Monitoring histone methylation (H3K9me3) changes in live cells

Oscar F. Sánchez¹, Agnes Mendonca¹, Alan Min², Jichang Liu³, Chongli Yuan^{1,4*}

- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN, 47907, USA
- 2. Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- 4. Purdue University Center for Cancer Research, West Lafayette, Indiana, 47907, USA

* To whom correspondence should be addressed. Tel: + 1 765 494 5824; Fax: + 1 765 494 0805; Email: <u>cyuan@purdue.edu</u>

Table of Contents

Supporting Methods

•• •				
Recombinant protein sensors production in Escherichia coli culture				
- Production of nuclear cell extracts and immunostaining assays				
- Antibody immunostaining of transfected cells with protein sensors	S-4			
- Affinity measurements using bio-layer Interferometry (BLI)	S-5			
- Fixed cells antibody or proteins sensor immunostaining	S-5			
Table S1. Sequences of synthetic H3 peptides.	S-6			
Table S2. Detailed amino acid sequences of various sensor designs. H3K9me3	S-7			

Table S2. Detailed amino acid sequences of various sensor designs. H3K9me3 recognition domains are in bold. The SV40 nuclear localization signal (NLS) is double underlined. The linker connecting different domains is underlined. 6×His-tag is included in the c-terminus for purification and validation purpose.

Figure S1. Representative images of HEK293T cells transfected with **A**. monomeric and **B**. dimeric chromodomain protein sensors. All cell images are 2D slides.

Figure S2. Representative images of transfected HEK293T cells with **A.** monomeric and **B.** dimeric sensors and co-stained with anti-H3K9me3 antibody and an Alexa 564 secondary antibody. **C.** Intensity profile for the cells transfected with sensor Δ CD- Δ CSD and Δ CD- Δ CD.

Figure S3. Representative images of HEK293T cells transfected with the mutated protein sensor $\Delta CD(KW42/43AA)$ - ΔCSD .

Figure S4. Affinity measurements via bio-layer interferometry (BLI). **A.** Comparison of binding curves of Δ CD- Δ CSD with wild-type H3 and H3K9me3 protein. [Protein] = 5 μ M. Interaction with H3K9me3 histone exhibited a discernible association and dissociation curve, which can subsequently be used to determine the binding affinity. **B.** Binding affinity of the sensor and H3K9me3 proteins was evaluated by varying the protein concentrations from 0.62 to 5 μ M. A global fitting was then performed to determine the value of K_D . K_D was found to be $0.24 \pm 0.02 \,\mu$ M as plotted. **C.** Comparison of binding curves of Δ CD- Δ CSD with biotinylated synthetic H3 peptides. [Protein] = 0.6 μ M. Interaction with H3K9me3 peptide is larger compared to H3K9me2 peptide, no probe:H3 wild type interaction is observed. **D.** Binding affinity of the sensor and H3K9me3 peptide was evaluated by varying the protein concentrations from 0.3 to 2.4 μ M. K_D was found to be 0.54 \pm 0.16 μ M as plotted.

Figure S5. Growth curve (\circ , untransfected and \Box , transfected) and viability (\blacksquare : transfected relative to untransfected) of cells. Neither the growth or viability of transfected cells were significantly altered (p > 0.05) compared with the untransfected control during our observation window.

Figure S6. Selection of a defined area using cells transfected with the Δ CD- Δ CSD protein sensor over successive time points. A gridded slide was used to monitor the same area. The area was imaged using a 10× objective to provide a view of the entire box. T indicates the time in hours after transfection and the scale bars = 100 µM. Top, middle and bottom rows present the same area in DIC, probe-GFP and merged channels, respectively. The square in different images indicates the area that has been zoom in in **Fig. 3**.

S-11

S-9

S-8

S-12

S-13

S-14

Figure S7. Effect of BIX-01294 on global H3K9me3 of HEK293T cells after 48 h of exposure. A. Representative dot blot images of nuclear extracts. Detection of histone H3	
and H3K9me3 was conducted using the primary antibodies ab1791 and ab8898 (Abcam,	
US), respectively, and a goat anti-rabit IgG antibody HRP-conjugated (12-348, Millinera, US) as a secondary \mathbf{P} , H2K0mo2 levels were expected to be properticed to	
the relative intensity of H3K9me to total H3 quantified from dot blot samples. Data is	
presented as mean of three independent assays, *: $p < 0.05$: denotes statistical difference	
among compared groups. $p \in O(S^2)$, denotes statistical enterence	S-15
Figure S8. 2D images of a selected HEK293T cell transfected with \triangle CD- \triangle CSD in a z-	
stack. Last image shows the 2D projection of the stack. 3D reconstruction of this z-stack	
can be seen in the video attached in the supporting information. Scale bar = $2 \mu m$.	S-16
Figure S9. In vitro quantification of H3K9me3 via quantitative dot blot using the protein	
sensor Δ CD- Δ CSD-mEGFP. Representative dot blot assays quantifying H3K9me3 from	
two-fold dilution series of nuclear cell extracts (NCEs) of HEK293T cells (A). Integrated	
density of dot blots of NCEs with different protein concentration (B).	S-17
Figure S10. A graphic illustration of engineered H3K9me3 sensors consisting of	
different functional domains.	S-18
Figure S11. A 1.5% agarose gel showing the correct insert size (digested by SacII and	
<i>Agel</i>) of plasmids encoding the protein sensor. ΔCD , ΔCD - ΔCD , ΔCSD , ΔCSD - ΔCSD	
and ΔCD - ΔCSD are expected to have 305 bp, 512 bp, 308 bp, 518 bp and 515 bp,	G 10
respectively.	S-19
Figure S12. Recombinant $\triangle CD$ - $\triangle CSD$ (A) and $\triangle CD$ - $\triangle CSD$ -mEGFP (B) proteins. Left panels show SDS-PAGE gel (18%) of purified protein sensors after Coomassie blue	
staining. Right panels show Western blotting image of purified protein sensors stained	
with anti-His Tag (C-term) antibody (R930-25, ThermoFisher, MA, US). Expected MW	
of \triangle CD- \triangle CSD and \triangle CD- \triangle CSD-mEGFP is 20.1 kDa and 48.5 kDa, respectively.	S-20
Supplementary references	S-21

Supporting Methods

Recombinant protein sensors production

Recombinant protein sensor were produced following our previous protocols.¹ Briefly, *E. coli* cells ((DE3)-RIPL, Stratagene, CA, US) were transformed with the pET-21b(+) vector in containing the selected protein sensor in which a flexible linker and His-tag was added in the C-terminus. Protein expression was induced with IPTG at 0.5 mM for 6 h at 37 °C. The protein was then purified using Nickel agarose beads (Qiagen, Hilden, Germany), concentrated and stored in a storage buffer (Tris-HCl, 25 mM, pH 7.2; NaH₂PO₄, 25 mM, pH 7.2; NaCl, 25 mM; EDTA, 1 mM; DTT, 1 mM; and glycerol, 5 % (v/v)) at 4 °C. The quality of the protein was verified using SDS-PAGE and Western blot.

Production of nuclear cell extracts and immuno-blotting assays

Human embryonic kidney 293T (HEK293T) cells were detached from the surface of a culture dish using a solution of 0.05% Trypsin-EDTA. Harvested cells were then lysed to obtain nuclear extracts via a Nuclear Extraction Kit (Abcam, CA, US). Nuclear extracts (NE) were analyzed by dot blot using an anti-histone H3 antibody (ab1791, Abcam, CA, US) and anti-H3K9me3 antibody (ab8898, Abcam, CA, US) as shown in **Fig. S9 (Supporting Information)**.

Affinity measurement using Bio-layer Interferometry

Bio-layer interferometry (BLI, OctetRed 384, ForteBio, Menlo Park, CA) was used to assess the affinity and specificity of the selected protein sensor. The non-fluorescence labeled protein sensor was expressed in bacteria and purified as described above. The anti-penta-His biosensor tips (ForteBio, Menlo Park, CA) was used for immobilizing the expressed probes. Wildtype histone H3 proteins were prepared as we described in our previous work.² H3K9me3 proteins were prepared using a methyl-lysine-analogue approach following the established protocol.³ The binding assay was performed in a pH-controlled buffer (25 mM Tris-HCl, 25 mM, pH 7.2; NaH₂PO₄, 25 mM, pH 7.2; NaCl, 25 mM; EDTA, 1 mM; DTT, 1 mM; BSA, 0.1% w/v; and Tween 20, 0.05% v/v). Similarly, biotinylated H3 histone peptides (with sequence detailed in Table S2) were used to assess the selectivity of the protein sensor towards H3K9me3 and H3K9me2. The synthetic peptides were loaded on streptavidin-activated capture biosensors (ForteBio, Menlo Park, CA). Using the same pH-controlled buffer as before, sensors of concentrations ranging from 0.3 to 2.4 μ M were used to determine the binding affinity. The binding and dissociation curves were fitted using Octet software to determine the the *k*_{on} and *k*_{off}, which subsequently can be used to determine *K*_d as *k*_{off}/*k*_{on}. Data analysis was performed as we described in our previous work.⁴

Fixed cells antibody or proteins sensor immunostaining

HEK293T cells were seeded on poly-L-Lysine treated coverslips (No. 1.5 round coverslips, VWR, PA, US) and grown for 24 hours. Cells were then fixed using freshly prepared 4% paraformaldehyde in PBS for 20 minutes at room temperature, followed by 10 minutes of permeabilization with 0.2% Triton X-100 in PBS. For antibody immunostaining, coverslips with fixed cells were then incubated with a primary antibody, anti H3K9me3 (ab8898, Abcam, CA, US) at 4°C overnight. The cells were triple rinsed with PBS, followed by 1 hour of incubation at room temperature with the secondary antibody (an Alexa 564 coupled goat anti rabbit (ab175471, Abcam, CA, US)). A control well was prepared by incubating cells with the secondary antibody in absence of the primary to assess the non-specific activity of the secondary antibody. For protein sensor immunostaining, coverslips with fixed cells were then incubated with the fluorescent labeled protein sensor, Δ CSD- Δ CSD-mEGFP, at 4°C overnight. The cells were then triple rinsed with PBS.

Peptide	Amino acid sequence			
H3WT	ARTKQTARKSTGGKAPRKQLA-GGK(Biotin)			
H3K9me2	ARTKQTAR-K(me2)-STGGKAPRKQLA-GGK(Biotin)			
H3K9me3	ARTKQTAR-K(me3)-STGGKAPRKQLA-GGK(Biotin)			

 Table S1. Sequences of synthetic H3 peptides.

Table S2. Detailed amino acid sequences of various sensor designs. H3K9me3 recognition domains are in bold. The SV40 nuclear localization signal (NLS) is double underlined. The linker connecting different domains is underlined. 6×His-tag is included in the c-terminus for purification and validation purpose.

Name	Amino acid sequence				
	10	20	30	40	50
	<u>MPKKKRKVGS</u>	<u>GSGSGSGGS</u> E	FYAVEKIIDR	RVRKGKVEYY	LKWKGYPETE
	60	70	80	90	100
ΔCD	NTWEPENNLD	CQDLIQQYEA	SRKDEEKSAA	<u>GSGGGGGS</u> QL	GSGGVDSCLP
	110				
	SCLPVRHHHH	HH			
	1	0 2	0 3	0 4	0 50
	<u>MPKKKRKV</u> GS	<u>GSGSGSGGS</u> E	FYAVEKIIDR	RVRKGKVEYY	LKWKGYPETE
	60	70	80	90	100
	NTWEPENNLD	CQDLIQQYEA	SRKDEEKSAA	<u>GSGGGGGS</u> Q F	YAVEKIIDRR
ACD-ACD	110	120	130	140	150
	VRKGKVEYYL	KWKGYPETEN	TWEPENNLDC	QDLIQQYEAS	RKDEEKSAA G
	160	170			
	<u>SGGGGGS</u> QLG	SGGVDSCLPV	RHHHHHH		
	1 /		<u> </u>	<u> </u>	2
	ΓO) 20) 31	J 4(J
	JU	COCOCOCOE			TOPKONDONE
	MPKKKKKVGS	<u>GSGSGSGSE</u>)	FLEAERILGA		IQERGVDQAE
	100	5 70	5	5 90	J
ΔCSD	MUDSSVANEK	TPRMUTHEVE	FRISWYSDNE		
	HVI 00 VIIIILII	1110101111111			
	рувннннн				
	- • • • • • • • • • • • • • • • • • • •				
	1	0 2	0 3	0 4	0 50
	MPKKKRKVGS	GSGSGSGGSE	FLEAEKILGA	SDNNGRLTFL	IOFKGVDOAE
	60	70	80	90	100
	MVPSSVANEK	IPRMVIHFYE	ERLSWYSDNE	DGSGGGGGSQ	FLEAEKILGA
	110	120	130	140	150
ACSD-ACSD	SDNNGRLTFL	IQFKGVDQAE	MVPSSVANEK	IPRMVIHFYE	ERLSWYSDNE
	160	170			
	D <u>GSGGGGGS</u> Q	LGSGGVDSCL	PVRHHHHHH		
	1	0 2	0 3	0 4	0 50
	<u>MPKKKRKV</u> GS	<u>GSGSGSGGS</u> E	FYAVEKIIDR	RVRKGKVEYY	LKWKGYPETE
	60	70	80	90	100
	NTWEPENNLD	CQDLIQQYEA	SRKDEEKSAA	$\underline{GSGGGGS}Q\mathbf{F}$	LEAEKILGAS
	110	120	130	140	150
ACD - ACSD	DNNGRLTFLI	QFKGVDQAEM	VPSSVANEKI	PRMVIHFYEE	RLSWYSDNED
	160	170			
	<u>GSGGGGGS</u> QL	GSGGVDSCLP	VRHHHHHH		

Figure S1. Representative images of HEK293T cells transfected with **A**. monomeric and **B**. dimeric chromodomain protein sensors. All cell images are 2D slices.

B.

Figure S2. Representative images of transfected HEK293T cells with **A.** monomeric and **B.** dimeric sensors and co-stained with anti-H3K9me3 antibody and an Alexa 564 secondary antibody. **C.** Intensity profile for the cells transfected with sensor Δ CD- Δ CSD and Δ CD- Δ CD.

Figure S3. Representative images of HEK293T cells transfected with the mutated protein sensor Δ CD(KW42/43AA)- Δ CSD

Figure S4. Affinity measurements via bio-layer interferometry (BLI). **A.** Comparison of binding curves of Δ CD- Δ CSD with wild-type H3 and H3K9me3 protein. [Protein] = 5 μ M. Interaction with H3K9me3 histone exhibited a discernible association and dissociation curve, which can subsequently be used to determine the binding affinity. **B.** Binding affinity of the sensor and H3K9me3 proteins was evaluated by varying the protein concentrations from 0.62 to 5 μ M. A global fitting was then performed to determine the value of K_D . K_D was found to be 0.24 \pm 0.02 μ M as plotted. **C.** Comparison of binding curves of Δ CD- Δ CSD with biotinylated synthetic H3 peptides. [Protein] = 0.6 μ M. Interaction with H3K9me3 peptide is larger compared to H3K9me2 peptide, no probe:H3 wild type interaction is observed. **D.** Binding affinity of the sensor and H3K9me3 peptide was evaluated by varying the protein is observed. **D.** Binding affinity of the sensor and H3K9me3 peptide was found to be 0.54 \pm 0.16 μ M as plotted.

Figure S5. Growth curve (\circ , untransfected and \Box , transfected) and viability (**•**: transfected relative to untransfected) of cells. Neither the growth or viability of transfected cells were significantly altered (p > 0.05) compared with the untransfected control during our observation window.

Figure S6. Selection of a defined area using cells transfected with the Δ CD- Δ CSD protein sensor over successive time points. A gridded slide was used to monitor the same area. The area was imaged using a 10× objective to provide a view of the entire box. T indicates the time in hours after transfection and the scale bars = 100 µM. Top, middle and bottom rows present the same area in DIC, probe-GFP and merged channels, respectively. The square in different images indicates the area that has been zoom in in **Fig. 3**.

Figure S7. Effect of BIX-01294 on global H3K9me3 of HEK293T cells after 48 h of exposure. **A.** Representative dot blot images of nuclear extracts. Detection of histone H3 and H3K9me3 was conducted using the primary antibodies ab1791 and ab8898 (Abcam, US), respectively, and a goat anti-rabit IgG antibody HRP-conjugated (12-348, Millipore, US) as a secondary. **B.** H3K9me3 levels were expected to be proportional to the relative intensity of H3K9me to total H3 quantified from dot blot samples. Data is presented as mean of three independent assays. *: p < 0.05; denotes statistical difference among compared groups.

Figure S8. 2D images of a selected HEK293T cell transfected with Δ CD- Δ CSD in a z-stack. Last image shows the 2D projection of the stack. 3D reconstruction of this z-stack can be seen in the video attached in the supporting information. Scale bar = 2 μ m.

Figure S9. *In vitro* quantification of H3K9me3 via quantitative dot blot using the protein sensor Δ CD- Δ CSD-mEGFP. Representative dot blots quantifying H3K9me3 from dilution series of nuclear cell extracts (NCEs) of HEK293T cells (**A**). Integrated density of dot blots of NCEs with different protein concentration (**B**).

Monomeric sensors

ΔCD	NLS	ΔCD	mE GFP	
ΔCSD	NLS -	ΔCSD	mE GFP	
Dimeric senso	rs			
ΔCD-ΔCD	NLS	ΔCD	ΔCD	mEGFP
$\Delta CSD-\Delta CSD$	NLS	ΔCSD	ΔCSD	mEGFP
ΔCD-ΔCSD	NLS	ΔCD	ΔCSD	mE GFP

Figure S10. A graphic illustration of engineered H3K9me3 sensors consisting of different functional domains.

Figure S11. A 1.5% agarose gel showing the correct insert size (digested by *SacII* and *AgeI*) of pRK5 plasmids encoding the protein sensor. Δ CD, Δ CD- Δ CD, Δ CSD, Δ CSD- Δ CSD and Δ CD- Δ CSD are expected to have 305 bp, 512 bp, 308 bp, 518 bp and 515 bp, respectively.

Figure S12. Recombinant \triangle CD- \triangle CSD (**A**) and \triangle CD- \triangle CSD-mEGFP (**B**) proteins. Left panels show SDS-PAGE gel (18%) of purified protein sensors after Coomassie blue staining. Right panels show Western blotting image of purified protein sensors stained with anti-His Tag (C-term) antibody (R930-25, ThermoFisher, MA, US). Expected MW of \triangle CD- \triangle CSD and \triangle CD- \triangle CSD-mEGFP is 20.1 kDa and 48.5 kDa, respectively.

Supplementary references

1. Sanchez, O. F.; Williamson, D.; Cai, L.; Yuan, C., A sensitive protein-based sensor for quantifying histone acetylation levels. *Talanta* **2015**, *140*, 212-218.

 Nurse, N. P.; Jimenez-Useche, I.; Smith, Ian T.; Yuan, C., Clipping of Flexible Tails of Histones H3 and H4 Affects the Structure and Dynamics of the Nucleosome. *Biophys. J.* 2013, *104* (5), 1081-1088.
 Simon, M. D.; Chu, F.; Racki, L. R.; Cecile, C.; Burlingame, A. L.; Panning, B.; Narlikar, G. J.; Shokat, K. M., The site-specific installation of methyl-lysine analogs into recombinant histones. *Cell* 2007, *128* (5), 1003-1012.

4. Sanchez, O. F.; Mendonca, A.; Carneiro, A. D.; Yuan, C., Engineering Recombinant Protein Sensors for Quantifying Histone Acetylation. *ACS Sens.* **2017**.