Specifically, how the clustering 
in Fig. 1d-g compares to the same clustering using as input the expression profiles of all genes? The 
comparison could be done using relative mutual information I(A,B)/max{I(A,B)}, where A ad B are the 
two different clustering, I(A,B) is the observed mutual information between the two clusterings and 
max{I(A,B)} its expected maximum. 

We thank the reviewer for this comment. In the revised manuscript, we have repeated the t-SNE and 
clustering analysis with the complete set of genes and set of randomly generated genes, and compared 
the resulting clustering patterns with that generated with metabolic genes. We have also used the 
relative mutual information as the reviewer suggested to quantify the similarity between clustering 
patterns generated using different gene sets. Since another reviewer has also raised the same comment, 
we have responded to it in the section ‘Responses to both reviewers’ at the beginning of the response 
letter. Please refer to that section for more details. 

2- Line 162. At this point the authors investigate differences between observations made using single cell 
vs bulk gene expression profiles. As a reference the use bulk gene expression profiles from the TCGA. 
This is not a proper design to make that test because we cannot warranty that the TCGA samples are 
statistically equivalent to the bulk expression profiles of the samples for which single cell data is available. 



Although there is no bulk data for the latter, the authors can computationally reconstruct the bulk gene 
expression profiles by adding the single cell gene expression profiles associated with each tumour, 
weighting each cell compartment by the corresponding fraction of the total tumour mass. Then the authors 
should compare the analysis made on the single cell data with that made on the reconstructed bulk gene 
expression profiles. In this way the authors will eliminate any confounding factors due to that analysis of 
different tumour samples and different experimental protocols. 

We thank the reviewer for raising this concern. We completely agree with the reviewer that factors 
such as batch effect and difference in experimental procedures may result in substantial difference 
between the bulk samples from TCGA and the samples used in the single cell RNA-seq study. Ideally 
this issue could be addressed by reconstructing bulk tumor and normal samples for the single cell 
dataset as the reviewer suggested. However, all cells included in the single cell dataset were derived 
from tumors, resulting in difficulty in reconstructing bulk gene expression profiles for normal tissue, 
since non-malignant cells in the tumor microenvironment also undergo reprogramming of cellular 
metabolism thus being very different from the same types of cells in normal tissues. 

Nevertheless, despite the difficulty in reconstructing bulk normal samples for the single cell dataset, we 
can still reconstruct gene expression profiles for the bulk tumors by pooling the gene expression 
profiles of single cells derived from the same tumor to confirm that they are comparable to the tumor 
samples in TCGA. In the revised manuscript, we have reconstructed bulk tumor gene expression 
profile for each patient using all single malignant and non-malignant cells derived from this patient to 
evaluate the similarity between TCGA and the single cell dataset (Response Figure 5). We have also 
reconstructed bulk T cell gene expression profile by pooling randomly selected single T cells as a 
negative control. Indeed there were very strong correlations between TCGA gene expression profiles 
and the reconstructed bulk tumor gene expression profiles, while the correlation coefficients between 
the reconstructed bulk T cell sample and the TCGA gene expression profiles were weaker, suggesting 
that the reconstructed bulk tumors, but not the pooled T cells, closely resemble the TCGA tumor 
samples in terms of gene expression profiles. We believe that this is a strong evidence to support that 
the tumor samples from TCGA and those from the single cell RNA-seq dataset are approximately 
equivalent. We have included these results and corresponding discussions in the revised manuscript. 

3- Line 210. The authors report: “To our surprise, we also found that OXPHOS significantly correlated 
with glycolysis”. I understand there is a common credo that OXPHOS and glycolysis antagonize each 
other, but that that is mostly based on assumptions from propagation of ideas in the “old” literature. The 
authors should provide a level of reference to evaluate the significance of that surprise. For example, the 
authors could repeat the same analysis using gene expression profiles for a panel of cancer cell lines 
cultured in vitro (e.g., Cancer Cell Line Enciclopedia). If in the latter the OXPHOS gene signature is not 

Response Figure 5 (now 
supplementary Figure 7) 
Distributions of Pearson correlation 
coefficients between TCGA bulk 
tumors and bulk-like tumors 
reconstructed using the single cell 
dataset. 



correlated to the glycolysis gene signature than we can say that the correlation is linked to the tumour 
microenvironment. 

We thank the reviewer for this helpful suggestion. Following this reviewer’s suggestion, we have 
performed additional analysis to evaluate the correlation between OXPHOS and glycolysis using gene 
expression profiles of cultured cancer cell lines from the Cancer Cell Line Encyclopedia (Response 
Figure 6). The analysis showed that only the correlation between glycolysis and hypoxia was preserved 
in the cultured cancer cells, while the correlation between gene signature of OXPHOS and glycolysis 
and that between OXPHOS and hypoxia were lost. We have included these results in the revised 
manuscript as Figure 3f and added discussion of this point. 

4- The overall impression from this investigation is that OXPHOS and glycolysis are the major drivers of 
the inter- and intra- metabolic heterogeneity of tumours, both in malignant and non-malignant cells within 
the tumour. This should be stressed in a summary Figure. I note that information is somehow depicted in 
Fig. 2a,b, but there is too much distraction in that figure. For example, the data represented in the 
glycolysis and OXPHOS lanes in Fig. 2a,b could be plotted using a box plot format. That would give a 
better idea about the magnitude of the differences reported, from the malignant cells to the non-malignant 
cells and between non-malignant cells. This way of plotting the data will also allow for a better sense of 
up to what extent some of the reported changes are trends or actually significant. For example, in line 283 
it is reported that glycolysis is upregulated in CAFs relative to myofibroblast with a significance of 0.048. 
We need to see the boxplot with outliers highlighted as scatter to get a better idea of whether that is 
significant. 

We thank the reviewer for raising this point. We have revised the figures to include boxplots comparing 
average expression levels of glycolysis and OXPHOS genes across different cell types and included 
one-way ANOVA p-values to evaluate the significance level of difference in gene expression across cell 
types (Response Figure 8). We have also included boxplots to compare average expression levels of all 
pathways significantly differentially expressed between the subtypes of T cells and fibroblasts, and 
performed Wilcoxon’s rank-sum test to confirm the significance of differential expression of the 
pathways between cell subtypes (Response Figure 9). Moreover, we have updated Figure 5c to correct 
the mistake that in the previous version, all bars in this figure were colored regardless of whether the 
enrichment of the corresponding pathway was significant. 

 

 

 

 

Response Figure 6 (now Figure 3f) Scatter plots comparing activities of 
glycolysis, OXPHOS and response to hypoxia in cancer cell lines from CCLE. 



 

 

 

 

 

 

 

 

 

 

Response Figure 8 (now supplementary Figure 5) Distributions of average 
expression level of OXPHOS and glycolysis genes in cell types. (a) 
Distributions of average OXPHOS (left) and glycolysis (right) gene expression 
levels in cell types in the melanoma dataset. (b) Same as in (a) but for the 
HNSCC dataset. P-values in each graph were computed using one-way ANOVA. 



 

Response Figure 9 (now supplementary Figure 13) Distributions of average expression 
level of pathways differently expressed in cell subtypes. (a) Distributions of average 
expression of all OXPHOS genes (left) and the leading-edge genes enriched in the GSEA 
analysis (right) in CD4+ and CD8+ T cells in the melanoma dataset. (b) Distributions of 
average gene expression levels for pathways differentially expressed between CD4+ and 
CD8+ T cells in the HNSCC dataset. (c) Same as in (b) but for pathways differentially 
expressed in Th and Treg cells in the melanoma dataset. (d) Same as in (c) but for the 
HNSCC dataset. (e) same as in (d) but for pathways differentially expressed in CAF cells 
and Myofib cells in the HNSCC dataset. P-values shown in each graph were computed using 
one-sided Wilcoxon’s rank-sum test for comparison of gene expression levels between the 
cell subtypes. 



Reviewers' Comments:  
 
Reviewer #1:  
Remarks to the Author:  
The authors have sufficiently addressed my critiques and comments.  
 
I would make one additional suggestion which may help clarify one of my concerns. Regarding the 
question of what to conclude from generic upregulation of metabolic genes (but not other sets of 
genes), it may be useful to think about the "compositional" nature of this data. My impression of 
the author's finding is that, from a compositional/proportional perspective, the tumor cells are 
actually dedicating more of their fixed sum of "transcriptional resources" (which may/may not 
translate to bona fide changes in protein levels) to metabolic genes. While this still really does not 
lead to a conclusion about metabolic flux, it does implicitly suggest that if *every* enzyme is at 
higher abundance, then the per-cell turnover rate of every reaction may be higher. These are 
simply my thoughts, and the authors are free to ignore them or use them as they please.  
 
 
 
Reviewer #2:  
Remarks to the Author:  
As I comment in my first review this is an interesting work with some points to be addressed. The 
authors have addressed most of my previous comments and by doing so the manuscript has 
improved significantly. However, point 2 was not addressed to a full extent. This point is related to 
two major conclusions of this work. Paraphrasing the abstract  
 
A- “We find that malignant cells in general have higher metabolic activity and higher metabolic 
variation than previously observed from studies of bulk tumor comparisons.  
 
B- “Indeed, most of the observed metabolic variation of single tumor and normal cells were found 
to be inconsistent with comparisons with bulk tumor samples.”  
 
If these conclusions are indeed true then we need to invest more resources into conducting single-
cell analyses to obtain the correct understanding of tumor metabolism. My point 2 was that the 
analysis provided by the authors is not sufficient to support those conclusions. Their analysis was 
potentially flawed because the cohorts for the bulk and single cell data are different. I suggested 
they could address that caveat by reconstructing the bulk gene expression from the single cell 
gene expression profiles.  
 
In their response the authors reconstructed the bulk gene expression data and went on to show 
that it is highly correlated with the TCGA bulk gene expression data. However, I do not understand 
why they stopped there. It is straightforward for the authors to conduct, I have previously 
requested, the metabolic pathway analysis using the reconstructed gene expression data. 
Specifically, what I request is a statistical test for the conclusions A and B cited above, using as 
input the single cell and the reconstructed bulk expression profiles. Since this has not been 
provided I still consider this work unsuitable for publication.  
 
The authors cited as a limitation the lack of representation of tumor stroma cells in their single cell 
data. However, this potential limitation appears to be not relevant when they compared the 
reconstructed bulk gene expression data with the TCGA data. That evidence can be taken as 
support of the validity of the reconstructed bulk gene expression data, which can then be used to 
carry on my request.  
 
From my end point the request stands. The authors have not provided a proper statistical test to 
claim A and B above. Either they address that point using a reconstructed bulk gene expression 



profile or they would require to design a new study where the test could be conducted using bulk 
and single cell data fro the same samples.  



Reviewer #1 (Remarks to the Author): 
 
The authors have sufficiently addressed my critiques and comments.  
 
I would make one additional suggestion which may help clarify one of my concerns. Regarding the 
question of what to conclude from generic upregulation of metabolic genes (but not other sets of 
genes), it may be useful to think about the "compositional" nature of this data. My impression of the 
author's finding is that, from a compositional/proportional perspective, the tumor cells are actually 
dedicating more of their fixed sum of "transcriptional resources" (which may/may not translate to 
bona fide changes in protein levels) to metabolic genes. While this still really does not lead to a 
conclusion about metabolic flux, it does implicitly suggest that if *every* enzyme is at higher 
abundance, then the per-cell turnover rate of every reaction may be higher. These are simply my 
thoughts, and the authors are free to ignore them or use them as they please. 

We thank the reviewer for the positive remarks and insightful thoughts. In the revised manuscript, 
we have included more discussion of how the global up-regulation of metabolic genes in single 
malignant cells is related to changes in metabolic fluxes in these cells.  
 
Reviewer #2 (Remarks to the Author): 
 
As I comment in my first review this is an interesting work with some points to be addressed. The 
authors have addressed most of my previous comments and by doing so the manuscript has improved 
significantly.  

We greatly appreciate the reviewer’s positive evaluation of the revisions. We have performed 
additional analysis to address the remaining concern raised by this reviewer. 

However, point 2 was not addressed to a full extent. This point is related to two major conclusions of 
this work. Paraphrasing the abstract 
 
A- “We find that malignant cells in general have higher metabolic activity and higher metabolic 
variation than previously observed from studies of bulk tumor comparisons.  
 
B- “Indeed, most of the observed metabolic variation of single tumor and normal cells were found to 
be inconsistent with comparisons with bulk tumor samples.” 
 
If these conclusions are indeed true then we need to invest more resources into conducting single-cell 
analyses to obtain the correct understanding of tumor metabolism. My point 2 was that the analysis 
provided by the authors is not sufficient to support those conclusions. Their analysis was potentially 
flawed because the cohorts for the bulk and single cell data are different. I suggested they could 
address that caveat by reconstructing the bulk gene expression from the single cell gene expression 
profiles. 
 
In their response the authors reconstructed the bulk gene expression data and went on to show that it 
is highly correlated with the TCGA bulk gene expression data. However, I do not understand why 
they stopped there. It is straightforward for the authors to conduct, I have previously requested, the 
metabolic pathway analysis using the reconstructed gene expression data. Specifically, what I request 
is a statistical test for the conclusions A and B cited above, using as input the single cell and the 
reconstructed bulk expression profiles. Since this has not been provided I still consider this work 



unsuitable for publication. 
 
The authors cited as a limitation the lack of representation of tumor stroma cells in their single cell 
data. However, this potential limitation appears to be not relevant when they compared the 
reconstructed bulk gene expression data with the TCGA data. That evidence can be taken as support 
of the validity of the reconstructed bulk gene expression data, which can then be used to carry on my 
request. 
 
From my end point the request stands. The authors have not provided a proper statistical test to claim 
A and B above. Either they address that point using a reconstructed bulk gene expression profile or 
they would require to design a new study where the test could be conducted using bulk and single cell 
data for the same samples. 
 
We thank the reviewer for clarifying this point and apologize for having misunderstood it in the 
previous round of revision. Following this reviewer’s suggestion, we have now repeated the 
analysis of metabolic pathway activity by directly comparing the single malignant cells with the 
reconstructed bulk tumors. In addition to HNSCC for which we have reconstructed bulk gene 
expression profiles in the first round of revision, we have also reconstructed bulk gene expression 
profiles for melanoma to provide more evidence to support our conclusions.  

We found that for both melanoma and HNSCC, single malignant cells showed higher metabolic 
pathway activity (Response Figure 1a, one-sided Wilcoxon’s rank-sum test p-value = 2.5e-5 for 
melanoma and 4.6e-4 for HNSCC) and higher variation in metabolic pathway activity (Response 
Figure 1a, standard deviation = 0.28 for single malignant cells compared to 0.16 for reconstructed 
bulk tumors in the melanoma dataset and 0.6 for single malignant cells compared to 0.24 for 
reconstructed bulk tumors in the HNSCC dataset) compared to reconstructed bulk tumors. These 
results serve as additional evidence to support the conclusion that single malignant cells show 
higher metabolic activity and variation than bulk tumors (conclusion A). 

The inconsistency between single malignant cells and reconstructed bulk tumors in metabolic 
pathway activity was further illustrated by quantile-quantile plots comparing their distributions of 
metabolic pathway activity scores (Response Figure 1b) and evaluated using Kolmogorov-Smirnov 
test (K-S test p-value = 2.9e-5 for melanoma and 8.7e-5 for HNSCC). These results support the 
conclusion that metabolic features of single malignant cells are distinct from those of bulk tumors 
(conclusion B). 

Taken together, these additional results are consistent with the comparison between single 
malignant cells and the TCGA bulk tumors, thus providing further evidence to support our key 
conclusions. We have included these results in the revised manuscript as Supplementary Figure 8.  



 

 

 

Response Figure 1 (now Supplementary Figure 8) Comparison of metabolic pathway 
activities between single malignant cells and reconstructed bulk tumors. (a) Violin plots and 
box plots comparing the distributions of metabolic pathway activities in single malignant cells and 
reconstructed bulk tumors from the melanoma (left) and HNSCC (right) datasets. The standard 
variation (SD) values of metabolic pathway activities in each group are shown on the bottom. P-
values were computed using one-sided Wilcoxon’s rank-sum test. Box-plot elements: box limits, 
25 and 75 percentiles; center line, median; whiskers, 1.5 × interquartile range (IQR); points, 
outliers. (b) Quantile-quantile (Q-Q) plots showing the discrepancy between single malignant cells 
and reconstructed bulk tumors in distribution of metabolic pathway activities for the melanoma 
(left) and HNSCC (right) datasets. P-values were computed using one-sided Kolmogorov–
Smirnov (K-S) test. 



Reviewers' Comments:  
 
Reviewer #2:  
Remarks to the Author:  
The authors have provided a satisfactory response to my previous comments. The authors have 
provided evidence that the single cell data has more variation in the metabolic genes expression 
than the bulk data reconstructed from single cells.  



Response to reviewer #2 
Reviewer #2 (Remarks to the Author): 

The authors have provided a satisfactory response to my previous comments. The authors have 
provided evidence that the single cell data has more variation in the metabolic genes expression 
than the bulk data reconstructed from single cells. 

We thank the reviewer for the positive comments. 

We have reformatted the mathematical terms throughout the manuscript to ensure that they 
are consistent with the editorial guidelines.  

* Wherever p-values are stated in the text and figure legends, please also state the name of the
statistical test.

We have included statements about the statistical tests in the text and figure legends wherever 
p-values are stated.

METHODS AND DATA 
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