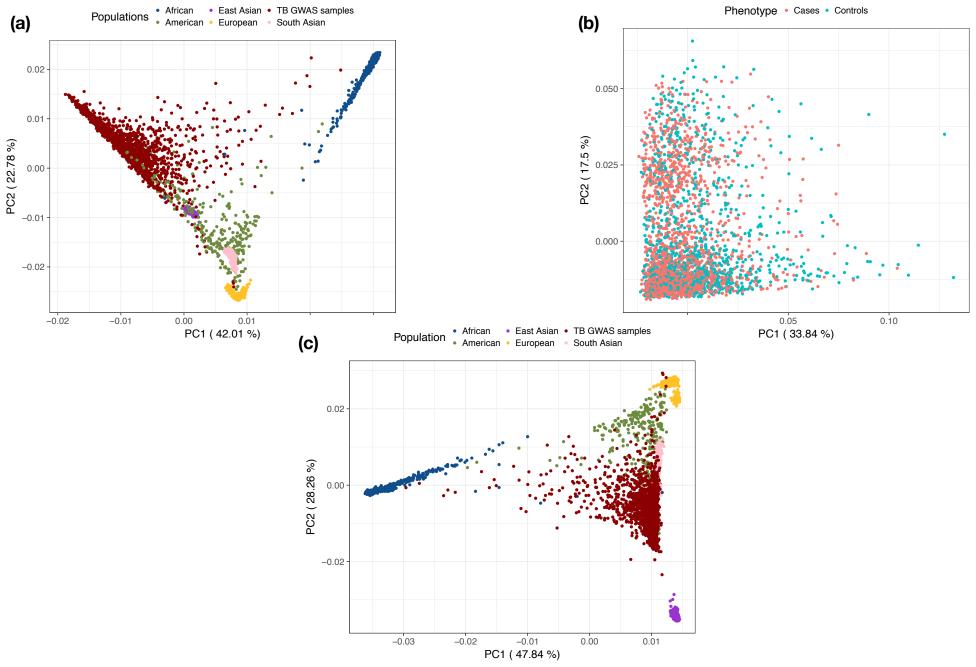
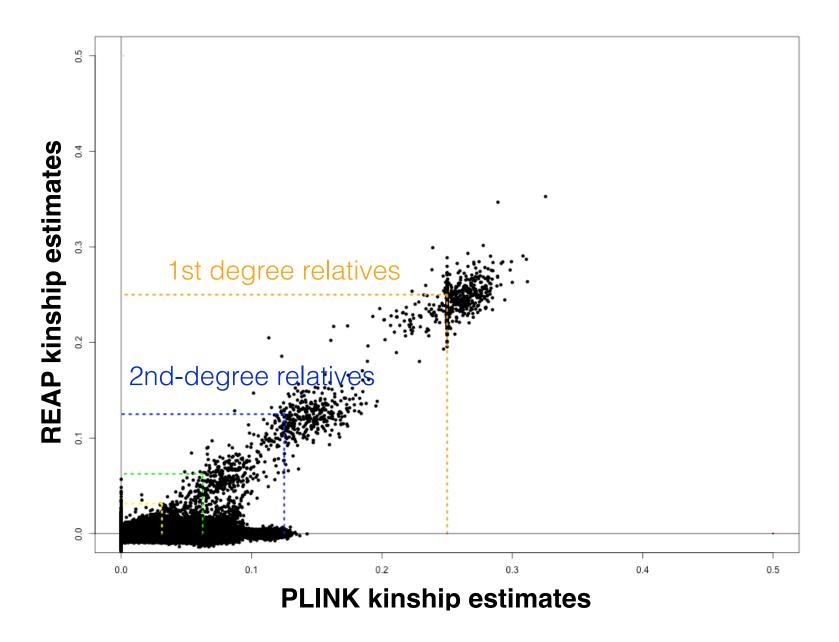

Luo et al. "Early progression to active tuberculosis is a highly heritable trait driven by 3q23 in Peruvians"



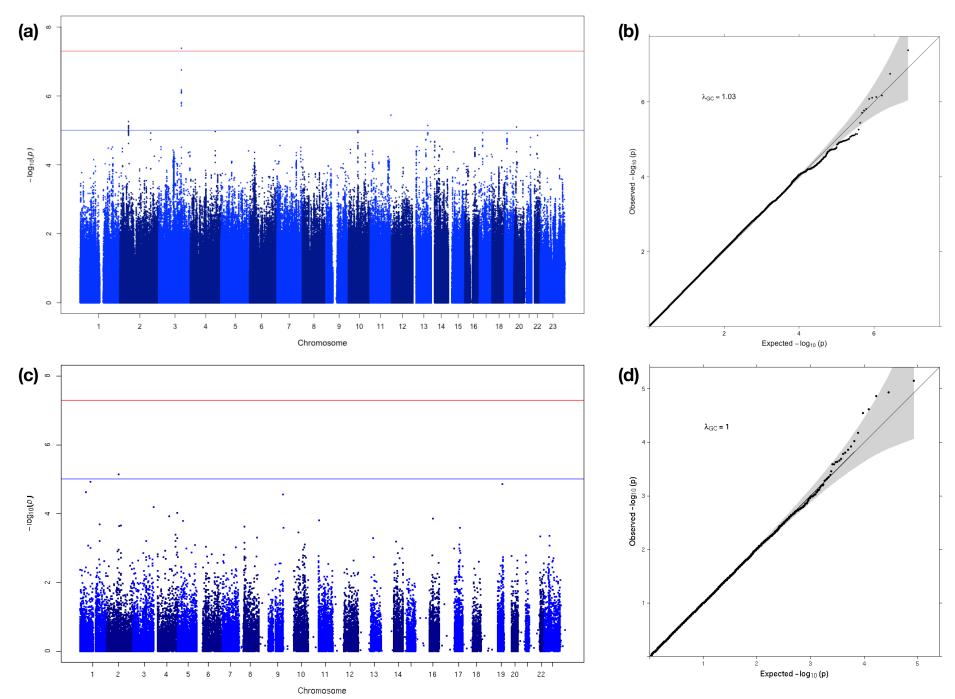
Supplementary Figure 1. ADMIXTURE plot of Peruvian individuals and other populations. Each individual is represented as a thin vertical bar. The colors represented the proportion of ancestry assigned to each cluster for each individual. K=3 through K=15 models are shown. Reference panels are either from the 1000 Genomes project (1000G) or Native American individuals collected from *Reich et al. 2012 Nature* (NAT). CHB represents Han Chinese in Beijing, China; YRI represents Yoruba in Ibadan, Nigeria; CEU represents Utah Residents (CEPH) with Northern and Western European Ancestry; PUR represents Puerto Ricans from Puerto Rico; CLM represents Colombians from Medellin, Colombia; MXL represents Mexicans from Los Angeles, California; PEL represents Peruvians from Lima, Peru. Northern Amerindian includes individuals from Maya, Mixe and Kaqchikel. Central Amerindian includes individuals from Pima, Zapotec, Mixtec, Yaqui, Chorotega, Tepehuano. Southern Amerindian includes individuals from Piapoco, Karitiana, Surui, Wayuu, Jamamadi, Parakana, Guarani, Kaingang, Ticuna, Palikur, Toba, Arara, Wichi, Chane and Guahibo. Andean population includes Quechua and Aymara. Source data are provided as a Source Data file.


Designing of customized array (LIMAArray)

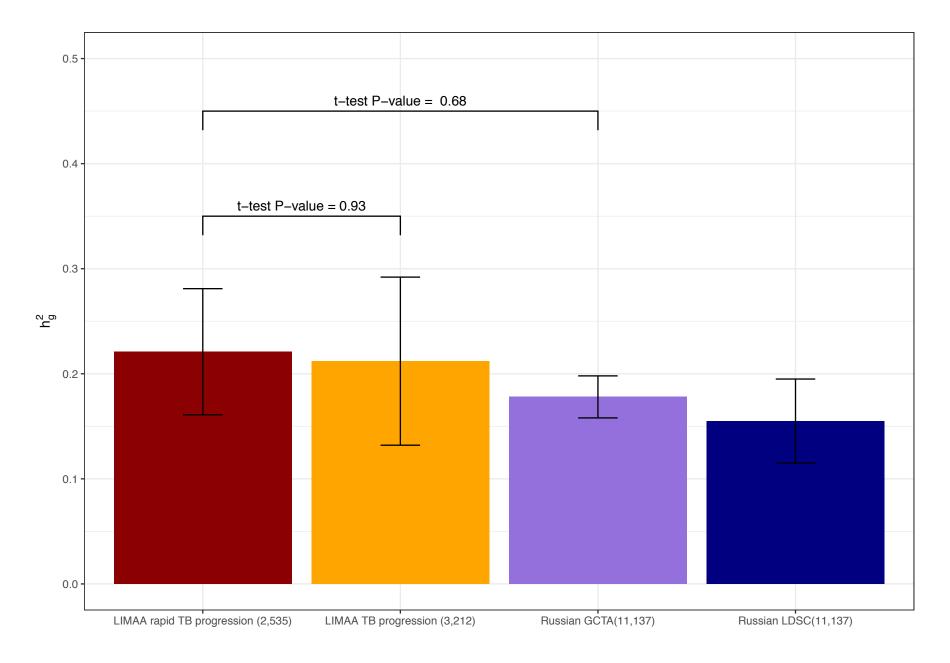
Genotyping of 4,002 subjects at ~712K genome-wide positions



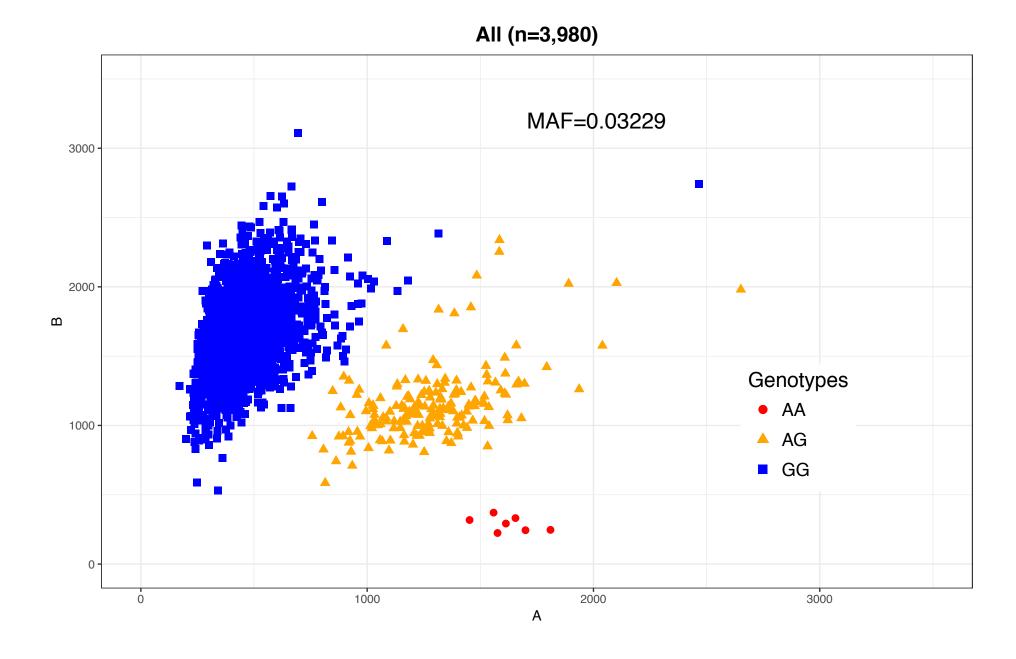

~400K genome-wide coverage markers


Supplementary Figure 2. LIMAArray design pipeline. A cartoon illustrates genome-wide array design tailored for the Peruvian population.

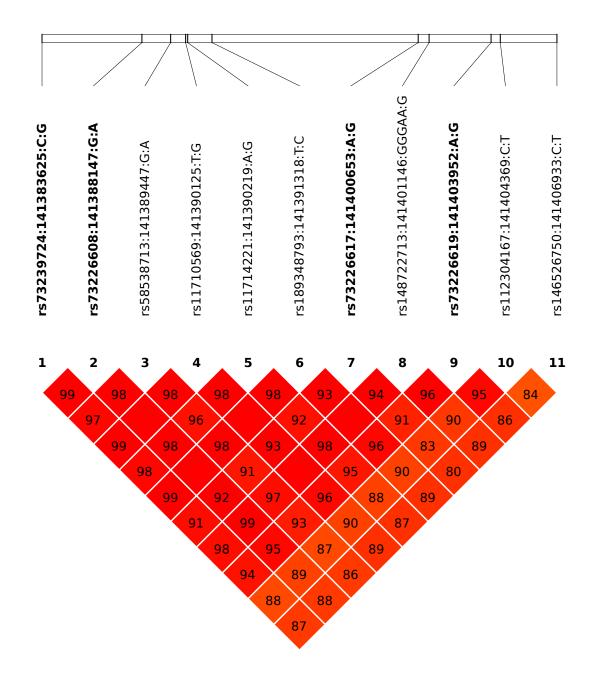



Supplementary Figure 3. Principal component analysis of the GWAS samples. (a) First and second principal components. Peruvian samples are plotted with five 1000 Genomes Phase 3 populations. (b) All GWAS samples plotted on the first two principal components colored by the disease status. (c) TB cases and controls projected onto the first two principal components using SNP weights precomputed from samples in the 1000 Genomes Phase 3 project using SNPweights. Source data are provided as a Source Data file.

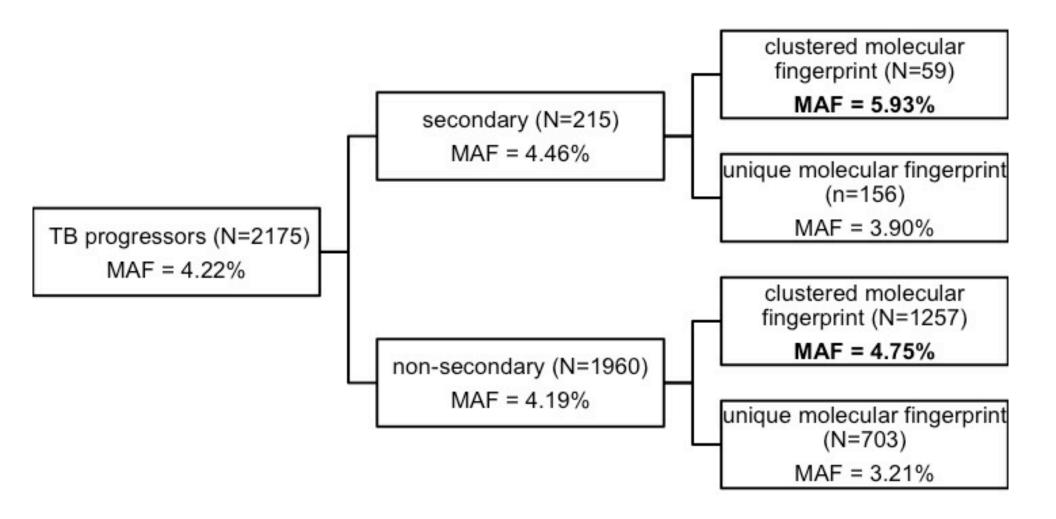



**Supplementary Figure 4. Kinship estimates using REAP and PLINK.** Relative pairs were classified on the basis of kinship-coefficient estimates based on two different softwares. REAP (Relatedness Estimation in Admixed Populations) is a program that accounts for ancestry among sample individuals to estimate autosomal kinship coefficients using genome-wide SNP genotype data due only to recent family structure. Source data are provided as a Source Data file.

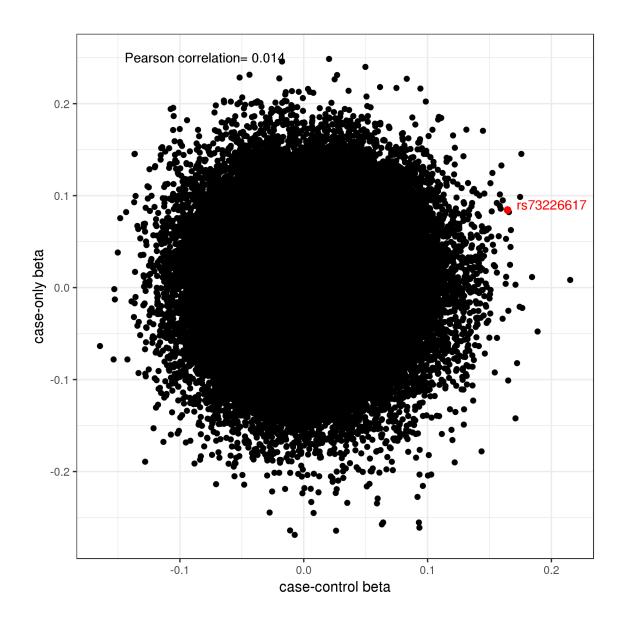



Supplementary Figure 5. Manhattan and QQ-plots of TB progression for 7,756,401 variants after genotype imputation. Manhattan plot showing genome-wide association study for (a) single common variants (6,035,269, MAF>=1%) and (c) rare variant (1,721,132, MAF<1%) burden analysis. QQ-plot of common variant association study (b) and rare variant burden analysis (d). The diagonal black line in all QQ-plots is y = x, and the grey shapes show 95% confidence interval under the null. s are the genome-wide inflation factors based on all tested statistics. Source data of the common variants association results are available from GWAS Catalog (see Data Availability). Source data of the rare variant burden results are provided as a Source Data file.

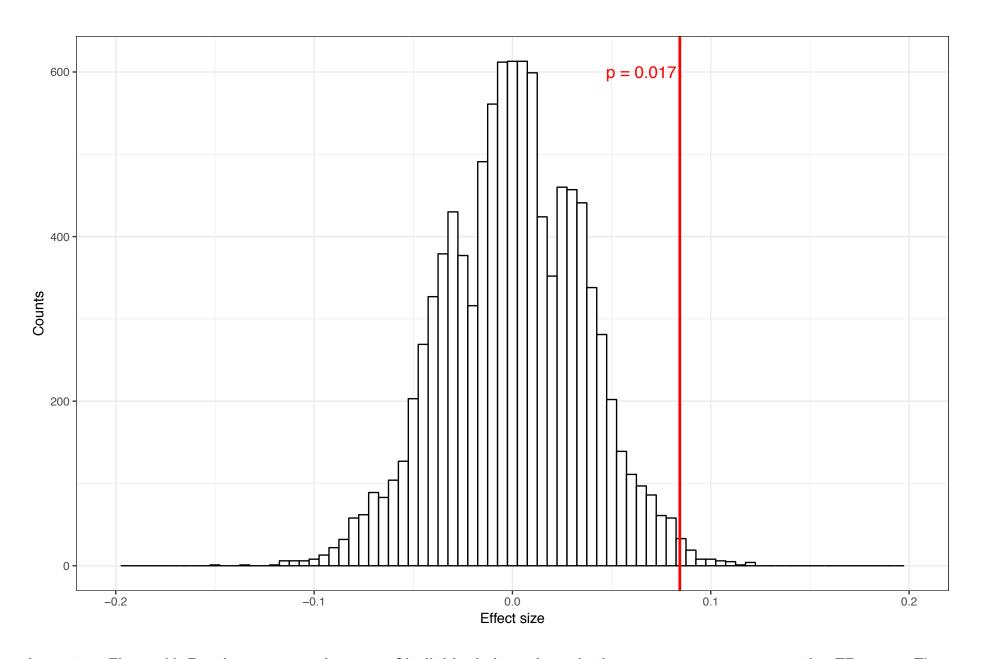



Supplementary Figure 6. Heritability estimates of TB progression and population-wide TB susceptibility. Each bar plot represents the genetic heritability estimates ( $h_g^2$ ) and its standard error based on different cohort definition and statistical method that had been employed as described in the x-axis. P-values are derived from the student t distribution. The number of samples used in each estimation is reported in the bracket. Source data are provided as a Source Data file.

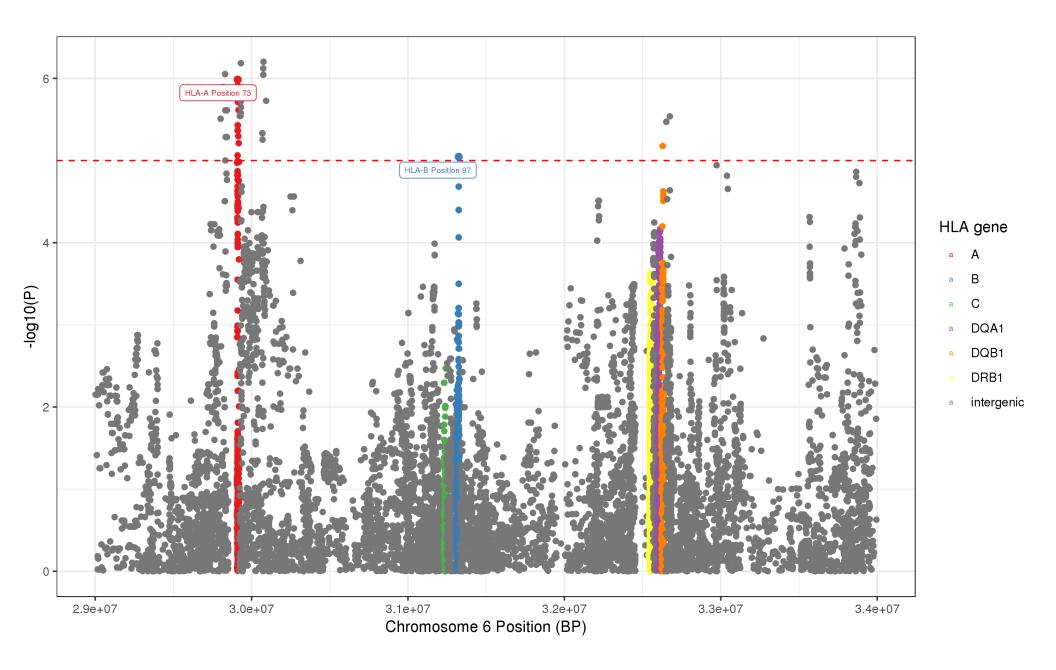



**Supplementary Figure 7. Intensity cluster plot of SNP rs73226617.** The SNP genotypes have been assigned based on cluster formation in scatter plots of normalized allele intensities A and B. Source data are provided as a Source Data file.

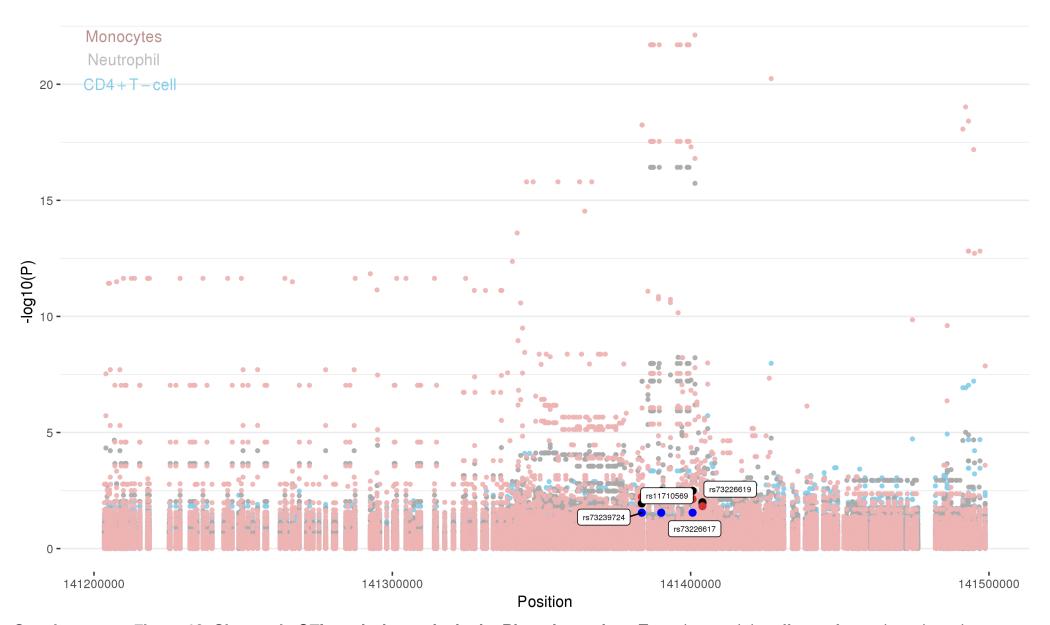



Supplementary Figure 8. Haploview LD graph of the reported top associations. Pairwise LD coefficients  $r^2$  are shown in each cell ( $r^2$  values of 1.0 are not shown). Source data are provided as a Source Data file.

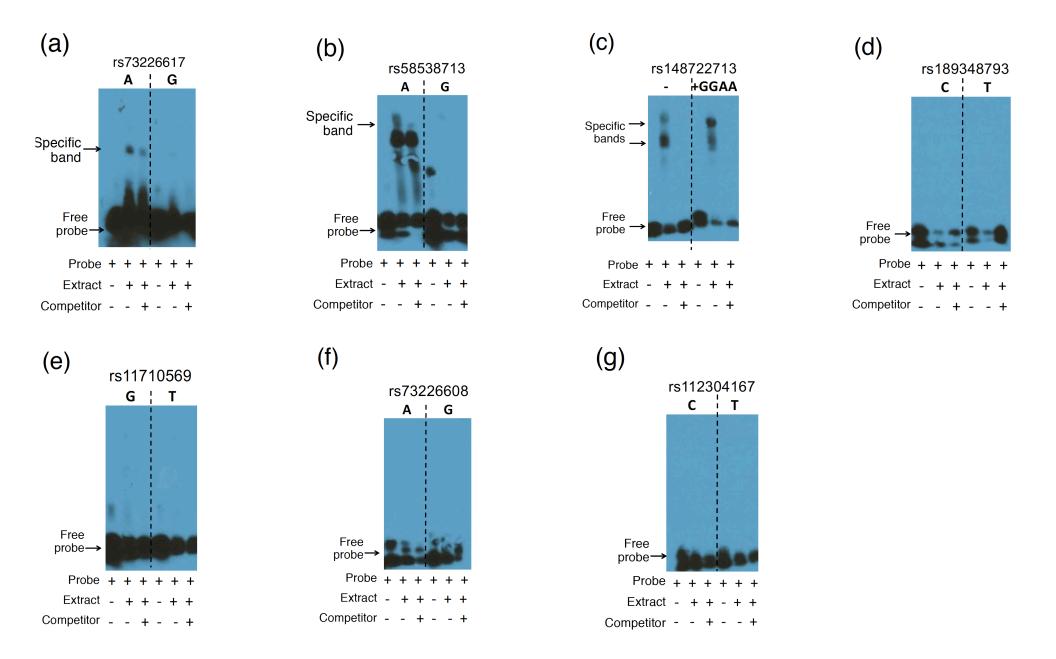



**Supplementary Figure 9. TB cases stratified by a molecular fingerprint.** All cultures of the cases were genotyped using MIRU-VNTR. TB cases share the same molecular fingerprint are epidemiologically more related while cases in which fingerprints are unique are due to remote infection that has reactivated. Reported minor allele frequency (MAF) in each category is of the top associated variant rs73226617.

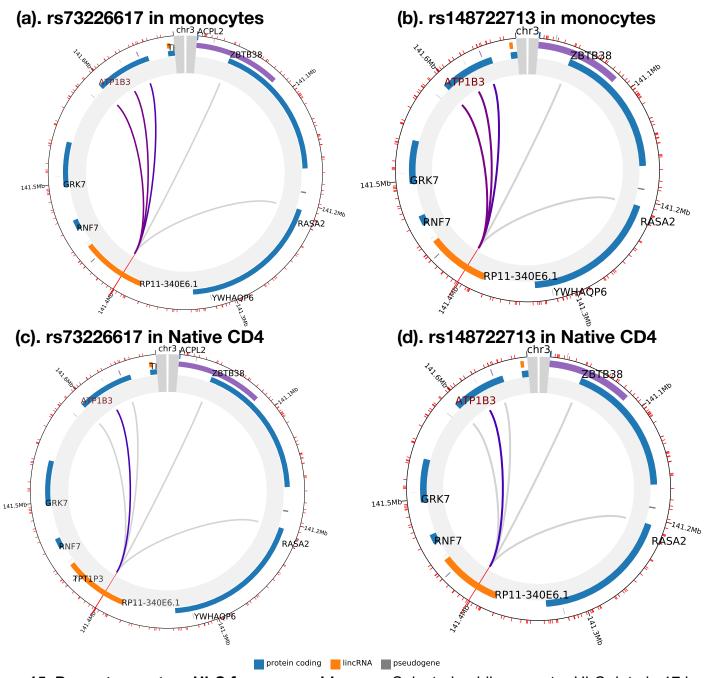



Supplementary Figure 10. Correlation between effect size (beta) between case-control (active TB cases versus latent TB controls) analysis and within case (early progressors versus other TB cases). Each dot in the plot represents a genetic variant, if the two tests are dependent, then there should be a non-zero correlation between two betas. Instead, we observed a Pearson correlation (r) of 0.014, suggesting the secondary, within case-only, analysis can be considered as independent test compared to the primary (case-control) analysis. The SNP (rs73226617) highlighted in red is the top associated risk variant. Source data are provided as a Source Data file.

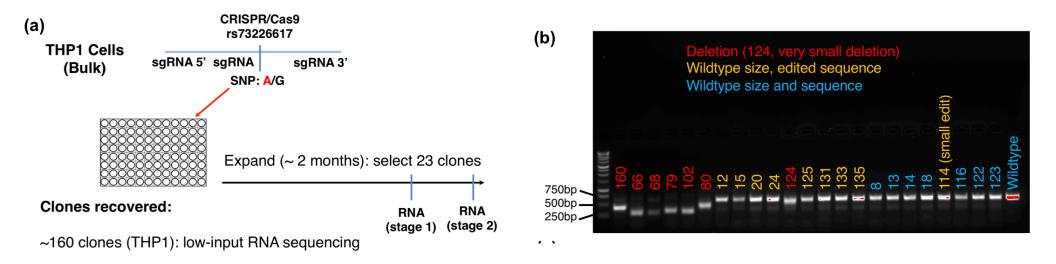


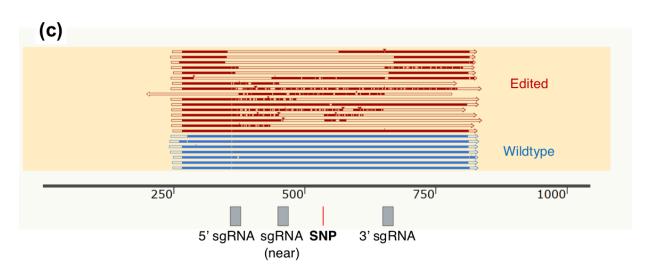

Supplementary Figure 11. Random permutation test of individuals in early and other progressors among active TB cases. The distribution of effect size was generated by randomly assigning early and other status among 2,160 TB cases. The red line in the panel marks the actual effect size observed. We conclude the observed OR of 1.09 has a P-value of 0.017 compared to null. That is only 1.7% of the observations have an effect size greater than the observed value (0.084, red vertical line). Source data are provided as a Source Data file.



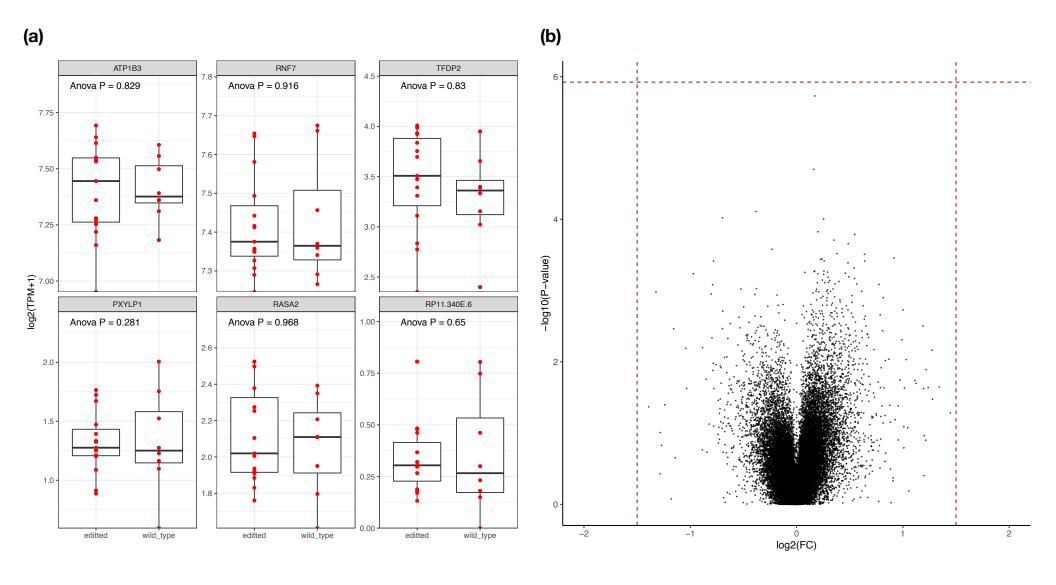

Supplementary Figure 12. Manhattan plot of HLA region. We imputed HLA region using SNP2HLA with a multi-ethnic HLA reference panel. The most significant amino acid association is position 73 of HLA-A (OR=1.12,  $P=1.03\times10^{-6}$ ). Source data are provided as a Source Data file.



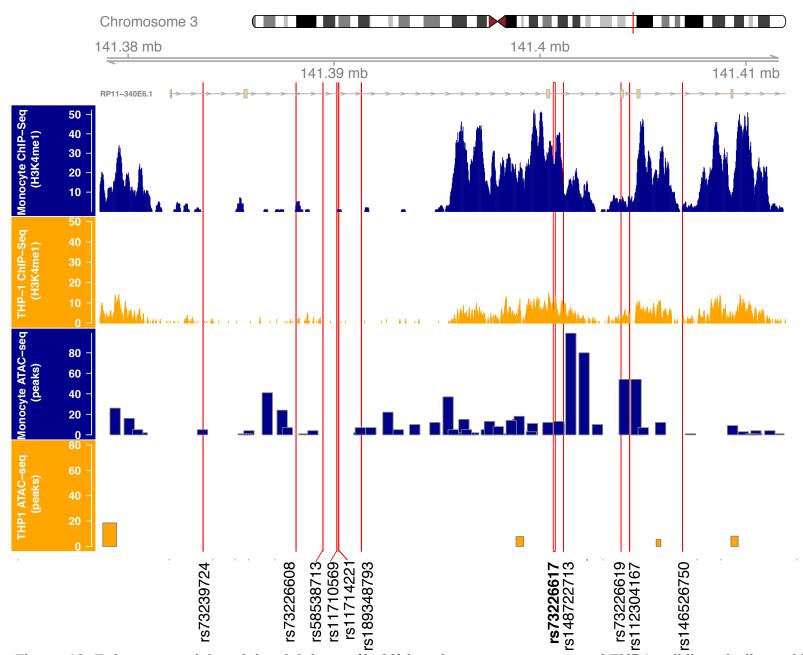

Supplementary Figure 13. Chromatin QTL analysis results in the Blueprint project. To understand the effects of genetic variants in immune cells, we utilized eQTL summary statistics produced by Blueprint project. Detailed methods were reported in the original article. Briefly, CD14+ monocytes (brown), CD16+ neutrophils (grey), and naive CD4+ T cells (light blue) were collected from 197 individuals, histone variation (H3K4me1) were analyzed. Genetic variants within 1 Mb of each feature were tested their association with normalized features using linear regression model including a random effect term accounting for sample relatedness. Four top risk variants that are associated with TB progression were included in the analysis (annotated in white boxes). Source data are provided as a Source Data file.



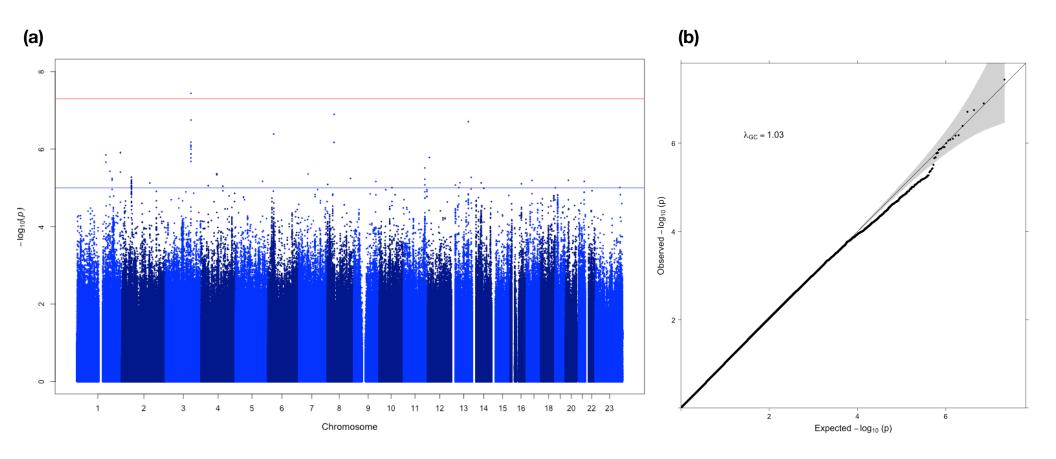

**Supplementary Figure 14. EMSA for top seven associated variants.** (a) rs73226617 (b) rs58538713 (c) rs148722713 (d) rs189348793 (e) rs11710569 (f) rs73226608 (g) rs146526750. Lanes in the panel correspond to double stranded probes without (lane 1) or with THP1 nuclear extracts (lane2) and an additional non-biotinylated competitor probe (lane 3). The experiment was performed on three independent batches of THP1 nuclear extracts. Uncropped versions of all gels are provided as a Source Data file.




**Supplementary Figure 15. Promoter capture Hi-C from www.chicp.org.** Selected public promoter Hi-C data in 17 human primary hematopoietic cell types reveals (a)-(b) strong monocyte interactions (highest score = 9.54) between an enhancer region containing the leading risk variant (rs73226617) and *ATP1B3* in monocyte. This interaction is much weaker in (c)-(d) the Naive CD4+ T cells and other cell types (highest score = 5.51).







Supplementary Figure 16. Overview of the CRISPR/Cas9 experiment. (a) CRISPR/Cas9 strategy to disrupt the enhancer region surrounding the rs73226617 lead risk variant in 3q23. THP1 cells were nucleofected with 3 guide RNA molecules targeting genomic region around the variant, then expanded for RNA extractions and gene expression analysis. Bulk-edited THP1 cells were also single-cell sorted into 96 well-plates and expanded for DNA extractions and sanger sequencing for initial screening. 23 clones were expanded to represent different edits, where some show evidence of genomic deletion, or intact sequence length, for gene expression analysis by low-input RNA sequencing and qRT-PCR. (b) Amplicons were analyzed by gel electrophoresis to confirm deletions detected after initial screening. Intact amplicons are expected around 700 base pairs (wildtype band, far left). (c) Alignment of sanger sequences derived from the 23 THP1 clones showing location of edits compared to wildtype (unedited) amplicon sequences. Red and blue sequences represent edited and unedited THP1 clones, respectively.



Supplementary Figure 17. Low-input RNA-sequencing analysis. (a) Expression of six genes around rs73226617 with transcripts per million (TPM) >1 in THP1 clones, which maintained wildtype genomic sequence after expansion of single cells from bulk-edited THP1 cells compared to edited clones. P-values are derived from a linear regression model including first principal component of the gene expression profile as covariate. (b) Volcano plot from RNA-seq data showcasing global expression of transcripts enriched in wildtype (left, n=7) or edited (right, n=16) THP1 clones. Source data are provided as a Source Data file.



Supplementary Figure 18. Enhancer activity of the risk locus (3q23) in primary monocytes and THP1 cell lines indicated by ChIP-seq and ATAC-seq. From top to bottom, the y-axis shows the raw reads of ChIP-seq for H3K4me1 in primary monocytes (GSM1003535) and in THP-1 cell lines (GSM3514950); raw counts of ATAC-seq in primary monocytes (GSE74912) and in THP1 cell lines (GSE96800). The x-axis shows the genomic positions of the identified risk locus (chr3:141383525-141407033). The vertical lines highlights 11 top associated variants. Genotyped variant rs73226617 is highlighted in bold.



Supplementary Figure 19. Manhattan and QQ-plots of TB progression including the Native American proportions as a covariate in the linear mixed model. Manhattan (a) and QQ (b) plot showing genome-wide association study for single common variants (6,035,269, MAF>=1%). P-values were reported from the linear mixed model using the genetic relatedness matrix (GRM) as random effects. Sex, age and Native American proportions inferred from the ADMIXTURE analysis (K=6) were included as fixed effects. The diagonal black line in all QQ-plots is y = x, and the grey shapes show 95% confidence interval under the null. s are the genome-wide inflation factors based on all tested statistics. Source data are provided as a Source Data file.

### Supplementary Table 1. GWAS cohort summary. Numbers are shown for all individuals with genotype data available. sd, standard deviation

|          | Total samples (N%) | Males (N%)    | Females (N%) | Mean ages (sd) | Mean age in males (sd) | Mean age in females (sd) |
|----------|--------------------|---------------|--------------|----------------|------------------------|--------------------------|
| Cases    | 2,175 (54.3%)      | 1,353 (59.3%) | 822 (47.8%)  | 29.2 (13.1)    | 29.5 (13.4)            | 28.6 (12.4)              |
| Controls | 1,827 (45.7%)      | 929 (40.7%)   | 898 (52.2%)  | 33.1 (16.0)    | 32.6 (15.5)            | 33.5 (16.5)              |

### Supplementary Table 2. LIMAA Affymetrix Axiom array design summary. Number of markers in each design module.

| Module                       | Number_of_markers |
|------------------------------|-------------------|
| GWAS/HLA/Immune-related      | 8.1K              |
| Ancestry markers             | 4.5K              |
| WES/WGS core markers         | 302.4K            |
| Markers for genomic coverage | 397.2K            |
| Total                        | 712.2K            |

## Supplementary Table 3. Imputation quality of LIMAArray when evaluted against PEL (Peruvian) panel in 1000 Genomes project Phase 3. Imputation quality indiciates by R2 using the IMPUTE2 software.

|              |          | LIMAArray |              |              | Axiom Biobank |              |              | UK Biobank |              |              |
|--------------|----------|-----------|--------------|--------------|---------------|--------------|--------------|------------|--------------|--------------|
| MAF range    | n.target | MeanR2    | frac.R2>=0.4 | frac.R2>=0.8 | MeanR2        | frac.R2>=0.4 | frac.R2>=0.8 | MeanR2     | frac.R2>=0.4 | frac.R2>=0.8 |
| [0.005,0.01] | 4989019  | 0.565     | 0.581        | 0.543        | 0.536         | 0.553        | 0.513        | 0.561      | 0.575        | 0.543        |
| [0.01,0.05)  | 3467365  | 0.856     | 0.907        | 0.789        | 0.798         | 0.87         | 0.687        | 0.833      | 0.892        | 0.746        |
| [0.05,0.5]   | 6569634  | 0.929     | 0.973        | 0.912        | 0.906         | 0.962        | 0.864        | 0.925      | 0.968        | 0.896        |

Supplementary Table 4. Heritability estimates using different methods when calculating genetic relatedness matrix. In all scenarios, we cacluated GRMs after removing individuals (--grm-cutoff 0.125) and corrected for population stratifications (--qcovar) using top 10 principal components.

| Method                 | heritability (hg2) | standard error | N     |
|------------------------|--------------------|----------------|-------|
| GCTA (0.125 unrelated) | 0.212              | 0.080          | 3,179 |
| GCTA (REAP GRM)        | 0.204              | 0.105          | 3,179 |
| GCTA (PC-RELATE GRM)   | 0.181              | 0.072          | 3,179 |

**Supplementary Table 5. Estimatates of h2g for GWAS traits.** For comparison, we included six previously reported h2g using imputed GWAS data. All reported esitmates were under the liability scale with assume disease prevalence. TB susceptiblity are estimated using GCTA in a Russian GWAS dataset, and h2SNP of TB progression were obtained using GCTA after removing related individuals.

| Trait                       | Prevalence | Imputed_hg2 | standard_error | Source                 | #_gwas_loci | sample_size(1000) |
|-----------------------------|------------|-------------|----------------|------------------------|-------------|-------------------|
| Crohns disease              | 0.005      | 0.284       | 0.016          | Luo et al. 2017        | 165         | 27                |
| Rheumatoid arthritis        | 0.005      | 0.09        | 0.033          | Gusev et al. 2015      | 101         | 57                |
| Schizophrenia               | 0.01       | 0.18        | 0.024          | Gusev et al. 2015      | 139         | 108               |
| genome-wide TB susceptility | 0.04       | 0.178       | 0.02           | Curtis&Luo et al. 2015 | 1           | 11                |
| early TB progression        | 0.1        | 0.212       | 0.08           | This study             | 1           | 4                 |
| Leprosy                     | 0.0001     | 0.199       | 0.01           | Wang et al 2016        | 24          | 24                |
| HIV-1 virus load            |            | 0.246       | 0.03           | McLaren et al. 2015    | 2           | 6                 |

### Supplementary Table 7. Design details of Taqman genotyping assays.

| SNP        | Alleles | Context Sequence [VIC/FAM]                              |
|------------|---------|---------------------------------------------------------|
| rs73239724 | G/C     | ACTTTCACAGTGCCTTTGCTGGGGT[C/G]CCTGCCATGTCTCCCCGCTCATCCC |
| rs73226608 | A/G     | CCATTGCACTCCAACCTGGACAACA[A/G]AGCAAGACCTTGTCTCAAAAACAAA |
| rs73226617 | A/G     | GTAAATATTAGAGTTCTCAAGAAGA[A/G]TCACTTTCATTTATTTATTCTTTCA |
| rs73226619 | G/A     | TTTTCTCAGGCCTGGAGAACAACCA[A/G]AGGCTTCAAGGCCTCAGTCTGCGTT |

Suplementary Table 9. Statistical associations for previously reported population-wide TB-associated polymorphisms in the Peruvian cohort. Variant are chosen from all variants that reached genome-wide significance in the discovery stage. This include two variants (rs4331426 and rs2057178) reported in west African populations. rs9271378, rs9272785 and rs4733781 reported in the European cohorts.

| Chr | SNP       | Position(hg19) | Gene     | EA | Non-EA | EAF   | effect size | standard error | P-value  |
|-----|-----------|----------------|----------|----|--------|-------|-------------|----------------|----------|
| 6   | rs9271378 | 32587300       | -        | G  | Α      | 0.254 | 2.23E-02    | 1.28E-02       | 8.31E-02 |
| 6   | rs9272785 | 32610401       | HLA-DQA1 | Α  | G      | 0.665 | -3.83E-02   | 1.35E-02       | 4.49E-03 |
| 8   | rs4733781 | 131296767      | ASAP1    | С  | А      | 0.33  | 1.42E-02    | 1.17E-02       | 2.27E-01 |
| 11  | rs2057178 | 32364187       | WT1      | Α  | G      | 0.036 | -2.12E-02   | 3.03E-02       | 4.84E-01 |
| 18  | rs4331426 | 20190795       | CTAGE1   | G  | Α      | 0.021 | 5.30E-03    | 4.13E-02       | 8.98E-01 |

#### Supplementary Table 11. THP1 clones included in RNA-sequencing

| ) Classificati        | Sanger sequence (PCR amplified around rs73226617)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THP1 clone number |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| . Deleti              | GCANGATATTGTGCTCAGTGCTANGAAAGATACAAATATAGAAGGCAATGCTGCTGCTTCCAAGGTACATCTCCAAGGTACATCCTGGTACAAGAGAAGAGAGAAGAGAAAAACTCTCAAAGATTTCTGAATGCAAAGAATGTCCATGTATATTTTTTTGTAGTTAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160               |
| Deleti                | TIGATIGCAAGATGGACTGTGGGTCTTAGAGCGACTTGGGGAAGCCTTGGGGTACAGTAGTTTCCTTCTCTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                |
| . Deleti              | TTGATTGCAAGATGGATCTGTGGTCTCTAGAGCGACTTGGGAAGGCTCTGCGGTTCAGTAGTTTGCATGTTGCATGAGAAAGGAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68                |
| Deleti                | TCTAGAGCGACTTGGGAAGGCTCTGCGTTCAGTAGTTTGCATCTCTCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79                |
| A Deleti              | GGATCTGTGGTCTCTAGAGCGACTTGGGAAGGCTCTGGCGTTCAGTAGTTTGCATTTCCTTGTCTCGATTACTGCAAGTAAGGACGAAGAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 102               |
| Deleti                | TTGTTGAAGGCTAGTTTATGCAAGATATTGTCTCAGGCTAGAAAGATACCACAATATAGAAGATTCCAAGGTGTACAGAAGAAGAGAGAAGAAGAAGAAGAAGAAGAAAAAATCGAAGACCACAATATATTATTTTGGTACAAGGGGAAACCACAATTCCCTAGGTGACGAGGTAATATTCACCAGATGAGAAGAAGAAGATGCATATAATATATTATTTGGACAAGGGAAACCACAATTCCCTAGGTGACGAGAATATACACAGATGAGAAGAAGATGCATATAATATTATTTGGACAAGGGAAACCACAATTCCCTAGGTGACGAGATATATACACCAGATGAGAAGAAGATGCATATAATATATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                |
| Deleti                | CTTTGNTTTATTTTTTTANATTGNACACNAGGTGCTCATAAAGCCAGGTATAAAATGTGATGGTCCTGGTCCTGGTGATGTTATTATTTTAGAAAAGATGCCCTTGATATACCCCTGATATATCCCTAGAAGAAGAAGGAGGGGGANNTAACAATTCCCTAGGTGACGGGTCAATATTCCTAGGAAAAGAAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124               |
| Edited without deleti | THISCAAGATATTGTGCTCATTGCTCCAAAGATACAAATATNAAAAGTAAAAGTATNAAAAGTATGTGCCCTTGGGGTGCCCTTGGGACCTGGAAAAAAAGAAAAAGAAAAGCTCAATTGCCCTAAACACTGCCATGTNTATTATTTTGGACAAATGCCAATGCCAATCCCTAAGTACCACGATNAAAAGAAAGAAGAAAGAAGAAGAAGAAGAAGAAGAAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                |
| Edited without deleti | TECAAGGAAACTGNACATGCAACCCCCCATCTTTGCTTTCCCCTGCTGACCCTGGACTAGCCCTGGACTAGCCCTGTGACTAGCCCTGTGACTAGAAAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                |
| Edited without deleti | GFTAGGTTATGCTATGCATTGTGWTGTGTGCTATGATAAAAACNAATATAATATGCAATGCTGCGGTTCCGATCCGGTGTTGTAAAAAAGAGAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                |
| Edited without deleti | CTAGTTTATGCAAGATATTGGCTCAGTGCTAAGAAAGATACCAATATACAAAGATGCCAGTGCTACTGGTACAGAAGAGAAGAAGATGCTCTTAGTAAGAAGAAGATGCCAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                |
| Edited without deleti | TTTTTGATCAAGGTTGTTGTTGTCCCAATGTTGGGCAATGTTGAGGACCAATGTTGATGGCTTTGTGGCCTTTGTGCCTGTTCAAAAAAAGGTCCTTATGCCAAGGAAAAACCCAAAGAACCCCAAAAACCCCAAATATTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125               |
| Edited without deleti | ATAGCTAATTATGATATGATATGGATGCGCTGCTTGCAAANANACATACATATATNGAANGGCTNGNNGNNNNNNCNANGGGRACAAAAANANNNNNNNANAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 131               |
| Edited without deleti | GOTATGCTTAAGCTTGGGCCCATGCTAATACAGATACAAAAAGCAAAAGGTGCTGCTGCGGGCGTCGTGCTGGGCCTGTINAAAAAAAAGCACATGCTGTTAGGCAAAAGATACCACNACCAATGTCCATGTCTTGGATTTTGGTACTTTGGAAACINCNATTNCCTATINNNANGGINAINITATTCACCTTATCANGATGAAAAANAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 133               |
| Edited without deleti | TGGTINHAAGGTINNTTHINNINIANAAWTTONGNINNINNGGTTANAAAAAAANTINAAAAGGAANGINNINGANGCCCINNINNAAAGGAANGINNINGANCCCINNINNAAAANTINAAAAGGAANGINNINGANGAANGINNINGANGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINAAAAGGAANGINNINGAANGINNINNAAAAANTINAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINAAAAAANTINAAAAGGAANGINNINGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAGGAANGINNINGAANGINNINNAAAAAANTINAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAANAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAGGAANGINNAAAAAANTINAAAAAAANTINAAAAAAANTINAAAAAAAA | 135               |
| Edited without deleti | GGCTAGTTTATGCAAGATATTGTGCTCAGTGCTAAGAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114               |
| Wildty                | GGCTAGTTTATGCAAGATATTGTGCTCAAGAAAGATACAAATATAGAAGGCAATGCTGCTCCAAGGTGAGAAGATATTCACCAGTGAGAAAGATATACAAATATTAGCAAGGTAGAAAGATATCACAGTAGAAAGATATCCATGTATATTTTTGTAGTTTGGACAAGGGAAACCACAATTCCCTAGGTAGCGGTCAATATTCACCAGTGAGGAAAGAANNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                 |
| Wildty                | CTAGTTTATGCAAGATATTGGCTCAGTGCTAAGAAAGATACCAATATACAAAGATGCCAGTGCTACTGGTACAGAAGAGAAGAAGATGCTCTTAGTAAGAAGAAGAAAAATATGAAAGATGCCAATATTCACCAGATGAGAAGAATATTCACCAGATGAGAAGAATATTCACCAGATGAGAAGAAAATATAGAAGGCAATATTCACCAGATGAGAAAAATATAGAAGGCAAATATTCACCAGATGAGAAAAATATAGAAGGCAATATTCACCAGATGAGAAAAATATAGAAGGCAATATTCACCAGATGAGAAAAATATAGAAGGCAATATTCACCAGATGAGAAAAATATAGAAGGCAATATTCACCAGATGAGAAAAATATAGAAGGCAATATTCACCAGATGAGAAAAATATAGAAGAAGAATATAGAAGAAAATATAGAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                |
| . Wildty              | GGCTAGTTTATGCAAGATATTGTGCTCAGTGCTAAGAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                |
| Wildty                | GCTAGTTTATSCAAGATATTGTGCTCAGTGCTAAGAAGACATATATAGAAGAGCAATTCCTAGTGTCACGGTGCAAGTGTGTCCTAGTAGAAGAAGAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                |
| Wildty                | GCTAGTTTATSCAAGATATTGTGCTCAGTGCTAAGAAGACAATATAGAAGAGCAATGCTGCTGTTCCAAGGTGTGCTGTGCCAGTGAGAAGAAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116               |
| Wildty                | GGCTAGTTTATGCAAGATATTGCCACTAGTAAGAAAGATACAATATAGAAGGCAATCCTGTTCCAAGGTGCTAGTACTTATTCCAAGGTAGAAAGATACCAATAGCAAGTAGAAAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 122               |
| Wildty                | AGGCTAGTTTATGCAAGATATTGCCTCAGTGCTAAGAAGATACCACAATATCACCAAGAGGCAATGCCACTGCTACAGAGAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123               |

### Supplementary Table 12. Previously reported TB related genes for cusmized array design.

| Gene_name            | Туре                                    | PubMEDID |
|----------------------|-----------------------------------------|----------|
| XPO1 - RPS29P10      | GWAS                                    | 20694014 |
| PARD3B               | GWAS                                    | 20694014 |
| RPL6P14 - TET2       | GWAS                                    | 20694014 |
| STXBP5               | GWAS                                    | 20694014 |
| AHCYL2               | GWAS                                    | 20694014 |
| CYCSP22 - PXDNL      | GWAS                                    | 20694014 |
| RNA5SP272 - RIPK2    | GWAS                                    | 20694014 |
| ASAP1                | GWAS                                    | 25774636 |
| RCN1 - WT1           | GWAS                                    | 22306650 |
| GLRX5 - TCL6         | GWAS                                    | 20694014 |
| RNA5SP430 - RPL18P13 | GWAS                                    | 20694014 |
| CDH13, LOC101928446  | GWAS                                    | 20694014 |
| DUSP14               | GWAS                                    | 20694014 |
| RPS4XP18 - UBE2CP2   | GWAS                                    | 20694014 |
| MC4R - MRPS5P4       | GWAS                                    | 20694014 |
| ZNF229               | GWAS                                    | 20694014 |
| IFNGR1               | suscptibility to mycobacterial diseases | 24821915 |
| IFNGR2               | suscptibility to mycobacterial diseases | 24821915 |
| IL12B                | suscptibility to mycobacterial diseases | 24821915 |
| IL12B1               | suscptibility to mycobacterial diseases | 24821915 |
| STAT1                | suscptibility to mycobacterial diseases | 24821915 |
| IRF8                 | suscptibility to mycobacterial diseases | 24821915 |
| ISG15                | suscptibility to mycobacterial diseases | 24821915 |
| NEMO                 | suscptibility to mycobacterial diseases | 24821915 |
| CYBB                 | suscptibility to mycobacterial diseases | 24821915 |
| MR                   | candidate genes                         | 22825450 |
| CD209                | candidate genes                         | 22825450 |
| CLEC7A               | candidate genes                         | 22825450 |
| TLR1                 | candidate genes                         | 22825450 |

| TLR2     | candidate genes    | 22825450 |
|----------|--------------------|----------|
| TLR4     | candidate genes    | 22825450 |
| TLR8     | candidate genes    | 22825450 |
| TLR9     | candidate genes    | 22825450 |
| TIRAP    | candidate genes    | 22825450 |
| CR1      | candidate genes    | 22825450 |
| NOD2     | candidate genes    | 22825450 |
| CD14     | candidate genes    | 22825450 |
| P2X7     | candidate genes    | 22825450 |
| VDR      | candidate genes    | 22825450 |
| SP-A1    | candidate genes    | 22825450 |
| SP-A2    | candidate genes    | 22825450 |
| MBL      | candidate genes    | 22825450 |
| TNF      | candidate genes    | 22825450 |
| IL1B     | candidate genes    | 22825450 |
| IL6      | candidate genes    | 22825450 |
| IL8      | candidate genes    | 22825450 |
| IL10     | candidate genes    | 22825450 |
| IL18     | candidate genes    | 22825450 |
| CCL1     | candidate genes    | 22825450 |
| CCL5     | candidate genes    | 22825450 |
| CXCL10   | candidate genes    | 22825450 |
| NOS2     | candidate genes    | 22825450 |
| SLC11A1  | candidate genes    | 22825450 |
| HLA-DRB1 | candidate genes    | 16916662 |
| HLA-DQB1 | candidate genes    | 16916662 |
| TOX      | linkage study      | 23415668 |
| PTX3     | GWAS supplementary | 20694014 |
| HLA-DQA1 | GWAS supplementary | 20694014 |
| MBL2     | GWAS supplementary | 20694014 |
| UBE3A    | GWAS supplementary | 20694014 |

| CCL18   | GWAS supplementary | 20694014 |
|---------|--------------------|----------|
| CCL4    | GWAS supplementary | 20694014 |
| IL12RB1 | GWAS supplementary | 20694014 |
| MC3R    | GWAS supplementary | 20694014 |
| ULK1    | candidate genes    | 27485354 |
| Notch4  | candidate genes    | 29228365 |
| TOLLIP  | candidate genes    | 22778396 |
| AIM2    | candidate genes    | 22695634 |

**Supplementary Table 13. Sample QC summary.** Individuals were excluded if they were missing more than 5% of the genotype data, had an excess of heterozygous genotypes (3.5 standard deviations (s.d.)), duplicated with identity-by-state >0.9 or did not fit early TB progressor selection criteria.

| Criteria                        | #_failed_QC_samples |
|---------------------------------|---------------------|
| missngness >5%                  | 1                   |
| duplicate individuals           | 3                   |
| heterzygosity rate (+- 3.5 s.d) | 14                  |
| old at age of diagnose in cases | 5                   |

### **Supplementary Table 14. GWAS pre-imputation variant QC summary.**

| Criteria                                                          | #_failed_QC_markers |
|-------------------------------------------------------------------|---------------------|
| excessive missingness (>95%)                                      | 9,779               |
| different genotype call rates between cases and controls (P<1e-5) | 25                  |
| HWE P<1e-5 in controls                                            | 4,009               |
| duplicated position markers                                       | 443                 |
| batch effect (P<1e-5)                                             | 20,965              |
| Total                                                             | 35,302              |

### Supplementary Table 15. Used high-LD regions in human genomes (in Grch37).

| chr | start     | end       |
|-----|-----------|-----------|
| 1   | 48000000  | 52000000  |
| 2   | 86000000  | 100500000 |
| 2   | 134500000 | 138000000 |
| 2   | 183000000 | 190000000 |
| 3   | 47500000  | 50000000  |
| 3   | 83500000  | 87000000  |
| 3   | 89000000  | 97500000  |
| 5   | 44500000  | 50500000  |
| 5   | 98000000  | 100500000 |
| 5   | 129000000 | 132000000 |
| 5   | 135500000 | 138500000 |
| 6   | 25500000  | 33500000  |
| 6   | 57000000  | 64000000  |
| 6   | 140000000 | 142500000 |
| 7   | 55000000  | 66000000  |
| 8   | 8000000   | 12000000  |
| 8   | 43000000  | 50000000  |
| 8   | 112000000 | 115000000 |
| 10  | 37000000  | 43000000  |
| 11  | 46000000  | 57000000  |
| 11  | 87500000  | 90500000  |
| 12  | 33000000  | 40000000  |
| 12  | 109500000 | 112000000 |
| 20  | 32000000  | 34500000  |

# Supplementary Table 16. Summary statistics of the top associated SNP, rs73226617, identified in the TB progression GWAS using different genetic relationship matrix.

| Method   | Effect size | Standard error | P-value  |
|----------|-------------|----------------|----------|
| GCTA     | 0.167       | 0.030          | 3.86E-08 |
| REAP     | 0.167       | 0.030          | 3.86E-08 |
| PCRELATE | 0.168       | 0.030          | 2.49E-08 |
| GEMMA    | 0.165       | 0.030          | 3.93E-08 |

### Supplementary Table 17. Bayesian meta-analysis of rs73226617 to test whether the reported association is restricted to the early progressors with varying prior values. Values are the disease specific approximate Bayes factor (ABF) for the top associated variant (rs73226617).

| sigma/rho | 0     | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.1       | 0.380 | 0.339 | 0.308 | 0.284 | 0.265 | 0.252 | 0.244 | 0.244 | 0.260 | 0.327 |
| 0.2       | 0.525 | 0.505 | 0.485 | 0.465 | 0.444 | 0.421 | 0.396 | 0.369 | 0.344 | 0.333 |
| 0.3       | 0.727 | 0.712 | 0.694 | 0.670 | 0.642 | 0.608 | 0.567 | 0.517 | 0.457 | 0.388 |
| 0.4       | 0.942 | 0.929 | 0.909 | 0.881 | 0.845 | 0.800 | 0.743 | 0.671 | 0.581 | 0.463 |

#### Supplementary Table 18. Summary and accession information for Chip-seq of master transcription factors used in the IMPACT analysis (Figure 3e).

| Transcription Factor    | Total nucleotides covered | Total peaks | Mean nucleotides per peak | NCBI GEO/ ENCODE Accession                     |
|-------------------------|---------------------------|-------------|---------------------------|------------------------------------------------|
| T-BET                   | 57,708,437                | 51069       | 1821                      | GSM2176974, GSM2176976, GSM1527682             |
| GATA3                   | 5,861,945                 | 23,742      | 246                       | GSM1859075                                     |
| STAT3                   | 3,402,600                 | 5,681       | 622                       | GSM2545819                                     |
| FOXP3                   | 1,354,127                 | 9,847       | 157                       | GSM1056936, GSM1056937                         |
| STAT5                   | 293,719                   | 2,281       | 129                       | GSM1056923, GSM1056922                         |
| IRF5                    | 5,020,855                 | 7,640       | 657                       | GSE38567                                       |
| IRF1                    | 2,332,588                 | 7,013       | 333                       | GSM1057026                                     |
| СЕВРВ                   | 2,177,346                 | 13,694      | 159                       | GSM785496                                      |
| PAX5                    | 5,426,269                 | 15,927      | 341                       | GSM1086293, GSM1086294, GSM1086295, GSM1086296 |
| HNF4A                   | 12,395,645                | 50,421      | 380                       | GSM803460                                      |
| NA PollI in lymphocytes | 38,815,231                | 71,879      | 540                       | GSM1527695, GSM1527697, GSM486494              |
| TCF7L2                  | 13,397,935                | 27694       | 484                       | GSM816438                                      |
| RXRA                    | 8,478,764                 | 13,186      | 643                       | GSM1010767                                     |
| REST                    | 6,309,445                 | 16,404      | 384                       | GSM803335                                      |

#### Supplementary Table 19. Double stranded probe sequences used for Electrophoretic Mobility Shift Assay (EMSA).

| RSID               | EMSA probe sequence (forward)                  | EMSA probe sequence (reverse)                  |  |
|--------------------|------------------------------------------------|------------------------------------------------|--|
| rs146526750: C     | AGGCGCCCCCACCACCGCCAGGCTAATTTTT                | AAAAATTAGCCTGGC <mark>G</mark> TGGTGGGGGGCGCCT |  |
| rs146526750: T     | AGGCGCCCCCACCATGCCAGGCTAATTTTT                 | AAAAATTAGCCTGGC <mark>A</mark> TGGTGGGGGGCGCCT |  |
|                    |                                                |                                                |  |
| rs58538713: A      | GGCCTCCTCAAGTGGATCCCTGACCCCCAG                 | CTGGGGGTCAGGGATCCACTTGAGGAGGCC                 |  |
| rs58538713: G      | GGCCTCCTCAAGTGG <mark>G</mark> TCCCTGACCCCCCAG | CTGGGGGTCAGGGACCCACTTGAGGAGGCC                 |  |
|                    |                                                |                                                |  |
| rs73226608: A      | CCAACCTGGACAACAAAGCAAGACCTTGTCT                | AGACAAGGTCTTGCT <b>T</b> TGTTGTCCAGGTTGG       |  |
| rs73226608: G      | CCAACCTGGACAACAGAGCAAGACCTTGTCT                | AGACAAGGTCTTGCTCTGTTGTCCAGGTTGG                |  |
|                    |                                                |                                                |  |
| rs11710569: G      | GCCGATTTGATCAAC <b>G</b> GGAAGAAAGGGTATC       | GATACCCTTTCTTCCCCGTTGATCAAATCGGC               |  |
| rs11710569: T      | GCCGATTTGATCAACTGGAAGAAAGGGTATC                | GATACCCTTTCTTCCAGTTGATCAAATCGGC                |  |
|                    |                                                |                                                |  |
| rs73226617: A      | GAGTTCTCAAGAAGA <mark>A</mark> TCACTTTCATTTATT | AATAAATGAAAGTGA <b>T</b> TCTTCTTGAGAACTC       |  |
| rs73226617: G      | GAGTTCTCAAGAAGA <mark>G</mark> TCACTTTCATTTATT | AATAAATGAAAGTGA <b>C</b> TCTTCTTGAGAACTC       |  |
|                    |                                                |                                                |  |
| rs148722713: -     | GGAGGAAGGAAGGAAGGAAGAA                         | ттеттееттее-стееттеетее                        |  |
| rs148722713: +GGAA | GGAGGAAGGAAGGAAGGAAGGAAGAA                     | TTCTTCCTTCC(+TTCC)CTCCTTCCTCC                  |  |
|                    |                                                |                                                |  |
| rs189348793: C     | AGGGATGGAGGAAGGCAAATGG                         | CCATTTGCTTGGTAGGTCTTCCTCCATCCCT                |  |
| rs189348793: T     | AGGGATGGAGGAAGATCTACCAAGCAAATGG                | CCATTTGCTTGGTAGATCTTCCTCCATCCCT                |  |

### Supplementary Table 20. Sequences and target locations of synthetic guide RNA samples

| Target region   | Target location (hg38) | Synthetic guide RNA sequence | Quality score (Deskgen) |
|-----------------|------------------------|------------------------------|-------------------------|
| rs73226617 5'   | chr3: 141,681,650      | GTAGGGCTGGAATTCCTGCA         | 66                      |
| rs73226617 near | chr3: 141,681,727      | CCATGCCTTGATAAGGTGCA         | 59                      |
| rs73226617 3'   | chr3: 141,681,962      | GAAGAGATGCTCTTAATGCA         | 63                      |