Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

In the manuscript by Xiao, Dai, and Locasale, the authors describe the analysis of single cell RNA
sequencing data from the perspective of metabolic genes. They use the enhanced resolution of
single cell data to tease apart the contribution of variation in metabolic gene expression to tumor-
specific gene expression changes. The authors report that the majority of the variation in the data
is associated with mitochondrial metabolic gene expression. They go on to analyze metabolic gene
expression programs of specific malignant and immune cell types. While the analysis is novel,
several aspects of it are confusing, and more importantly it appears that few specific conclusions
are drawn from the results.

Major Comments:

1. I understand the premise that it is inherently interesting to study metabolic genes, because
inferences could potentially be made on metabolic pathway activity from gene expression data.
However, what is unclear to me is whether there is anything inherently "special” about metabolic
genes. For example, in Fig 1d/e, the authors show that malignant cells cluster according to tumor
when running tSNE on metabolic genes. Is this property of clustering within tumor-of-origin unique
to metabolic genes, or would a randomly selected set of genes also exhibit this pattern?

2. Can the authors explain why the results of Figure 2a/b appear so imbalanced? | was surprised
to observe that malignant cells generically appear to upregulate a large variety of metabolic
pathways, but downregulate comparatively few (with the opposite trend of a vast downregulation
of metabolic pathways in the other cell types). Is this a real effect, or an artifact? Is it associated
with the library size/number of reads of each cell? It may be useful in this scenario to repeat the
analysis on non-metabolic pathways. If the same phenomenon is observed across all pathways, it
would suggest the effect is artifactual.

3. Related to the above comments, is it possible to ascribe some sort of p-value/measure of
statistical significance to the pathway scores in Figure 2a/b?

4. Related to the comment above, assuming the reported pathway changes are not artifactual,
what are we to conclude from them? The authors write that the malignant cells undergo a "global
up-regulation of metabolic activity." | understand that it is not feasible to measure flux at this kind
of resolution, but it seems suspect to conclude that simply because gene expression levels are
higher, that the corresponding flux through a metabolic pathway is similarly higher. This is a tough
comment to respond to, and | don't expect the authors to be able to address it head-on, but |
think a careful and clear clarification of the conclusions of this analysis in the text is called for. If
we cannot infer changes in flux, what is it that we should conclude from these findings?

5. | found the analysis of metabolic variation intriguing, but the methodological approach puzzling.
If the question is to understand which metabolic genes contribute the greatest amount to the
variation in the data, why not simply calculate this quantity directly using the gene expression
data, e.g. by calculating the coefficient of variation on the log(transcripts per million) of each
gene? Summing the absolute values of the loadings in the first few principal components is an
alternative approach, but it feels both (1) indirect, and (2) inappropriate because PCA inherently is
looking for linear combinations of (rather than individual) metabolites which maximize variance.
Does running GSEA using a metric like the coefficient of variation produce similar results? Related
to this, | would also ask the authors to confirm that their results are not corrupted by total
average expression (i.e. the sum of TPMs) of the constituent genes in their geneset. OXPHOS is
itself among the most highly expressed sets of genes in many cell types, and if this is not properly
accounted for, it could appear that it is driving the majority of variation in gene expression simply
because it is so highly expressed.



6. Given that the expression of genes involved in glycolysis and OXPHOS is correlated to hypoxia,
could the authors describe the gene expression signature of OXPHOS low/glycolysis low/hypoxia
low cells?

7. The analysis of metabolic programs in immune cells was again novel, but also felt lacking a
conclusion. Is there any functional data, either already-published or newly produced by the
authors, which can help to validate and give additional context to the findings reported in Figure
5b/c/d/e? Do these pathways truly carry different levels of flux in different cell types? If this is not
possible, is there any additional data on metabolite levels in these cell types which would offer
(albeit indirect) supportive evidence of distinct metabolic activity in OXPHOS and other pathways
across CD8+/CD4+ or Th/Treg cell types?

8. Despite many of my critical comments above, | would also like to commend the authors. They
have organized, annotated, and released their code on Github, which is valuable to many others
who will seek to apply reproduce and build on their approach in other datasets.

Reviewer #2:

Remarks to the Author:

Xiao et al investigate previously published single-cell RNA-seq data aiming to better understand
the heterogeneity of tumour metabolism, taking into account both the cancer and normal cell
compartments. This work is timely complement to the original reports of the single-cell RNA-seq
measurements, which were based on a global analysis of the gene expression profiles leaving open
the investigation of the tumour metabolism. Using their computational analysis Xia et al uncover
some interesting features about the metabolism of cancer cells and anon-cancerous cells in human
tumours that cannot be deduced from the bulk gene expression profiles of tumours. The
observation that, at the single cell level, the gene signatures of hypoxia positively correlate with
those of oxidative phosphorylation is interesting and it should be motivation for future in vitro or in
vivo experimental work. There are however a number of points where further work is required to
support the conclusions made.

1- Section starting at line 79. Since the metabolic analysis is based on a subset of the genes, it is
important to understand up to what extent the expression profiles associated with metabolic gene
set are statistically similar or different to the expression profiles from the whole set of genes.
Specifically, how the clustering in Fig. 1d-g compares to the same clustering using as input the
expression profiles of all genes? The comparison could be done using relative mutual information
1(A,B)/max{1(A,B)}, where A ad B are the two different clustering, 1(A,B) is the observed mutual
information between the two clusterings and max{I(A,B)} its expected maximum.

2- Line 162. At this point the authors investigate differences between observations made using
single cell vs bulk gene expression profiles. As a reference the use bulk gene expression profiles
from the TCGA. This is not a proper design to make that test because we cannot warranty that the
TCGA samples are statistically equivalent to the bulk expression profiles of the samples for which
single cell data is available. Although there is no bulk data for the latter, the authors can
computationally reconstruct the bulk gene expression profiles by adding the single cell gene
expression profiles associated with each tumour, weighting each cell compartment by the
corresponding fraction of the total tumour mass. Then the authors should compare the analysis
made on the single cell data with that made on the reconstructed bulk gene expression profiles. In
this way the authors will eliminate any confounding factors due to that analysis of different tumour
samples and different experimental protocols.

3- Line 210. The authors report: “To our surprise, we also found that OXPHOS significantly
correlated with glycolysis”. | understand there is a common credo that OXPHOS and glycolysis
antagonize each other, but that that is mostly based on assumptions from propagation of ideas in



the “old” literature. The authors should provide a level of reference to evaluate the significance of
that surprise. For example, the authors could repeat the same analysis using gene expression
profiles for a panel of cancer cell lines cultured in vitro (e.g., Cancer Cell Line Enciclopedia). If in
the latter the OXPHOS gene signature is not correlated to the glycolysis gene signature than we
can say that the correlation is linked to the tumour microenvironment.

4- The overall impression from this investigation is that OXPHOS and glycolysis are the major
drivers of the inter- and intra- metabolic heterogeneity of tumours, both in malignant and non-
malignant cells within the tumour. This should be stressed in a summary Figure. | note that
information is somehow depicted in Fig. 2a,b, but there is too much distraction in that figure. For
example, the data represented in the glycolysis and OXPHOS lanes in Fig. 2a,b could be plotted
using a box plot format. That would give a better idea about the magnitude of the differences
reported, from the malignant cells to the non-malignant cells and between non-malignant cells.
This way of plotting the data will also allow for a better sense of up to what extent some of the
reported changes are trends or actually significant. For example, in line 283 it is reported that
glycolysis is upregulated in CAFs relative to myofibroblast with a significance of 0.048. We need to
see the boxplot with outliers highlighted as scatter to get a better idea of whether that is
significant.



Responses to both reviewers:

We thank the reviewersfor their helpful comments and constructive suggestions and the positive
evaluation of our work. When additional analysis was conducted, the data are presented both in the
revised manuscript and also in response figures shown below. Modifications to the text are shown in

yellow font.

Since both reviewers have raised the comment regarding the difference between metabolic genes and
non-metabolic genesin generating the clustering patterns of the malignant and non-malignant cells,
we have repeated the t-SNE analysisin (1) a randomly selected set of genes (Response Figure 1a-d); (2)
the complete set of genesincluded in the single-cell RNA-seq datasets (Response Figure 1e-h), and
compared the resulting clustering patterns with that generated using the metabolic genes using the
relative mutual information metric (Response Table 1). We found that for both melanoma and HNSCC,
clustering patterns of the random gene set and the complete gene set are both highly consistent with
that generated with metabolic genes (relative mutual information close to 1), in which malignant cells
were clustered according to their tumor-of-origin while non-malignant cells were clustered by cell type.

set.
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Response Figure 1 (now Supplementary Figure 3) t-SNE plots generated using different gene sets.
(a) t-SNE plot of expression profiles of randomly selected genes in malignant cells from the melanoma
dataset. The color of each dot indicates the tumor from which the cell was derived. (b) same asin (a)
but for non-malignant cells. (c) same asin (a) but for the HNSCC dataset. (d) same asin (b) but for the
HNSCC dataset. () same asin (@) but for the complete gene set. (f) same asin (b) but for the complete
gene set. (g) same as in (¢) but for the complete gene set. (h) same as in (d) but for the complete gene

Taken together, these results suggest that the distinct clustering patterns of malignant cells and non-
malignant cells reflect the relationship between cell phenotypes and the tumor microenvironment.
Gene expression programs in malignant cellsare in general more flexible and responsive to alterations
in genetic and environmental factors that affect both metabolic and non-metabolic pathways. We have
included the additional analyses and relevant discussionsin the revised manuscript.




Response Table 1 (now Supplementary Table 1). Relative mutual information between t-SNE results
generated using different gene sets

Metabolicgeneset  Metabolic gene set
Data set VS Vs

Complete gene set Random gene set

Malignant cells 1 1
Melanoma .

Non-malignant cells  0.96 0.96

Malignant cells 1 1
HNSCC .

Non-malignant cells 1 1

Reviewer #1 (Remarks to the Author):

In the manuscript by Xiao, Dai, and L ocasale, the authors describe the analysis of single cell RNA
seguencing data from the perspective of metabolic genes. They use the enhanced resolution of single cell
datato tease apart the contribution of variation in metabolic gene expression to tumor-specific gene
expression changes. The authors report that the majority of the variation in the data is associated with
mitochondrial metabolic gene expression. They go on to analyze metabolic gene expression programs of
specific malignant and immune cell types. While the analysisis novel, several aspects of it are confusing,
and more importantly it appears that few specific conclusions are drawn from the results.

We thank the reviewer for the positive remarks and constructive suggestions. We have included
additional analysis and clarification in the revised manuscript to address the reviewer’ s concerns.

Major Comments:

1. I understand the premise that it is inherently interesting to study metabolic genes, because inferences
could potentialy be made on metabolic pathway activity from gene expression data. However, what is
unclear to me is whether there is anything inherently "specia” about metabolic genes. For example, in Fig
1d/e, the authors show that malignant cells cluster according to tumor when running tSNE on metabolic
genes. Isthis property of clustering within tumor-of-origin unique to metabolic genes, or would a
randomly selected set of genes also exhibit this pattern?

We thank the reviewer for raising this comment. We completely agree that it isimportant to compare
the single-cell transcriptomic landscape between metabolic genes and non-metabolic genes. Since
another reviewer has also raised this concern, we have responded to it in the section ‘ Responses to both
reviewers at the beginning of the response letter. Please refer to our general responses for more details.

2. Can the authors explain why the results of Figure 2a/b appear so imbalanced? | was surprised to
observe that malignant cells generically appear to upregulate alarge variety of metabolic pathways, but
downregulate comparatively few (with the opposite trend of a vast downregulation of metabolic pathways
in the other cell types). Isthisareal effect, or an artifact? Is it associated with the library size/number of
reads of each cell? It may be useful in this scenario to repeat the analysis on non-metabolic pathways. If
the same phenomenon is observed across al pathways, it would suggest the effect is artifactual.

We thank the reviewer for raising this concern. In the previous version of manuscript, we had made
attemptsto avoid artifacts by applying appropriate data normalization method that resulted in similar
distributions of relative gene expression across cell types (deconvolution method, Supplementary



Figure 4). After the data normalization, all cell types show similar extent of up- and down-regulation
of gene expression. Thus, we believe that the imbalanced distribution of pathway score for metabolic
pathways in malignant cells indicates global up-regulation of metabolic pathways.

To further clarify this point and exclude the possibility of artifacts, we have now extended the analysis
of pathway scoresto non-metabolic pathways (Response Figure 2). We found that the distributions of
pathway scoresin non-metabolic pathways were similar among all cell types with median values close
to 1 (i.e. no global up-regulation or down-regulation of pathway activitiesin any cell type), indicating
that the global up-regulation in malignant cellsis a unique feature of metabolic pathways. We have
included these results as Supplementary Figure 6 in the revised manuscript.
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Response Figure 2 (now Supplementary Figure 6) Pathway activity score distributions of
metabolic and non-metabolic pathways in cell types. (a) Distributions of metabolic pathway
activity score in cell types in the melanoma dataset. (b) Same as in (a) but for HNSCC dataset. (C)
Distributions of non-metabolic pathway activity scores in cell types in the melanoma dataset. (d)
Same asin (c) but for the HNSCC dataset.

Moreover, we agree with the reviewer that sequencing depths and library sizes are important factors to
consider to fully exclude artifacts. However, these variables are currently not available. The gene
expression levelsin these two datasets are quantified using TPM valuesin which the variation in
sequencing depth has already been corrected for. It is also worth noting that for single cell RNA-seq
data, the relative gene expression level and pathway score could be greatly affected by genes with low
expression level or high drop-out rates, thereby biasing the pathway scores towards values much
higher than 1. Thus, in the revised manuscript, we have also re-evaluated the pathway scores after
including an additional step of removing outliers defined by genes whose relative expression levelsare
higher than 3 times 75™ percentile or below 1/3 times 25" percentile in each pathway. The resulting
metabolic pathway activities still exhibit the pattern of global up-regulation in malignant cells. The
updated results are included in the revised manuscript (Figure 2).

3. Related to the above comments, isit possible to ascribe some sort of p-value/measure of statistical
significance to the pathway scoresin Figure 2a/b?




We thank the reviewer for this suggestion and apologize for the confusion. In the original manuscript,
we have already evaluated the statistical significance of pathway scores using a random permutation
test, in which we randomly shuffled the cell type labelsto generate a null distribution of pathway
scores (detailsin the section ‘ Calculation of pathway activity'). Only pathway scores with statistical
significance (p-value<0.05) were shown in the heatmapsin Figure 2a and b. In the revised manuscript,
we have included additional clarification of this point and reported the pathway scores and associated
p-values as a supplementary file (Supplementary Table 2).

4. Related to the comment above, assuming the reported pathway changes are not artifactual, what are we
to conclude from them? The authors write that the malignant cells undergo a " global up-regulation of
metabolic activity." | understand that it is not feasible to measure flux at this kind of resolution, but it
seems suspect to conclude that simply because gene expression levels are higher, that the corresponding
flux through a metabolic pathway is similarly higher. Thisis atough comment to respond to, and | don't
expect the authors to be able to address it head-on, but | think a careful and clear clarification of the
conclusions of thisanalysisin the text is called for. If we cannot infer changesin flux, what isit that we
should conclude from these findings?

We thank the reviewer for the helpful suggestion and thoughtful remarks. We completely agree with
the reviewer that metabolic gene expression levels and metabolic fluxes are not equivalent. The key
point hereisto what extent changes in metabolic gene expression reflect changes in metabolic fluxes.
Although measurements of metabolic fluxes at the single-cell level are currently not available due to
technical limitations, evidence from bulk measurements of metabolic gene expression, metabolic flux
and metabolite abundance has suggested positive correlation between expression levels of metabolic
genes, metabolic fluxes and abundance of metabolites (e.g. Mehrmohamadi et al, Cell Reports 2014,
PMID: 25456139; Peng et al, Cell Reports 2018, PMID: 29617665). Thus, we believe that the
metabolic gene expression features we identified in this study indicate overall trends of metabolic
activitiesin single malignant and non-malignant cells. We have included additional discussion about
this point in the revised manuscript.

5. 1 found the analysis of metabolic variation intriguing, but the methodologica approach puzzling. If the
guestion is to understand which metabolic genes contribute the greatest amount to the variation in the data,
why not simply calculate this quantity directly using the gene expression data, e.g. by calculating the
coefficient of variation on the log(transcripts per million) of each gene? Summing the absolute values of
the loadingsin the first few principal componentsis an aternative approach, but it feels both (1) indirect,
and (2) inappropriate because PCA inherently islooking for linear combinations of (rather than individual)
metabolites which maximize variance. Does running GSEA using a metric like the coefficient of variation
produce similar results? Related to this, | would also ask the authors to confirm that their results are not
corrupted by total average expression (i.e. the sum of TPMs) of the constituent genesin their geneset.
OXPHOS isitself among the most highly expressed sets of genesin many cell types, and if thisis not
properly accounted for, it could appear that it is driving the mgjority of variation in gene expression
simply becauseit is so highly expressed.

We thank the reviewer for raising this concern.

We used PCA loadingsto identify the highly variable genes and control for potential confounders such
as baseline expression levels and noise in gene expression. A strategy similar to our PCA-based
approach has also been applied to select highly variable genes and identify cell subpopulations based
on single cell RNA-seq datasets in other studies (e.g. Fan et al. Nature Methods 2016, PMID:
26780092). Coefficient of variation (CV), on the other hand, tends to be higher for genes with lower
expression levels. To clarify this point, we have evaluated the correlation between baseline gene
expression levels and heterogeneity metricsincluding PCA score, CV and standard deviation (SD)



(used to quantify heterogeneity in gene expression for example in Elham et al. Cell 2018, PMID:
29961579). We found that CV monotonically decreased with increasing expression level, meaning that
genes with higher CV tend to have lower expression levels (Response Figure 3a). On the other hand,
correlations between average expression and SD (Response Figure 3b) or PCA score (Response Figure
3c) were lower, and genes with the highest PCA scores or SD values were neither these with highest
expression levels nor those with lowest expression. Thus, we believe that the PCA scoreand SD are
better metricsfor heterogeneity in gene expression since they are less sensitive to confounding by
changesin average gene expression level.

log2 (TPM +1)

Response Figure 3 (now supplementary Figure 9) Comparison of PCA score, CV and SD for
quantifying intratumoral heterogeneity. (a) Scatter plot comparing mean gene expression and
coefficient of variation (CV) in malignant cells from the melanoma tumor MEL 3. (b) Same asin (a)
but for standard deviation (SD). (c) Same as in (@) but for PCA score. (d) Metabolic pathways
enriched in genes with highest CV in melanoma dataset. (€) Same as in (d) but for genes with highest
SD. (f) Same asin (d) but for genes with highest PCA score. (g) Swarm plots comparing distributions
of gene expression levelsin OXPHOS and steroid hormone biosynthesis.
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We have also repeated the GSEA analysis for highly heterogenous genes identified using CV and SD
(Response Figure 3d,e) and found that the enriched pathways were highly consistent between the PCA




score (Response Figure 3f) and SD, while steroid hormone biosynthesis, the top pathway associated
with high CV, had much lower gene expression levels and visibly less variation in gene expression
compared to OXPHOS, the top heterogenous pathway identified by SD and the PCA score (Response
Figure 3g). We have added these results to the revised manuscript as Supplementary Figure 9.

6. Given that the expression of genesinvolved in glycolysis and OXPHOS is correlated to hypoxia, could
the authors describe the gene expression signature of OXPHOS low/glycolysis low/hypoxialow cells?

We thank the reviewer for this helpful suggestion. We have included additional analysisto identify the
gene expression signatures of OXPHOS low/glycolysis low/hypoxia low cells (Response Figure 4) in
the revised manuscript. Briefly, we identified genes differentially expressed between the two groups of
cellswith the highest or lowest expression levels of genesin OXPHOS, glycolysis and hypoxia and
applied GO enrichment analysisto identify biological functions enriched in genes up-regulated in cells
with lowest expression levels of genesin OXPHOS, glycolysis and hypoxia pathways. We found that in
both melanoma and HNSCC, genes up-regulated in the OXPHOS low/glycolysis low/hypoxia low cells
were related to the GO term ‘ negative regulation of execution phase of apoptosis’, suggesting that this
subpopulation of cellsis associated with reduced apoptosis which may facilitate cancer progression.
Theseresultsareincluded in the revised manuscript as Figure 3g, h and Supplementary Figure 11.
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7. The analysis of metabolic programs in immune cells was again novel, but also felt lacking a conclusion.
Isthere any functional data, either already-published or newly produced by the authors, which can help to
validate and give additional context to the findings reported in Figure 5b/c/d/e? Do these pathways truly
carry different levels of flux in different cell types? If thisis not possible, isthere any additional dataon
metabolite levelsin these cell types which would offer (albeit indirect) supportive evidence of distinct
metabolic activity in OXPHOS and other pathways across CD8+/CD4+ or Th/Treg cell types?

We thank the reviewer for raising this concern. First, as we noted previously, although measurements
of metabolic fluxes at the single-cell level are currently unavailable, thereis evidence supporting a
positive correlation between metabolic gene expression levels and metabolic fluxes. Thus, we expect
that the directions of changes we observed with metabolic gene expression levels are consistent with



that of metabolic fluxes. Moreover, there is also evidence from experimental studies that validates our
computational analysis. For instance, there are studies showing that mitochondrial metabolism is up-
regulated in Tregs compared to Ths (e.g. Weinberg et al, Nature 2019, PMID: 30626970; Angelin et al.
Cell Metabolism 2017, PMID: 28416194), which is consistent with our analysis. We have included
additional references and discussion in the revised manuscript.

8. Despite many of my critical comments above, | would also like to commend the authors. They have
organized, annotated, and released their code on Github, which is valuable to many others who will seek
to apply reproduce and build on their approach in other datasets.

We thank the reviewersfor the positive comment. We are delighted to see that our codeis helpful to
othersin thefield.

Reviewer #2 (Remarks to the Author):

Xiao et a investigate previously published single-cell RNA-seq data aiming to better understand the
heterogeneity of tumour metabolism, taking into account both the cancer and normal cell compartments.
Thiswork istimely complement to the original reports of the single-cell RNA-seq measurements, which
were based on a globa anaysis of the gene expression profiles |eaving open the investigation of the
tumour metabolism. Using their computational analysis Xiao et a uncover some interesting features about
the metabolism of cancer cells and anon-cancerous cells in human tumours that cannot be deduced from
the bulk gene expression profiles of tumours. The observation that, at the single cell level, the gene
signatures of hypoxia positively correlate with those of oxidative phosphorylation isinteresting and it
should be motivation for future in vitro or in vivo experimental work. There are however a number of
points where further work is required to support the conclusions made.

We thank the reviewer for the positive evaluation of our work and the constructive suggestions. We
have included additional analysis as the reviewer suggested in the revised manuscript.

1- Section starting at line 79. Since the metabolic analysisis based on a subset of the genes, it is important
to understand up to what extent the expression profiles associated with metabolic gene set are statistically
similar or different to the expression profiles from the whole set of genes. Specifically, how the clustering
in Fig. 1d-g compares to the same clustering using as input the expression profiles of all genes? The
comparison could be done using relative mutual information I(A,B)/max{1(A,B)}, where A ad B are the
two different clustering, 1(A,B) is the observed mutual information between the two clusterings and
max{1(A,B)} its expected maximum.

We thank the reviewer for this comment. I n the revised manuscript, we have repeated the t-SNE and
clustering analysis with the complete set of genes and set of randomly generated genes, and compared
the resulting clustering patterns with that generated with metabolic genes. We have also used the
relative mutual information asthe reviewer suggested to quantify the similarity between clustering
patterns generated using different gene sets. Since another reviewer has also raised the same comment,
we have responded to it in the section ‘ Responses to both reviewers' at the beginning of the response
letter. Please refer to that section for more details.

2- Line 162. At this point the authors investigate differences between observations made using single cell
vs bulk gene expression profiles. As areference the use bulk gene expression profiles from the TCGA.
Thisis not aproper design to make that test because we cannot warranty that the TCGA samples are
statistically equivalent to the bulk expression profiles of the samples for which single cell datais available.



Although there is no bulk data for the latter, the authors can computationally reconstruct the bulk gene
expression profiles by adding the single cell gene expression profiles associated with each tumour,
weighting each cell compartment by the corresponding fraction of the total tumour mass. Then the authors
should compare the analysis made on the single cell data with that made on the reconstructed bulk gene
expression profiles. In this way the authors will eliminate any confounding factors due to that analysis of
different tumour samples and different experimental protocols.

We thank the reviewer for raising this concern. We completely agree with the reviewer that factors
such as batch effect and difference in experimental procedures may result in substantial difference
between the bulk samples from TCGA and the samples used in the single cell RNA-seq study. | deally
thisissue could be addressed by reconstructing bulk tumor and normal samples for the single cell
dataset as the reviewer suggested. However, all cellsincluded in the single cell dataset were derived
from tumors, resulting in difficulty in reconstructing bulk gene expression profiles for normal tissue,
since non-malignant cellsin the tumor microenvironment also undergo reprogramming of cellular
metabolism thus being very different from the same types of cellsin normal tissues.

Nevertheless, despite the difficulty in reconstructing bulk normal samplesfor the single cell dataset, we
can still reconstruct gene expression profiles for the bulk tumors by pooling the gene expression
profiles of single cells derived from the same tumor to confirm that they are comparable to the tumor
samplesin TCGA. In the revised manuscript, we have reconstructed bulk tumor gene expression
profile for each patient using all single malignant and non-malignant cells derived from this patient to
evaluate the similarity between TCGA and the single cell dataset (Response Figure 5). We have also
reconstructed bulk T cell gene expression profile by pooling randomly selected single T cellsas a
negative control. I ndeed there were very strong correlations between TCGA gene expression profiles
and the reconstructed bulk tumor gene expression profiles, while the correlation coefficients between
the reconstructed bulk T cell sample and the TCGA gene expression profiles were weaker, suggesting
that the reconstructed bulk tumors, but not the pooled T cells, closely resemble the TCGA tumor
samplesin terms of gene expression profiles. We believe that thisis a strong evidence to support that
the tumor samples from TCGA and those from the single cell RNA-seq dataset are approximately
equivalent. We have included these results and corresponding discussions in the revised manuscript.

Correlation between TCGA bulk tumor
gene expression and bulk-like tumor gene
expression reconstructed using single celll data
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3- Line 210. The authors report: “To our surprise, we also found that OXPHOS significantly correlated
with glycolysis’. | understand there is a common credo that OXPHOS and glycolysis antagonize each
other, but that that is mostly based on assumptions from propagation of ideasin the “old” literature. The
authors should provide alevel of reference to evaluate the significance of that surprise. For example, the
authors could repeat the same analysis using gene expression profiles for a panel of cancer cell lines
cultured in vitro (e.g., Cancer Cell Line Enciclopedia). If in the latter the OXPHOS gene signature is not



correlated to the glycolysis gene signature than we can say that the correlation is linked to the tumour
microenvironment.

We thank the reviewer for this helpful suggestion. Following thisreviewer’s suggestion, we have
performed additional analysisto evaluate the correlation between OXPHOS and glycolysis using gene
expression profiles of cultured cancer cell linesfrom the Cancer Cell Line Encyclopedia (Response
Figure 6). The analysis showed that only the correlation between glycolysis and hypoxia was preserved
in the cultured cancer cells, while the correlation between gene signature of OXPHOS and glycolysis
and that between OXPHOS and hypoxia were lost. We have included these resultsin the revised
manuscript as Figure 3f and added discussion of this point.
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Response Figure 6 (now Figure 3f) Scatter plots comparing activities of
glycolysis, OXPHOS and response to hypoxia in cancer cell linesfrom CCLE.

4- The overall impression from thisinvestigation is that OXPHOS and glycolysis are the major drivers of
the inter- and intra- metabolic heterogeneity of tumours, both in malignant and non-malignant cells within
the tumour. This should be stressed in a summary Figure. | note that information is somehow depicted in
Fig. 2a,b, but there istoo much distraction in that figure. For example, the data represented in the
glycolysis and OXPHOS lanesin Fig. 2a,b could be plotted using abox plot format. That would give a
better idea about the magnitude of the differences reported, from the malignant cells to the non-malignant
cells and between non-malignant cells. Thisway of plotting the datawill also alow for a better sense of
up to what extent some of the reported changes are trends or actually significant. For example, in line 283
it isreported that glycolysisis upregulated in CAFsrelative to myofibroblast with a significance of 0.048.
We need to see the boxplot with outliers highlighted as scatter to get a better idea of whether that is
significant.

We thank the reviewer for raising this point. We have revised the figures to include boxplots comparing
average expression levels of glycolysis and OXPHOS genes across different cell types and included
one-way ANOVA p-values to evaluate the significance level of difference in gene expression across cell
types (Response Figure 8). We have also included boxplots to compare average expression levels of all
pathways significantly differentially expressed between the subtypes of T cells and fibroblasts, and
performed Wilcoxon'’s rank-sum test to confirm the significance of differential expression of the
pathways between cell subtypes (Response Figure 9). Moreover, we have updated Figure 5c to correct
the mistake that in the previous version, all barsin this figure were colored regardless of whether the
enrichment of the corresponding pathway was significant.
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Response Figure 8 (now supplementary Figure 5) Distributions of average
expression level of OXPHOS and glycolysis genes in cell types. (a)
Distributions of average OXPHOS (left) and glycolysis (right) gene expression
levels in cell types in the melanoma dataset. (b) Same as in (@) but for the
HNSCC dataset. P-valuesin each graph were computed using one-way ANOVA.
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Response Figure 9 (now supplementary Figure 13) Distributions of average expression
level of pathways differently expressed in cell subtypes. (a) Distributions of average
expression of all OXPHOS genes (left) and the leading-edge genes enriched in the GSEA
analysis (right) in CD4+ and CD8+ T cells in the melanoma dataset. (b) Distributions of
average gene expression levels for pathways differentially expressed between CD4+ and
CD8+ T cells in the HNSCC dataset. (c) Same as in (b) but for pathways differentially
expressed in Th and Treg cells in the melanoma dataset. (d) Same as in (c) but for the
HNSCC dataset. (e) same as in (d) but for pathways differentially expressed in CAF cells
and Myofib cells in the HNSCC dataset. P-values shown in each graph were computed using
one-sided Wilcoxon's rank-sum test for comparison of gene expression levels between the
cell subtypes.




Reviewers' Comments:

Reviewer #1:
Remarks to the Author:
The authors have sufficiently addressed my critiques and comments.

I would make one additional suggestion which may help clarify one of my concerns. Regarding the
question of what to conclude from generic upregulation of metabolic genes (but not other sets of
genes), it may be useful to think about the “compositional” nature of this data. My impression of
the author's finding is that, from a compositional/proportional perspective, the tumor cells are
actually dedicating more of their fixed sum of "transcriptional resources" (which may/may not
translate to bona fide changes in protein levels) to metabolic genes. While this still really does not
lead to a conclusion about metabolic flux, it does implicitly suggest that if *every* enzyme is at
higher abundance, then the per-cell turnover rate of every reaction may be higher. These are
simply my thoughts, and the authors are free to ignore them or use them as they please.

Reviewer #2:

Remarks to the Author:

As | comment in my first review this is an interesting work with some points to be addressed. The
authors have addressed most of my previous comments and by doing so the manuscript has
improved significantly. However, point 2 was not addressed to a full extent. This point is related to
two major conclusions of this work. Paraphrasing the abstract

A- “We find that malignant cells in general have higher metabolic activity and higher metabolic
variation than previously observed from studies of bulk tumor comparisons.

B- “Indeed, most of the observed metabolic variation of single tumor and normal cells were found
to be inconsistent with comparisons with bulk tumor samples.”

If these conclusions are indeed true then we need to invest more resources into conducting single-
cell analyses to obtain the correct understanding of tumor metabolism. My point 2 was that the
analysis provided by the authors is not sufficient to support those conclusions. Their analysis was
potentially flawed because the cohorts for the bulk and single cell data are different. | suggested
they could address that caveat by reconstructing the bulk gene expression from the single cell
gene expression profiles.

In their response the authors reconstructed the bulk gene expression data and went on to show
that it is highly correlated with the TCGA bulk gene expression data. However, | do not understand
why they stopped there. It is straightforward for the authors to conduct, | have previously
requested, the metabolic pathway analysis using the reconstructed gene expression data.
Specifically, what | request is a statistical test for the conclusions A and B cited above, using as
input the single cell and the reconstructed bulk expression profiles. Since this has not been
provided I still consider this work unsuitable for publication.

The authors cited as a limitation the lack of representation of tumor stroma cells in their single cell
data. However, this potential limitation appears to be not relevant when they compared the
reconstructed bulk gene expression data with the TCGA data. That evidence can be taken as
support of the validity of the reconstructed bulk gene expression data, which can then be used to
carry on my request.

From my end point the request stands. The authors have not provided a proper statistical test to
claim A and B above. Either they address that point using a reconstructed bulk gene expression



profile or they would require to design a new study where the test could be conducted using bulk
and single cell data fro the same samples.



Reviewer #1 (Remarks to the Author):
The authors have sufficiently addressed my critiques and comments.

I would make one additional suggestion which may help clarify one of my concerns. Regarding the
guestion of what to conclude from generic upregulation of metabolic genes (but not other sets of
genes), it may be useful to think about the "compositiona” nature of this data. My impression of the
author's finding is that, from a compositional/proportional perspective, the tumor cells are actually
dedicating more of their fixed sum of "transcriptional resources" (which may/may not trandate to
bonafide changes in protein levels) to metabolic genes. While this still really does not lead to a
conclusion about metabolic flux, it doesimplicitly suggest that if *every* enzymeis at higher
abundance, then the per-cell turnover rate of every reaction may be higher. These are simply my
thoughts, and the authors are free to ignore them or use them as they please.

We thank the reviewer for the positive remarks and insightful thoughts. I n the revised manuscript,
we have included more discussion of how the global up-regulation of metabolic genesin single
malignant cellsisrelated to changes in metabolic fluxesin these cells.

Reviewer #2 (Remarks to the Author):

As| comment in my first review thisis an interesting work with some points to be addressed. The
authors have addressed most of my previous comments and by doing so the manuscript has improved
significantly.

We greatly appreciate the reviewer’ s positive evaluation of the revisions. We have performed
additional analysisto address the remaining concern raised by this reviewer.

However, point 2 was not addressed to afull extent. This point is related to two mgjor conclusions of
thiswork. Paraphrasing the abstract

A- “Wefind that malignant cellsin general have higher metabolic activity and higher metabolic
variation than previously observed from studies of bulk tumor comparisons.

B- “Indeed, most of the observed metabolic variation of single tumor and normal cells were found to
be inconsistent with comparisons with bulk tumor samples.”

If these conclusions are indeed true then we need to invest more resources into conducting single-cell
analyses to obtain the correct understanding of tumor metabolism. My point 2 was that the analysis
provided by the authorsis not sufficient to support those conclusions. Their analysis was potentially
flawed because the cohorts for the bulk and single cell data are different. | suggested they could
address that caveat by reconstructing the bulk gene expression from the single cell gene expression
profiles.

In their response the authors reconstructed the bulk gene expression data and went on to show that it
ishighly correlated with the TCGA bulk gene expression data. However, | do not understand why
they stopped there. It is straightforward for the authors to conduct, | have previously requested, the
metabolic pathway analysis using the reconstructed gene expression data. Specifically, what | request
isastatistical test for the conclusions A and B cited above, using as input the single cell and the
reconstructed bulk expression profiles. Since this has not been provided | still consider this work



unsuitable for publication.

The authors cited as a limitation the lack of representation of tumor stroma cellsin their single cell
data. However, this potential limitation appears to be not relevant when they compared the
reconstructed bulk gene expression data with the TCGA data. That evidence can be taken as support
of the validity of the reconstructed bulk gene expression data, which can then be used to carry on my
request.

From my end point the request stands. The authors have not provided a proper statistical test to claim
A and B above. Either they address that point using a reconstructed bulk gene expression profile or
they would require to design a new study where the test could be conducted using bulk and single cell
data for the same samples.

We thank the reviewer for clarifying this point and apologize for having misunderstood it in the
previous round of revision. Following this reviewer’ s suggestion, we have now repeated the
analysis of metabolic pathway activity by directly comparing the single malignant cellswith the
reconstructed bulk tumors. In addition to HNSCC for which we have reconstructed bulk gene
expression profilesin thefirst round of revision, we have also reconstructed bulk gene expression
profiles for melanoma to provide more evidence to support our conclusions.

We found that for both melanoma and HNSCC, single malignant cells showed higher metabolic
pathway activity (Response Figure 1a, one-sided Wilcoxon’s rank-sum test p-value = 2.5e-5 for
melanoma and 4.6e-4 for HNSCC) and higher variation in metabolic pathway activity (Response
Figure 1a, standard deviation = 0.28 for single malignant cells compared to 0.16 for reconstructed
bulk tumorsin the melanoma dataset and 0.6 for single malignant cells compared to 0.24 for
reconstructed bulk tumorsin the HNSCC dataset) compared to reconstructed bulk tumors. These
results serve as additional evidence to support the conclusion that single malignant cells show
higher metabolic activity and variation than bulk tumors (conclusion A).

The inconsistency between single malignant cells and reconstructed bulk tumors in metabolic
pathway activity was further illustrated by quantile-quantile plots comparing their distributions of
metabolic pathway activity scores (Response Figure 1b) and evaluated using Kolmaogorov-Smirnov
test (K-Stest p-value = 2.9e-5 for melanoma and 8.7e-5 for HNSCC). These results support the
conclusion that metabolic features of single malignant cells are distinct from those of bulk tumors
(conclusion B).

Taken together, these additional results are consistent with the comparison between single
malignant cells and the TCGA bulk tumors, thus providing further evidence to support our key
conclusions. We have included these resultsin the revised manuscript as Supplementary Figure 8.
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Response Figure 1 (now Supplementary Figure 8) Comparison of metabolic pathway
activities between single malignant cells and reconstructed bulk tumors. (a) Violin plots and
box plots comparing the distributions of metabolic pathway activities in single malignant cells and
reconstructed bulk tumors from the melanoma (left) and HNSCC (right) datasets. The standard
variation (SD) values of metabolic pathway activities in each group are shown on the bottom. P-
values were computed using one-sided Wilcoxon’'s rank-sum test. Box-plot elements: box limits,
25 and 75 percentiles, center line, median; whiskers, 1.5 x interquartile range (IQR); points,
outliers. (b) Quantile-quantile (Q-Q) plots showing the discrepancy between single malignant cells
and reconstructed bulk tumors in distribution of metabolic pathway activities for the melanoma
(left) and HNSCC (right) datasets. P-values were computed using one-sided Kolmogorov—
Smirnov (K-S) test.




Reviewers' Comments:

Reviewer #2:

Remarks to the Author:

The authors have provided a satisfactory response to my previous comments. The authors have
provided evidence that the single cell data has more variation in the metabolic genes expression
than the bulk data reconstructed from single cells.



Response to reviewer #2

Reviewer #2 (Remarks to the Author):

The authors have provided a satisfactory response to my previous comments. The authors have
provided evidence that the single cell data has more variation in the metabolic genes expression
than the bulk data reconstructed from single cells.

We thank the reviewer for the positive comments.

We have reformatted the mathematical terms throughout the manuscript to ensure that they
are consistent with the editorial guidelines.

* Wherever p-values are stated in the text and figure legends, please also state the name of the
statistical test.

We have included statements about the statistical testsin the text and figure legends wherever
p-values are stated.

METHODS AND DATA
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