**ISCI, Volume 19** 

# **Supplemental Information**

## **Commensal Gut Bacteria Buffer the Impact**

#### of Host Genetic Variants on Drosophila

## **Developmental Traits under Nutritional Stress**

Dali Ma, Maroun Bou-Sleiman, Pauline Joncour, Claire-Emmanuelle Indelicato, Michael Frochaux, Virginie Braman, Maria Litovchenko, Gilles Storelli, Bart Deplancke, and François Leulier



Figure S1. GWAS discovery of the growth promotion effect by Lp<sup>WJL</sup> unexpectedly unveils the
 microbial buffering capacity in different host genetic backgrounds. Related to Figure 1

A). Manhattan plot of the GWAS performed on the average larval length fold change per DGRP
 line. We used the DGRP2 website for the association analysis.

6 (http://dgrp2.gnets.ncsu.edu/)(Huang et al., 2014; Mackay et al., 2012).

7 8

3

9 **B).** Quantile-Quantile plot of the GWAS results.

10

11 C). and D). Box and whiskers plots illustrating the effect of RNAi knockdown on larval length on 12 day 7 AEL. Each bar represents the average length from pooled 3-5 biological replicates from either condition, with 15-40 larvae in each replicate. **C:** GF. **D:** *Lp<sup>WJL</sup>*. Three different control 13 14 knockdowns were used: one control fly strain recommended by VDRC for RNAi constructs 15 obtained from VDRC, one control strain (against mCherry) recommended by the Harvard TRiP collection, and the y,w strain from Bloomington. All control and RNAi strains were crossed to 16 y,w;; tubulin-GAL80<sup>ts</sup> ,daugtherless-GAL4. "GD" refers to the VDRC RNAi GD collection. "KK" 17 refers to the VDRC RNAi KK collection. For specific genotypes, refer to Material and Methods. 18

19

20 E). Lp<sup>WJL</sup> also buffers growth differences in the RNAi knock-down experiments for each of the

21 candidate genes. Each data point represents the intercept of the average GF length and its

22 corresponding mono-associated average larval length on Day 7 for each RNAi knockdown

23 experiment. (Null hypothesis: Slope =1. P=0.0008, the null hypothesis is therefore rejected).

These data points were fitted into an unconstraint model. For specific genotypes, we refer to

Table 2 and Methods. Data are represented as mean and 10-90 percentile in all panels.

26 27













Figure S2

| 28<br>29       | Figure S2. The single-larva BRB-seq indicates transcriptomic buffering in developmental genes by $Lp^{WL}$ . Related to Figure 1                                                                                  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30<br>31       | <b>A).</b> Experimental setup to perform BRB-seq-based transcriptomics on individual larvae. Flies from three DGRP strains were reared in GF conditions. Egg-laying was synchronized and embryos                  |
| 32<br>33       | were transferred to food caps: three left germ-free (1X PBS) and three inoculated with <i>Lp<sup>WJL</sup></i> (OD 0.5 in 1x PBS). At day 4, single larvae were collected from all plates, RNA extraction and RNA |
| 34<br>35       | sequencing were performed. 12 larvae were collected per line for each condition, totaling 72 single larval transcriptomes                                                                                         |
| 36             |                                                                                                                                                                                                                   |
| 37<br>38       | <b>B).</b> Principal component plot of the corrected expression data after batch correction.                                                                                                                      |
| 39<br>40       | <b>C).</b> Hierarchical clustering of the transcriptomic data using the Ward's method. A batch effect of                                                                                                          |
| 40<br>41       | 25208, black: 25183). The red "branches" of the cluster represent GF samples, and green ones                                                                                                                      |
| 42<br>43       | represent mono-associated samples.                                                                                                                                                                                |
| 44             | <b>D</b> ). The observed effect of $Lp^{WJL}$ mono-association on gene expression is consistent with our                                                                                                          |
| 45<br>46       | grevious findings, thus validating our transcriptome approach on individual larvae. The horizontal grev line represents the 0.05 EDR-corrected p-value threshold. The vertical lines are the -2 and 2             |
| 47             | log2 (Fold Change) thresholds. Genes in red are significantly up-regulated, genes in blue are                                                                                                                     |
| 48             | significantly down-regulated. Several representative genes of the top differentially regulated                                                                                                                    |
| 49<br>50       | genes from each category are highlighted.                                                                                                                                                                         |
| 51<br>52       | <b>E).</b> Gene set enrichment analysis on biological process gene ontology (GO) terms based on the                                                                                                               |
| 52<br>53<br>54 | whereas green gene sets were extracted from GO2MSIG(Powell, 2014).                                                                                                                                                |
| 55<br>56       | <b>F).</b> Inertia gain of the HCPC analysis from Figure 1G and 1H. the black bars represent the "optimal" level of division of the tree suggested by FactoMineR.                                                 |
| 58             | G). Scatterplot of the standard deviation in expression level of each gene in the GF and $Lp^{WJL}$                                                                                                               |
| 59<br>60       | mono-associated condition. The black line represents the theoretical slope of 1 and intercept 0.<br>The red line is a linear fit of the points. Labelled genes show the highest relative change in their          |
| 61<br>62       | standard deviation, as determined by the absolute value of $log_2(SD_{LpWJL}/SD_{GF})$ .                                                                                                                          |
| 62<br>63<br>64 | standard deviation, regardless whether the genes themselves were up- or down-regulated.                                                                                                                           |
| 65             | I). Scatterplots of standard deviations of each gene calculated by genotype. Genes were faceted                                                                                                                   |
| 66             | by how their differential expression alters within each strain in both GF and $Lp^{WJL}$ mono-                                                                                                                    |
| 67<br>68       | associated conditions: repressed (top panel), non-induced (middle panel) and induced (bottom                                                                                                                      |
| 68<br>69       | the linear fit to the data. Since transcripts specifically modulated by Lo <sup>WJL</sup> tend to have                                                                                                            |
| 70             | incomparable SD, we assessed GO enrichment only on non-differentially expressed genes ( <b>see</b>                                                                                                                |
| 71             | Fig.1K)                                                                                                                                                                                                           |
| 72             |                                                                                                                                                                                                                   |
| 73             |                                                                                                                                                                                                                   |
| 75             |                                                                                                                                                                                                                   |
| 76             |                                                                                                                                                                                                                   |
| 77             |                                                                                                                                                                                                                   |

Α. В. "L X S" Lp<sup>WJL</sup> (6g yeast/L) vs. GF (8g yeast/L) 5.0 Avg Larval Length(mm) Larval Size 4.5 4.0 3.5 Developmental timing **F2** 3.0 "L X L", "SXS" and "2LX2S" 2.5 2.0 Adult emergence, organ and body size 1.5 1.0 0.4 0.6 0.8 £.... Standard Deviation (mm)













| 78<br>79               | Figure S3 In the genetically diverse DGRP F <sub>2</sub> population, <i>Lp<sup>WJL</sup></i> reduces variation in different physical fitness traits. Related to Figure 2 |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80                     | A). A diagram illustrating DGRP crosses to generate the $F_2$ generation for studying variation in                                                                       |
| 81                     | larval size, pupariation and adult emergence. 25210 (RAL-859), 25183(RAL-335) are the lines with                                                                         |
| 82                     | the "large" ("L") larvae as germ-free, and 25208(RAL-820) and 28147(RAL-158) are the lines with                                                                          |
| 83                     | the "small" larvae as germ-free ("S"). Seven possible crosses are set up: 25210X25183 ("LXL").                                                                           |
| 84                     | 25208X28147("SXS"), 25210X25208, 25183X25208, 25210X28147, 25183X28147 are the four                                                                                      |
| 85                     | "LXS" crosses, and 25183 and 25210 X 25208 and 28147 is the "2L X 2S" cross.                                                                                             |
| 86                     |                                                                                                                                                                          |
| 87                     | B). A scatter plot showing how standard deviation (SD) changes as a function of larval length,                                                                           |
| 88                     | and how such change differs in the DGRP $F_2$ GF (pink) and $Lp^{WJL}$ mono-associated (blue)                                                                            |
| 89                     | populations (see also Figure 2a and Methods for detailed schemes). Each data point represents                                                                            |
| 90                     | the intercept of an SD value and its corresponding average larval length in a particular cross.                                                                          |
| 91                     | Each SD and average length was derived from larvae measurements gathered from at least 3                                                                                 |
| 92                     | biological replicates from either GF or <i>Lp<sup>WJL</sup></i> mono-associated conditions. Each replicate contains                                                      |
| 93                     | 10-40 larvae.                                                                                                                                                            |
| 94                     |                                                                                                                                                                          |
| 95                     | C). Larval lengths of axenic flies grown on media containing 6g (purple), 8g (pink) or 6g yeast                                                                          |
| 96                     | with <i>Lp<sup>WJL</sup></i> inoculation (dark blue) on day 7 after egg-lay. Note that 2g extra yeast invariably                                                         |
| 97                     | boosts germ-free growth in different strains and genetic background. The asterisks indicate                                                                              |
| 98                     | statistics differences when comparing average larval lengths between conditions.                                                                                         |
| 99                     |                                                                                                                                                                          |
| 100                    | D). Larval growth and variability comparison in DGRP F2 axenic larvae pooled from the parental                                                                           |
| 101                    | strains (Figure S3C). For GF larvae raised on 6g/L yeast, average larval length =2.76mm,                                                                                 |
| 102                    | SD=0.66mm, CV=24.1%; for GF larvae raised on 8g/L yeast, average larval length =3.34mm,                                                                                  |
| 103<br>104             | SD=0.85mm, CV=25.2%.                                                                                                                                                     |
| 10 <del>4</del><br>105 |                                                                                                                                                                          |
| 105                    | F) Box and Whisker graph illustrating the average length and standard deviation from pooled                                                                              |
| 107                    | GE (pink) and Lp <sup>WJL</sup> mono-associated DGRP (blue) E2 Jarvae pooled from all the crosses in all                                                                 |
| 108                    | three different repeats (Average GF larval length: 3.29mm; average Lp mono-associated larval                                                                             |
| 109                    | lenath: 3.71mm: CV <sub>GF</sub> =24.9%, CV <sub>Lp</sub> =19.5%).                                                                                                       |
| 110                    |                                                                                                                                                                          |
| 111                    | F). One representative experiment showing that re-associating the field-collected flies tends to                                                                         |
| 112                    | buffer the variability in body length in size-matched larvae. The purple box represents body                                                                             |
| 113                    | length from wild larvae grown on media contaminated with their untreated parents' fecal matter.                                                                          |
| 114                    | Average GF larval length grown on 6g/L yeast media: 2.81mm; average GF larval length grown                                                                               |
| 115                    | on 8g/L yeast media: 3.36mm: average re-associated larval length ("+wt"): 3.07 mm; P= 0.338.                                                                             |
| 116                    | CV <sub>GF</sub> (6g/L, pink) = 24.9%, CV <sub>GF</sub> (8g/L, orange)= 27.0%, CVwt (purple)= 18.9%.                                                                     |
| 117                    |                                                                                                                                                                          |
| 118                    | G). and H). The compiled CV values (e.) and variances (f.) derived from each low-yeast cap                                                                               |
| 119                    | containing 40~50 field-collected larvae. The average CV and variance are lower in the                                                                                    |
| 120                    | population re-associated with its own microbes (purple) than in the GF population (orange)                                                                               |
| 121                    |                                                                                                                                                                          |
| 122                    | I). In both male (lozenge) and female (circle) adults, the variances in eye size are greater in GF $F_2$                                                                 |
| 123                    | progeny. The difference in mean eye area, for females P<0.0001***; for males, P=0.0013**.                                                                                |
| 124                    |                                                                                                                                                                          |
| 125                    | J). The length of the L4 vein in the wing is used as a proxy of the wing length. In the                                                                                  |
| 126                    | accumulated ratios of wing length over body length, the variances are greater in the GF flies                                                                            |
| 127                    | (The difference in average L4/ body length, for females $P<0.0028^{**}$ ; for males, $P=0.02^{*}$ ).                                                                     |
| 178                    |                                                                                                                                                                          |

129 K). and L). Scatter plots illustrating the allometric relationship between wing area and body size 130 in female (i) and male (j) DGRP F2 adults. Pink open circles: GF, blue filled circles: Lp<sup>WJL</sup>. Each line 131 represents the allometric slope of the data points shown by the same color. Either in males or females, there is no difference in allometric slope between the GF and mono-associated 132 population. For GF females,  $Y_{GF} = 0.3963*X + 1.738$ , 95%C.I.= 0.3117 to 0.4810; for  $Lp^{W/L}$  females, 133  $Y_{Lp} = 0.2978*X + 2.076$ , 95%C.I.= 0,1785 to 0,4172, P=0.203, n.s ; for GF males,  $Y_{GF} = 0.3261*X$ 134 + 1.939, 95%C.I.= 0.1725 to 0.4796 ; for  $Lp^{WJL}$  males,  $Y_{Lp}$ = 0.4141\*X + 1.639, 95% C.I. =0.1842 to 135 136 0.6439, P=0.55, ns. Data are represented as Mean and 10-90 percentile in all panels. 137

138



В.







| 139<br>140 | Figure S4 The LpWJL buffering in developmental trait and organ patterning robustness involves ROS signaling. Related to Figure 3 and 4.                                                               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 141        | $\mathbf{A}$ ) An image of a wing of an $L p^{WL}$ adult is shown, as a representation of the most visible                                                                                            |
| 1/2        | "defect" ever observed in mono-associated adults. Red arrow points to the subtle vein tissue                                                                                                          |
| 142        | thickening We included these as "defects" in the LaWLE, peopulation in the analyses presented                                                                                                         |
| 143        | thickening. We included these as delects in the $Lp^{22} + F_2$ population in the analyses presented                                                                                                  |
| 144        | In Figure 3A, 3B, and 4F.                                                                                                                                                                             |
| 145        |                                                                                                                                                                                                       |
| 146<br>147 | B). Germ-free larvae (light violet) that ingested NAC show comparable size variation to Lp <sup>W/L</sup> larvae fed on NAC (McFall-Ngai et al.) or germ-free larvae who have not been exposed to NAC |
| 148        | (pink)                                                                                                                                                                                                |
| 149        |                                                                                                                                                                                                       |
| 150        | $\mathbf{C}$ Bacterial niche load (NL) evolution ("Niche" is defined as the substrate with both large and                                                                                             |
| 151        | bacteria present) during the course of land development with Lo <sup>WL</sup> with or without NAC                                                                                                     |
| 151        | tracterial present, during the course of larvar development with Lp with or without NAC                                                                                                               |
| 152        | treatment (Day 4, Day 6 and Day 10). Data are represented as mean $\pm$ 5D.                                                                                                                           |
| 153        |                                                                                                                                                                                                       |
| 154        |                                                                                                                                                                                                       |
| 155        |                                                                                                                                                                                                       |
| 156        |                                                                                                                                                                                                       |
| 157        |                                                                                                                                                                                                       |
| 158        |                                                                                                                                                                                                       |
| 159        |                                                                                                                                                                                                       |
| 160        |                                                                                                                                                                                                       |
| 161        |                                                                                                                                                                                                       |
| 162        |                                                                                                                                                                                                       |
| 163        |                                                                                                                                                                                                       |
| 164        |                                                                                                                                                                                                       |
| 165        |                                                                                                                                                                                                       |
| 166        |                                                                                                                                                                                                       |
| 167        |                                                                                                                                                                                                       |
| 168        |                                                                                                                                                                                                       |
| 169        |                                                                                                                                                                                                       |
| 170        |                                                                                                                                                                                                       |
| 171        |                                                                                                                                                                                                       |
| 172        |                                                                                                                                                                                                       |
| 173        |                                                                                                                                                                                                       |
| 174        |                                                                                                                                                                                                       |
| 175        |                                                                                                                                                                                                       |
| 176        |                                                                                                                                                                                                       |
| 177        |                                                                                                                                                                                                       |
| 178        |                                                                                                                                                                                                       |
| 179        |                                                                                                                                                                                                       |
| 180        |                                                                                                                                                                                                       |
| 181        |                                                                                                                                                                                                       |
| 182        |                                                                                                                                                                                                       |
| 102        |                                                                                                                                                                                                       |
| 18/        |                                                                                                                                                                                                       |
| 104        |                                                                                                                                                                                                       |
| 186        |                                                                                                                                                                                                       |
| 100<br>107 |                                                                                                                                                                                                       |
| 10/<br>100 |                                                                                                                                                                                                       |
| 100        |                                                                                                                                                                                                       |
| T8A        |                                                                                                                                                                                                       |

| DGRP  | GF*            |            | Lp <sup>WJL*</sup> | Lp <sup>WJL</sup>  | Lp <sup>WJL</sup> /GF |  |
|-------|----------------|------------|--------------------|--------------------|-----------------------|--|
| Lines | Length(mm)     | GF SD*(mm) | Length(mm)         | SD(mm <sup>)</sup> | Ratio                 |  |
| 25174 | 2.193          | 0.584      | 3.637              | 0.895              | 1.658                 |  |
| 25175 | 2.693          | 0.687      | 4.496              | 0.659              | 1.670                 |  |
| 25176 | 1.443          | 0.536      | 3.903              | 0.648              | 2.704                 |  |
| 25180 | 2.151          | 0.454      | 3.795              | 0.635              | 1.764                 |  |
| 25181 | 2.374          | 0.824      | 4.224              | 0.946              | 1.779                 |  |
| 25182 | 2.108          | 0.451      | 3.293              | 0.859              | 1.562                 |  |
| 25183 | 2.961          | 0.657      | 4.066              | 0.548              | 1.373                 |  |
| 25184 | 1 957          | 0.53       | 4 323              | 0.587              | 2 209                 |  |
| 25185 | 2 4 5 9        | 0.681      | 3 93               | 0.722              | 1 598                 |  |
| 25186 | 2.100          | 0.667      | 4 289              | 0.803              | 1.883                 |  |
| 25187 | 2 109          | 0.007      | 3 798              | 0 744              | 1.800                 |  |
| 25188 | 2.103          | 0.475      | 4 202              | 0.744              | 1.865                 |  |
| 25189 | 2.200          | 0.303      | 3 1 1 8            | 0.700              | 1 333                 |  |
| 25109 | 2.000          | 0.535      | 3.440              | 0.070              | 1.335                 |  |
| 25190 | 2.292          | 0.012      | 3.970              | 0.941              | 1.733                 |  |
| 25191 | 2.340          | 0.420      | 3.955              | 0.797              | 1.004                 |  |
| 25192 | 2.194          | 0.401      | 4.145              | 0.731              | 1.009                 |  |
| 25193 | 2.414          | 0.582      | 4.05               | 0.782              | 1.078                 |  |
| 25194 | 2.506          | 0.558      | 4.195              | 0.508              | 1.074                 |  |
| 25195 | 2.07           | 0.402      | 3.635              | 0.867              | 1.756                 |  |
| 25197 | 1.944          | 0.397      | 3.73               | 0.734              | 1.919                 |  |
| 25198 | 2.051          | 0.394      | 3.936              | 0.673              | 1.919                 |  |
| 25199 | 1.514          | 0.524      | 3.78               | 0.753              | 2.497                 |  |
| 25200 | 2.869          | 0.752      | 4.227              | 0.605              | 1.473                 |  |
| 25201 | 2.182          | 0.347      | 4.186              | 0.601              | 1.918                 |  |
| 25202 | 2.273          | 0.639      | 3.85               | 0.792              | 1.694                 |  |
| 25203 | 1.541          | 0.513      | 4.158              | 0.755              | 2.698                 |  |
| 25204 | 1.686          | 0.678      | 4.088              | 0.774              | 2.425                 |  |
| 25205 | 2.351          | 0.567      | 3.77               | 0.606              | 1.604                 |  |
| 25206 | 2.5            | 0.643      | 4.173              | 0.619              | 1.669                 |  |
| 25207 | 2.028          | 0.481      | 3.896              | 0.811              | 1.921                 |  |
| 25208 | 1.649          | 0.443      | 4.103              | 0.947              | 2.488                 |  |
| 25209 | 2.187          | 0.67       | 4.232              | 0.819              | 1.935                 |  |
| 25210 | 2.772          | 0.633      | 4.03               | 0.466              | 1.454                 |  |
| 25445 | 2.01           | 0.468      | 3.956              | 0.668              | 1.968                 |  |
| 25744 | 2.097          | 0.34       | 4.235              | 0.666              | 2.020                 |  |
| 25745 | 2.501          | 0.612      | 4.051              | 0.599              | 1.620                 |  |
| 28132 | 2.828          | 0.684      | 4.485              | 0.534              | 1.586                 |  |
| 28134 | 1.854          | 0.383      | 4.144              | 0.479              | 2.235                 |  |
| 28136 | 1.707          | 0.415      | 4.204              | 0.548              | 2.463                 |  |
| 28138 | 1.38           | 0.487      | 4.318              | 0.693              | 3.129                 |  |
| 28142 | 2.938          | 0.836      | 4.487              | 0.489              | 1.527                 |  |
| 28146 | 2.077          | 0.36       | 4.564              | 0.915              | 2.197                 |  |
| 28147 | 1 575          | 0.552      | 4 061              | 0 728              | 2 578                 |  |
| 28153 | 2 208          | 0.002      | 3 07               | 0.720              | 1 728                 |  |
| 2815/ | 2.230          | 0.020      | 4 365              | 0.482              | 1 935                 |  |
| 20104 | 2.200          | 0.009      | +.000<br>/ 110     | 0.402              | 1.900                 |  |
| 20100 | 2.01           | 0.002      | 4.110              | 0.714              | 1.040                 |  |
| 20104 | 2.004<br>0.460 | 0.440      | 4.201              | 0.004              | 1.101                 |  |
| 20100 | 2.100          | 0.402      | 4.409              | 0.042              | 2.070                 |  |
| 201/3 | 2.039          | 0.309      | 4.122              | 0.097              | 2.022                 |  |
| 20192 | 2.141          | 0.506      | 4.286              | 0.059              | 2.002                 |  |
| 28194 | 2.269          | 0.565      | 4.424              | 0.72               | 1.950                 |  |
| 28197 | 2.89           | 0.742      | 4.547              | 0.519              | 1.573                 |  |
| 28208 | 2.339          | 0.438      | 4.14               | 0.705              | 1.767                 |  |

#### TableS1. Average D7 larvae length for individual DGRP lines. Related to Figure 1

\*GF: germ-free \**Lp<sup>WJL</sup>*: Lactobacillus plantarum, stain name: WJL \*SD: standard deviation

| Variants  | R <sup>2</sup> | P-value   | Minor  | Major | Ref* | Ref* MAF* Var |              | Molecular and cellular functions             |  |
|-----------|----------------|-----------|--------|-------|------|---------------|--------------|----------------------------------------------|--|
|           | 16 16%         | 1 22 06   |        |       |      | 0.245         | Class        | Unknown                                      |  |
| CG13492   | 40.40%         | 4 526E-07 | т      | Δ     | T    | 0.243         | intron       | Chikhowh                                     |  |
| 0010432   | 45.56%         | 1.65E-06  | G      | Δ     | G    | 0.244         | indon        |                                              |  |
|           | 39.04%         | 2 76E-06  | A      |       | T    | 0 2453        |              | Unknown arrestin-like                        |  |
|           | 39.04%         | 2.76E-06  | A      | Ċ     | Ċ    | 0.2453        | Intron/      |                                              |  |
| CG32683   | 29.32%         | 4.03E-06  | Т      | A     | A    | 0.22          | downstream   |                                              |  |
|           | 29.07%         | 3.19E-06  | Т      | G     | G    | 0.2245        |              |                                              |  |
|           | 29.80%         | 1.17E-05  | CTGTTG | С     | С    | 0.283         | 1            |                                              |  |
| CG33269   | 35.58%         | 8.21e-06  | G      | Α     | А    | 0.14          | Intergenic   | Unknown                                      |  |
| dpr6      | 33.06%         | 2.94E-05  | А      | Т     | Т    | 0.1224        | Intron       | Immunoglobulin-like domain; sensory          |  |
|           | 21.34%         | 7.77E-06  | A      | G     | G    | 0.08          |              | perception of chemical stimulus              |  |
|           | 32.65%         | 1.22E-05  | с      | т     | С    |               | Intron       | Nuclear hormone receptor, ecdysone           |  |
| Eip75B    |                |           |        |       |      | 0.1176        |              | response, antimicrobial humoral              |  |
|           |                |           |        |       |      |               |              | response                                     |  |
| ra        | 22 1/10/       |           | G      | Λ     | G    | 0.4           | Introp       | PKA-binding, cone cell differentiation,      |  |
| ig        | JZ. 14 /0      | 9.230-00  | 9      | A     | 9    | 0.4           | Indon        | olfactory learning                           |  |
|           |                |           |        |       |      |               |              | heparan sulfate proteoglycans                |  |
| sfl       | 27.37%         | 9.18E-06  | G      | т     | т    | 0.4706        | Intron       | (HSPGs) biosynthesis/wa morphogen            |  |
|           |                |           |        |       |      |               |              | diffusion                                    |  |
| CG42669   | 26.66%         | 1.23E-05  | А      | G     | G    | 0.1373        | Intron       | Supervillin, actin-binding                   |  |
| bol       | 25.07%         | 3.76E-06  | С      | Т     | Т    | 0.2           | 3'UTR        | RNA binding protein. Role in meiotic         |  |
| 0040407   |                |           | _      |       |      | -             |              | entry and germline differentiation           |  |
| IncRNA566 | 23.7%          | 4,53E-06  | G      | Т     | Т    | 0.3269        | intergenic   | Unknown, IncRNA                              |  |
| web       | 15 1%          | 1 15E-06  | т      | C     | C    | 0 1837        | Synonymous   | TGF- $\beta$ ligand: growth; regulation of   |  |
| uaw       | 13.170         | 4.45E-06  | 1      | U     | C    | 0.1037        | substitution | insulin secretion                            |  |
| arr       | 14.68%         | 1.69E-06  | G      | С     | С    | 0.1875        | intron       | wnt protein binding/canonical wnt<br>pathway |  |
| glut1     | 11.14%         | 1.56E-06  | G      | Т     | Т    | 0.2245        | intron       | General glucose/sugar transporter            |  |

# Table S2 . Variants associated with the growth benefits conferred by *Lactobacillus plantarum* ( $Lp^{WJL}$ ). Related to Figure 1.

\*MAF: minor allele frequency in the 53 DGRP lines

\*Ref allele: allele info derived from BDGP (Berkeley Drosophila Genome Project) R<sup>2</sup> reflects effect size

# Table S3. Individual larval transcriptome sample list. Related to Figure 1

|                                       |          | _         |         |                     |             |            |           |
|---------------------------------------|----------|-----------|---------|---------------------|-------------|------------|-----------|
| SampleID                              | Genotype | Treatment | Plate   | Individual Well_Row | Well_Column | TotalReads | Timepoint |
| GF-d4-Plate1-25183-4                  | 25183    | GF        | Plate1  | 4D                  | 1           | 3374679d4  |           |
| WJL-d4-Plate1-25183-5                 | 25183    | WJL       | Plate1  | 5 E                 | 2           | 4323699d4  |           |
| GF-d4-Plate2-25208-7                  | 25208    | GF        | Plate2  | 7E                  | 9           | 1537636d4  |           |
| GE d4 Plate1 25210 10                 | 25200    | GF        | Plote1  | 10D                 | 5           | 3060828 44 |           |
| WH 14 PL + 1 25210-10                 | 25210    |           |         | 10D                 | 5           | 5121500 14 |           |
| WJL-04-Plate1-25210-11                | 25210    | WJL       | Platel  | IIE                 | 6           | 5131500d4  |           |
| GF-d4-Plate2-25183-14                 | 25183    | GF        | Plate2  | 14 E                | 1           | 3307084 d4 |           |
| WJL-d4-Plate2-25183-15                | 25183    | WJL       | Plate2  | 15D                 | 2           | 2816461 d4 |           |
| GF-d4-Plate2-25210-17                 | 25210    | GF        | Plate2  | 17E                 | 5           | 5063082 d4 |           |
| W.ILd4-Plate2-25210-18                | 25210    | W.IL      | Plate2  | 18D                 | 6           | 4162852 d4 |           |
| GF_d4_Plate1_25208_19                 | 25208    | GF        | Plate1  | 19D                 | 0           | 2459570.44 |           |
| WIL 44 Dist-2 25192 21                | 25200    |           | Dlate 2 | 21 E                | 2           | 245557004  |           |
| WJL-04-Plate2-25183-21                | 25183    | WJL       | Plate2  | 21E                 | 2           | 239980804  |           |
| GF-d4-Plate2-25183-22                 | 251830   | GF        | Plate2  | 22D                 | 1           | 4448517d4  |           |
| WJL-d4-Plate2-25210-23                | 25210    | WJL       | Plate2  | 23 E                | 6           | 4508569d4  |           |
| GF-d4-Plate1-25208-26                 | 25208    | GF        | Plate1  | 26 E                | 9           | 2085683 d4 |           |
| WJL-d4-Plate1-25183-29                | 25183    | WJL       | Plate1  | 29D                 | 2           | 1843092 d4 |           |
| GF-d4-Plate1-25183-30                 | 251830   | GF        | Plate1  | 30F                 | 1           | 3678838.44 |           |
| GE d4 Plate2 25208 35                 | 25105    | CE        | Plate?  | 30E                 | 0           | 2470625 44 |           |
| GF-04-Plate2-25208-55                 | 25208    | UF        | Plate2  | 330                 | 9           | 34/062304  |           |
| WJL-d4-Plate1-25210-38                | 25210    | WJL       | Platel  | 38D                 | 6           | 3828526d4  |           |
| GF-d4-Plate1-25210-39                 | 25210    | GF        | Plate1  | 39E                 | 5           | 4247231 d4 |           |
| GF-d4-Plate2-25183-41                 | 25183    | GF        | Plate2  | 41 F                | 1           | 1761823 d4 |           |
| GF-d4-Plate2-25210-43                 | 25210    | GF        | Plate2  | 43 F                | 5           | 3169382d4  |           |
| WIL-d4-Plate1-25208-46                | 25208    | WIL.      | Plate1  | 46 C                | 10          | 2892171d4  |           |
| WIL 44 Plate1 25200 40                | 25200    | WII       | Diate 1 | 470                 | 10          | 220707644  |           |
| WJL-04-Plate1-23208-47                | 23208    | WJL       | Platel  | 4/D                 | 10          | 556/92004  |           |
| WJL-d4-Plate1-25183-48                | 25183    | WJL       | Plate1  | 48 F                | 2           | 3595814d4  |           |
| WJL-d4-Plate1-25208-50                | 25208    | WJL       | Plate1  | 50 A                | 10          | 5708076d4  |           |
| WJL-d4-Plate1-25208-52                | 25208    | WJL       | Plate1  | 52 E                | 10          | 3305828d4  |           |
| WJL-d4-Plate1-25208-54                | 25208    | WJL       | Plate1  | 54D                 | 10          | 2980174d4  |           |
| WIId4_Plate1_25208_55                 | 25208    | WII       | Plate1  | 55F                 | 10          | 2648893 d4 |           |
| CE d4 Plate2 25208 57                 | 25200    | CE        | Diate?  | 575                 | 10          | 1790505 44 |           |
| GF-04-Plate2-25208-57                 | 25208    | UF<br>GF  | Plate2  | 575                 | 9           | 1/8930304  |           |
| GF-d4-Plate1-25183-59                 | 251830   | GF        | Platel  | 59F                 | 1           | 3461/58d4  |           |
| GF-d4-Plate1-25210-60                 | 25210    | GF        | Plate1  | 60 F                | 5           | 3205718d4  |           |
| WJL-d4-Plate2-25183-64                | 25183    | WJL       | Plate2  | 64 F                | 2           | 3165014d4  |           |
| GF-d4-Plate1-25208-67                 | 25208    | GF        | Plate1  | 67F                 | 9           | 1551867d4  |           |
| WIL-d4-Plate2-25210-70                | 25210    | WIL.      | Plate2  | 70 F                | 6           | 8073425d4  |           |
| GE d4 Plate1 25208 72                 | 25210    | GF        | Plote1  | 701                 | 0           | 2668655 44 |           |
| GF 14 PL + 2 25210 74                 | 25208    |           |         | 720                 | 9           | 200803304  |           |
| GF-d4-Plate2-25210-74                 | 252100   | GF        | Plate2  | /4B                 | 5           | 94//3/d4   |           |
| WJL-d4-Plate2-25210-75                | 25210    | WJL       | Plate2  | 75 C                | 6           | 4812520d4  |           |
| GF-d4-Plate2-25183-78                 | 25183    | GF        | Plate2  | 78 B                | 1           | 2869820d4  |           |
| WJL-d4-Plate2-25183-79                | 25183    | WJL       | Plate2  | 79C                 | 2           | 4934533d4  |           |
| GF-d4-Plate1-25210-83                 | 25210    | GF        | Plate1  | 83C                 | 5           | 4113175d4  |           |
| WIL d4 Plate1 25210 84                | 25210    | WII       | Plote1  | 84 B                | 6           | 4684552 44 |           |
| GE 14 PL + 2 25209 9(                 | 25210    | WJL CE    |         | 04D                 | 0           | 2224070 14 |           |
| GF-d4-Plate2-25208-86                 | 25208    | GF        | Plate2  | 86B                 | 9           | 3324070d4  |           |
| GF-d4-Plate1-25183-87                 | 25183    | GF        | Plate1  | 87 C                | 1           | 3728767 d4 |           |
| WJL-d4-Plate1-25183-88                | 25183    | WJL       | Plate1  | 88 B                | 2           | 4564509d4  |           |
| WJL-d4-Plate1-25210-90                | 25210    | WJL       | Plate1  | 90 C                | 6           | 3714293 d4 |           |
| GF-d4-Plate1-25210-91                 | 25210    | GF        | Plate1  | 91 B                | 5           | 4179985 d4 |           |
| GF-d4-Plate2-25208-93                 | 25208    | GF        | Plate?  | 930                 | 9           | 3569201 d4 |           |
| WIL 44 Plate1 25182 04                | 25200    | win       | Diate 1 | 93C                 | 2           | 4200621.44 |           |
| WJL-04-Plate1-23183-94                | 25165    | WJL       |         | 94C                 | 2           | 420002104  |           |
| GF-04-Plate1-25183-95                 | 251830   | GF        | Platel  | 95B                 | 1           | 43/303504  |           |
| GF-d4-Plate1-25208-98                 | 25208    | GF        | Plate1  | 98 B                | 9           | 3652231 d4 |           |
| WJL-d4-Plate2-25210-101               | 25210    | WJL       | Plate2  | 101 B               | 6           | 4457721 d4 |           |
| GF-d4-Plate2-25210-103                | 25210    | GF        | Plate2  | 103 C               | 5           | 3903565 d4 |           |
| WIL-d4-Plate2-25183-104               | 25183    | WIL.      | Plate2  | 104B                | 2           | 982388d4   |           |
| GE d4 Plata2 25183 105                | 25105    | CE        | Plate2  | 101B                | 1           | 2004502.44 |           |
| $CE = 14 \text{ Pl}_{-4-2} 25208 110$ | 25105    | CE        | Dlate 2 | 110 4               | 1           | 10(75(1.14 |           |
| GF-04-Plate2-25208-110                | 25208    | GF        | Plate2  | 110A                | 9           | 196/30104  |           |
| WJL-d4-Plate1-25210-112               | 25210    | WJL       | Plate1  | 112A                | 6           | 3472086d4  |           |
| WJL-d4-Plate1-25183-116               | 25183    | WJL       | Plate1  | 116A                | 2           | 4865847 d4 |           |
| GF-d4-Plate2-25210-119                | 25210    | GF        | Plate2  | 119A                | 5           | 3773438d4  |           |
| W.ILd4-Plate2-25208-120               | 25208    | W.II.     | Plate2  | 120F                | 10          | 2018688d4  |           |
| WII_d4_Plate2_25208_121               | 252083   | WII       | Plate?  | 1210                | 10          | 2595705 d4 |           |
| WIL dd Disto 2 25200-121              | 25208    | WII       | Plate2  | 1210                | 10          | 1941200 14 |           |
| wJL-04-Plate2-25208-123               | 25208    | WJL       | Flate2  | 123E                | 10          | 184139004  |           |
| WJL-d4-Plate2-25208-124               | 25208    | WJL       | Plate2  | 124 A               | 10          | 3326544d4  |           |
| GF-d4-Plate2-25183-125                | 25183    | GF        | Plate2  | 125 A               | 1           | 1822797 d4 |           |
| WJL-d4-Plate2-25208-126               | 25208    | WJL       | Plate2  | 126B                | 10          | 3831425 d4 |           |
| WJL-d4-Plate2-25208-127               | 25208    | WJL       | Plate2  | 127C                | 10          | 3109485d4  |           |
| W.IL-d4-Plate2-25210-129              | 25210    | WIL       | Plate?  | 129 A               | 6           | 1737064.44 |           |
| GE d4 Plata1 25200 122                | 25200    | GE        | Plate1  | 122 1               | 0           | 2204211.44 |           |
| UI-44-Flate1-25208-152                | 25208    |           |         | 132A                | 9           | 320421104  |           |
| wJL-d4-Plate2-25183-135               | 25183    | WJL       | Plate2  | 135A                | 2           | 4603643 d4 |           |
| GF-d4-Plate1-25210-139                | 25210    | GF        | Plate1  | 139A                | 5           | 2749602 d4 |           |
| GF-d4-Plate1-25183-140                | 25183    | GF        | Plate1  | 140A                | 1           | 2722703d4  |           |

#### 190 Transparent Methods

#### 191 •Fly stocks and genetic crosses

Drosophila were kept at 25°C in a Panasonic Mir425 incubator with 12/12 hrs dark/light cycles.
Routine stocks were kept on standard laboratory diet (see below "media preparation and NAC

194 treatment") The 53 DGRP lines were obtained from Bloomington Drosophila Stock Center.

195

Field-collected flies were trapped with rotten tomatoes in a garden in Solaize (France) and
reared on a medium without chemical preservatives to minimize the modification to their gut
microbiota(Tefit et al., 2017). One liter of media contains 15g inactivated yeast, 25g sucrose
(Sigma Aldrich, ref. #84100), 80g cornmeal and 10g agar.

200

To generate DGRP  $F_{2}s$ , four DGRP lines were selected for setting up seven different crosses: 202 25210 (RAL-859), 25183(RAL-335) are the lines with "large" larvae as germ-free, and 25208(RAL-203 820) and 28147(RAL-158) are the line with "small" larvae as germ-free (see figure legend Figure 204 S3a).

205

All RNAi lines were crossed to the driver line y,w;; tubulin-GAL80<sup>ts</sup> ,daugtherless-GAL4. To

- 207 minimize lethality, we dampend the GAL4 strength by leaving the genetic crosses at 25°C. The
- following fly strains were used: *y*,*w*, UAS-*dpr*-6-IR(P{KK112634}VIE-260B), UAS-CG13492-IR,

209 (w<sup>1118</sup>;P{GD14825}v29390), UAS-daw-IR(NIG #16987R-1), UAS-sfl-IR (w<sup>1118</sup>; P{GD2336}v5070),

210 UAS-arr-IR (w<sup>1118</sup>; P{GD2617}v4818), UAS-rg-IR(w<sup>1118</sup>; P{GD8235}v17407), UAS-bol-IR(w<sup>1118</sup>;

- 211 {GD10525}v21536), UAS-*glut1*-IR(y<sup>1</sup> v<sup>1</sup>; P{TRiP.JF03060}attP2, Bloomington 28645), UAS-
- 212 CG32683-IR (P{KK112515}VIE-260B), UAS-CG42669-IR(w<sup>1118</sup>;P{GD7292}v18081), UAS-Eip75B-IR
- (w<sup>1118</sup>; P{GD1434}v44851), UAS-*mCherry*-IR (y<sup>1</sup> v<sup>1</sup>; P{CaryP}attP2), VDRC GD control (VDRC
   ID60000).
- 215

#### •GWAS and data computing of heritability indice

To calculate heritability, we estimated variance components using a random effects model using the Ime4 R package(Bates, 2015). To infer the differences in heritability between GF and *Lp<sup>WJL</sup>* monoassociated conditions, we chose to use a bootstrap approach as in

220 (https://github.com/famuvie/breedR/wiki/Heritability). Strains and experiment dates were treated

- as random effects, and the heritability was calculated as VA/(VA+VD+VR), where VA is the
- additive genetic variance, and is equal to twice the Strain variance, VD is the experiment date
- variance, and VR is the residual variance. For the estimation of the empirical distribution of
- heritability indices, a bootstrap method within the R breedR package was used for 1000
- simulations per condition. We used the online tool specifically designed for the DGRPs
- (http://dgrp2.gnets.ncsu.edu/)(Huang et al., 2014; Mackay et al., 2012) for GWAS. The
- 227 Manhattan and QQ-plots were generated using R. Raw GWAS data can be accessed at
- 228 <u>https://data.mendeley.com/datasets/5m9ghb7vbs/4</u>
- 229

#### 230 •Single larva transcriptome analysis

231 RNA extraction from single larvae: Larvae were handpicked under the microscope using forceps 232 and transferred to Eppendorf tubes filled with 100uL of beads and 350 uL of Trizol. The samples were then homogenized using a Precellys 24 Tissue Homogenizer at 6000 rpm for 30 seconds. 233 234 After homogenization, the samples were transferred to liquid nitrogen for flash freezing and stored 235 at -80°C. For RNA extraction, samples were thawed on ice, 350 uL of 100% Ethanol was then 236 added to each sample before homogenizing again with the same parameters. Direct-zol™ RNA 237 Miniprep R2056 Kit was used to extract RNA with these modifications: DNAse I treatment was 238 skipped; after the RNA Wash step, an extra 2 min centrifugation step was added to remove 239 residual wash buffer. Lastly, the sample was eluted in 10 uL of water, incubated at room temperature for 2 min and then spun for 2 min to collect RNA. RNA was transferred to a low-binding 96 well plate and stored at -70°C.

242

243 RNA-sequencing: We prepared the libraries using the BRB-seq protocol and sequenced them 244 using an Illumina NextSeg 500 (Alpern et al., 2018). Reads from the BRB-seg protocol generates 245 two fastq files: R1 containing barcodes and UMIs and R2 containing the read sequences. R2 fastq file was first trimmed for removing BRB-seq-specific adapter and polyA sequences using the BRB-246 247 seqTools v1.0 suite (available at http://github.com/DeplanckeLab/BRB-seqTools). We then 248 aligned the trimmed reads to the Ensembl r78 gene annotation of the dm3 genome mixed with 249 the Lactobacillus Plantarum WJL genome using STAR (Version 2.5.3a)(Dobin et al., 2013), with 250 default parameters (and extra "--outFilterMultimapNmax 1" parameter for completely removing 251 multiple mapped reads). Then, using the BRB-seqTools v1.0 suite (available at http://github.com/DeplanckeLab/BRB-seqTools), we performed simultaneously the sample 252 253 demultiplexing, and the count of reads per gene from the R1 FASTQ and the aligned R2 BAM 254 files. This generated the count matrix that was used for further analyses. Genes were retained in 255 the analysis if they had more than 10 reads in more than 50 samples. The data was subsequently 256 transformed using the voom method. Differential expression was performed using the R Limma 257 package(Law et al., 2014; Ritchie et al., 2015). Genes with a log<sub>2</sub> fold change greater than 2 and a 258 Benjamini-Hochberg adjusted P-value less than 0.05 were considered differentially expressed. 259 Since the library preparation was performed in two plates, hence introducing a batch effect, we 260 used the duplicateCorrelation function and included the batch as a blocking variable. Prior to PCA 261 analysis and standard deviation calculations, we removed the batch effect using the 262 removeBatchEffects function and then used the princomp function. We used the cluster profiler 263 package to perform GSEA analyses. The gmt file containing the gene ontology annotations was 264 obtained from GO2MSIG data. Specifically, we used the highquality GO annotations for Drosophila melanogaster. For each GSEA analysis, we used 100,000 permutations to obtain 265 266 adjusted p-values and only included gene set sizes to between 6 and 1000 genes. The raw 267 expression data has been deposited in ArrayExpress (accession number: E-MTAB-6518)

268

269 RNA-sequencing: We prepared the libraries using the BRB-seq protocol and sequenced them 270 using an Illumina NextSeg 500(Alpern et al., 2018). Reads from the BRB-seg protocol generates 271 two fastg files: R1 containing barcodes and UMIs and R2 containing the read sequences. R2 fastg 272 file was first trimmed for removing BRB-seq-specific adapter and polyA sequences using the BRB-273 seqTools v1.0 suite (available at http://github.com/DeplanckeLab/BRB-seqTools). We then 274 aligned the trimmed reads to the Ensembl r78 gene annotation of the dm3 genome mixed with 275 the Lactobacillus Plantarum WJL genome using STAR (Version 2.5.3a)(Dobin et al., 2013), with 276 default parameters (and extra "--outFilterMultimapNmax 1" parameter for completely removing 277 multiple mapped reads). Then, using the BRB-seqTools v1.0 suite (available at 278 http://github.com/DeplanckeLab/BRB-seqTools), we performed simultaneously the sample 279 demultiplexing, and the count of reads per gene from the R1 FASTQ and the aligned R2 BAM 280 files. This generated the count matrix that was used for further analyses. The data was 281 subsequently transformed using the voom method and analyzed using the R Limma package(Law 282 et al., 2014; Ritchie et al., 2015).

283

The raw expression data of BRB-Seq has been deposited in ArrayExpress (accession number: E-MTAB-6518)

286

#### •The making and maintenance of germ-free flies

Axenic flies were generated by dechorionating embryos with 50% household bleach for five minutes; eggs were then washed in successive 70% ethanol and sterile distilled water for three minutes each. After washing, eggs were transferred to tubes containing standard diet and a

- 291 cocktail of antibiotics containing 50µg/mL ampicillin, 50µg/mL kanamycin, 15µg/mL
- erythromycin, 50µg/mL tetracyclin for stock maintenance. Axeny was routinely verified by
- 293 plating larvae and adult lysates on LB and MRS plates. For experiments food without antibiotics294 was used.
- 295

#### •Media preparation and NAC treatment

Standard laboratory fly food consists of 50g/L inactivated yeast (Springaline™), 80g/L cornmeal,
7.14g/L agar, 5.12g/L Moldex (Sigma M-50109) and 0.4% propionic acid. Where applicable,
experiments comparing variations in larval size, developmental timing, adult emergence were
performed on diet with 6g or 8g inactivated yeast per liter of media while keeping the same
concentrations for the other ingredients. Where appropriate, 1.7g/L of N-Acetylcystein

- 302 (SigmaA7250-25g) was added to the low-protein diet.
- 303

#### 304 •Larval Length Measurement

All live *Drosophila* larvae were collected from each nutritive cap containing low yeast diet by temporary immersion in sterile PBS, transferred on a microscopy slide, killed with a short pulse of heat (5 sec at 90°C), mounted with 80% glycerol/PBS. The images were taken with the Leica stereomicroscope M205FA and the lengths of individual larvae were measured using ImageJ software(Schneider et al., 2012). For each DGRP strain and each cross and/or condition, at least three biological replicates were generated.

311

#### •Developmental timing and Adult emergence

Developmental timing and adult emergence of the flies were quantified by counting the number of individuals appearing every 24 hours until the last pupa/adult emerges. Each animal is assigned to the number that corresponds to the day it appeared, and the population mean and variance were calculated based on the cumulative numbers.

317

#### 318 •Adult trait measurements

2-3 days old adult flies were anesthetized with  $CO_2$  and immersed in 70% ethanol, and individual

body and its corresponding organ (wing and eye) were imaged under a Leica M205

- 321 stereomicroscope. Specifically, the adult body length was measured from the top of the head to
- the tip of the abdomen. The eye area was measured by manually tracing the circumference of
- both eyes. The wings were gently nipped at the base of the hinge and imaged, and the area was
- measured by tracing the edge of the wing. All images were taken measured using ImageJsoftware
- 326

#### 327 •Bacteria culture and mono-association

For each mono-association experiment,  $Lp^{WJL}$  (Ryu et al., 2008) was grown in Man, Rogosa and Sharpe (MRS) medium (Difco, ref. #288110) over-night at 37°C, and diluted to O.D.=0.5 the next

Sharpe (MRS) medium (Difco, ref. #288110) over-night at 37°C, and diluted to O.D.=0.5 the ne

- morning to inoculate 40 freshly laid eggs on a 55mm petri dish or standard 28mm tubes
- containing fly food of low yeast content. The inoculum corresponds to about 5x10<sup>7</sup> CFUs. Equal
- volume of sterile PBS was spread on control axenic eggs.
- To contaminate the garden-collected flies with their own microbiota, eggs were dechorionated
- and directly seeded onto appropriate food caps. Sterile PBS was used to wash the side of the
- bottles where the adult wild flies were raised to recover more fecal content, and 300 ul of the
- wash was inoculated to the dechorionated eggs. For GF control, 300 ul of sterile PBS was used
- to inoculate the dechorionated eggs. The microbial composition of this community can be
- 338 founded here(Tefit et al., 2017).
- 339
- 340 •Bacteria niche load

- 341 Five to six 24 hour old germ-free larvae were collected from the low-protein diet food cap and
- transferred to a microtube containing 400ul of low-protein diet, and inoculated with 50ul of  $Lp^{WJL}$
- of 0.5 O.D.. On the day of harvest, ~0.75-1mm glass micro-beads and 900 $\mu$ l PBS were added to
- each microtube and the entire content of the tube was homogenized with the Precellys-24 tissue
- homogenizer (Bertin Technologies). Lysate dilutions (in PBS) are plated on MRS agar with
- Easyspiral automatic plater (Intersciences). The MRS agar plates were incubated for 24h at 37°C. The CFU/ml count was calculated based on the readings by the automatic colony counter
- 347 The CFU/mi count was calculated based on the readings by the automatic colony counter 348 Scan1200 (Intersciences)
- 349 Scan

# 350 •Statistical Analysis and data representation

GraphPad Prism software version 6.0f for Macintosh (GraphPad Software, La Jolla California USA, www.graphpad.com) was used to compare GF and *Lp<sup>WJL</sup>*-associated conditions for larval length, developmental timing, adult emergence, allometry and linear regression analysis for the buffering effect. For small samples with less than 10 data points, nonparametric analysis was conducted. For all each sample set, we first conducted D'agostino-Pearson normality test. If the samples assume normal distribution, the F test of equality of variances were conducted to

- compare variability among the datasets. For samples assuming non-normal distribution, Levene's
   test is conducted based on the deviation from the median of each dataset.
- 359
- 360
- 361
- 362 363
- 364
- 365
- 366
- 367 368
- 369
- 370
- 371
- 372 373
- 374
- 375 376
- 377

378

- 379 380
- 381

382 383

#### 392 Supplemental Reference

- 393
- Alpern, D., Gardeux, V., Russeil, J., and Deplancke, B. (2018). Time- and cost-efficient high-
- throughput transcriptomics enabled by Bulk RNA Barcoding and sequencing. bioRxiv.
- Bates, D., Mâchler M, Bolker B, Walker S (2015). Fitting Linear Mixed-Effects Models Using Ime4.
  Journal of Statistical Software 67, 1-48.
- 398 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M.,
- and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
- 400 Hu, Y., Comjean, A., Perkins, L.A., Perrimon, N., and Mohr, S.E. (2015). GLAD: an Online
- 401 Database of Gene List Annotation for Drosophila. J Genomics 3, 75-81.
- 402 Huang, W., Massouras, A., Inoue, Y., Peiffer, J., Ramia, M., Tarone, A.M., Turlapati, L., Zichner,
- 403 T., Zhu, D., Lyman, R.F., et al. (2014). Natural variation in genome architecture among 205
- 404 Drosophila melanogaster Genetic Reference Panel lines. Genome Res 24, 1193-1208.
- Law, C.W., Chen, Y., Shi, W., and Smyth, G.K. (2014). voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol *15*, R29.
- 407 Mackay, T.F., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., Zhu, D., Casillas, S., Han, Y.,
- Magwire, M.M., Cridland, J.M., *et al.* (2012). The Drosophila melanogaster Genetic Reference
  Panel. Nature *482*, 173-178.
- 410 McFall-Ngai, M., Hadfield, M.G., Bosch, T.C., Carey, H.V., Domazet-Loso, T., Douglas, A.E.,
- Dubilier, N., Eberl, G., Fukami, T., Gilbert, S.F., *et al.* (2013). Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A *110*, 3229-3236.
- 413 Powell, J.A. (2014). GO2MSIG, an automated GO based multi-species gene set generator for
- 414 gene set enrichment analysis. BMC Bioinformatics 15, 146.
- 415 Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. (2015). limma
- 416 powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic
- 417 Acids Res 43, e47.
- 418 Ryu, J.H., Kim, S.H., Lee, H.Y., Bai, J.Y., Nam, Y.D., Bae, J.W., Lee, D.G., Shin, S.C., Ha, E.M.,
- and Lee, W.J. (2008). Innate immune homeostasis by the homeobox gene caudal and
  commensal-gut mutualism in Drosophila. Science *319*, 777-782.
- 421 Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of
- 422 image analysis. Nat Methods 9, 671-675.
- 423 Tefit, M.A., Gillet, B., Joncour, P., Hughes, S., and Leulier, F. (2017). Stable association of a
- 424 Drosophila-derived microbiota with its animal partner and the nutritional environment
- 425 throughout a fly population's life cycle. J Insect Physiol.
- 426