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Web Appendix A: Proof of Lemma 2.1

Recall that Q(x, a) = E(Y |A = a,X = x) and π(a;x) = P (A = a|X = x). Let πm(a;x)
and Qm(x, a) be the limit of π̂(a;x) and Q̂(x, a) respectively. If π̂(a;x) →p π(a;x), i.e.,

πm(a;x) = π(a;x), then V̂ AIPWE(d) is equal to

Pn
[

Y

π(A;X)
I {A = d(X)} − I {A = d(X)} − π{d(X);X}

π{d(X);X}
Qm{X, d(X)}

]
+ op(1),

which converges to

V AIPWE,m(d) = V (d)− E
[I{A = d(X)} − π{d(X);X}

π{d(X);X}
Qm{X, d(X)}

]
= V (d)− E

(
Qm{X, d(X)}E

[I{A = d(X)} − π{d(X);X}
π{d(X);X}

|X, d(X)
])

= V (d).
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Here we have used the fact that E[I{A = d(X)}|X, d(X)] = P{A = d(X)|X} = π{d(X);X}.
If Q̂(x, a)→p Q(x, a), i.e., Qm(x, a) = Q(x, a), V̂ AIPWE(d) is equal to

Pn
[

Y

πm{d(X);X}
I {A = d(X)} − I {A = d(X)} − πm{d(X);X}

πm{d(X);X}
Q(X, d(X))

]
+ op(1),

which converges to

V AIPWE,m(d) = E
[I{A = d(X)}

πm(A;X)
Y − I{A = d(X)} − πm{d(X);X}

πm{d(X);X}
E{Y |X, A = d(X)}

]
= E

[E[I{A = d(X)}Y |X, A]− E[I{A = d(X)}E{Y |X, A = d(X)}|X, A]

πm{d(X);X}

]
+ E[E{Y |X, A = d(X)}]

Note that the first term in the above equation is equal to zero, and according to (1), the
second term is equal to V (d). Hence, we have obtained the desired result. 2

Web Appendix B: Proof of Lemma 2.2

As V AIPWE,m(d) = E[Wm
1 I{d(X) = 1}+Wm

−1I{d(X) = −1}], it follows that V̂ AIPWE(f) =

PnŴ1I {f(X) ≥ 0}+ PnŴ−1I {−f(X) ≥ 0} , and

f̂n = arg inf
f∈F

[PnŴ1I {f(X) < 0}+ PnŴ−1I {−f(X) < 0}].

If f(x) = 0, then PnŴ1I {f(X) < 0}+ PnŴ−1I {−f(X) < 0} = Pn|Ŵ1|I{sgn(Ŵ1)f(X) <

0}+Pn|Ŵ−1|I{−sgn(Ŵ−1)f(X) < 0}. Otherwise, define sgn(0) = 1, and for any constants
w and f 6= 0,

|w|I{sgn(w)f < 0} = wI{sgn(f) 6= 1}I(w ≥ 0)− wI{sgn(f) = 1}I(w < 0)

= wI{sgn(f) 6= 1}I(w ≥ 0)− w[1− I{sgn(f) 6= 1}]I(w < 0)

= wI(f < 0)− wI(w < 0).

Therefore, for a = ±1,

Pn|Ŵa|I{a · sgn(Ŵa)f(X) < 0} = PnŴaI{a · f(X) < 0} − PnŴaI(Ŵa < 0).

The second term in the right hand side is a constant that does not affect the estimation of
the rule.

Web Appendix C: Proof of Proposition 3.1

Recall that Q(x, a) = E(Y |X = x, A = a) and π(a;x) = P (A = a|X = x). Define

W ∗a = Wa(Y,X, A, π,Q) = I(A = a)
Y −Q(X, a)

π(a;X)
+Q(X, a), a = ±1.
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(a) We first consider hinge loss, φ(t) = max(1− t, 0). Note that,

|W ∗1 |φ (sgn(W ∗1 )f(X)) + |W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
= W ∗1 max{1− f(X), 0}I(W ∗1 ≥ 0)−W ∗1 max{1 + f(X), 0}I(W ∗1 < 0)

+W ∗−1 max{1 + f(X), 0}I(W ∗−1 ≥ 0)−W ∗−1 max{1− f(X), 0}I(W ∗−1 < 0)

For each x, we seek the minimizer f(x) of E{|W ∗1 |φ (sgn(W ∗1 )f(X))+|W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
|X =

x}. Then, the value f(x) should be in [−1, 1] because otherwise truncation of f at −1 or
1 gives a lower loss value. When −1 ≤ f(x) ≤ 1,

E{|W ∗1 |φ (sgn(W ∗1 )f(X)) + |W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
|X = x}

= {E(W ∗−1|X = x)− E(W ∗1 |X = x)}f(x)

+E(W ∗1 I(W ∗1 ≥ 0)|X = x)− E(W ∗1 I(W ∗1 < 0)|X = x)

+E(W ∗−1I(W ∗−1 ≥ 0)|X = x)− E(W ∗−1I(W ∗−1 < 0)|X = x).

Therefore, sgn{f̃(x)} = sgn{E(W ∗1 |X = x)− E(W ∗−1|X = x)}. Note that for a = ±1,

E(W ∗a |X = x) = E

{
I(A = a)

Y −Q(X, a)

π(a;X)

∣∣∣∣X = x

}
+Q(x, a)

= E

{
I(A = a)

E(Y |A = a,X = x)−Q(x, a)

π(a;x)

∣∣∣∣X = x

}
+Q(x, a)

= E(Y |X = x, A = a). (1)

Thus, sgn{f̃(x)} ≡ d∗(x).
We now consider logistic loss φ(t) = log(1 + e−t).

|W ∗1 |φ (sgn(W ∗1 )f(X)) + |W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
= log{1 + e−f(X)}W ∗1 I(W ∗1 ≥ 0)− log{1 + ef(X)}W ∗1 I(W ∗1 < 0)

+ log{1 + ef(X)}W ∗−1I(W ∗−1 ≥ 0)− log{1 + e−f(X)}W ∗−1I(W ∗−1 < 0).

For each X = x,

E[|W ∗1 |φ (sgn(W ∗1 )f(X)) + |W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
|X = x]

= log{1 + e−f(x)}E(W ∗1 I(W ∗1 ≥ 0)|X = x)− log{1 + ef(x)}E(W ∗1 I(W ∗1 < 0)|X = x)

+ log{1 + ef(x)}E(W ∗−1I(W ∗−1 ≥ 0)|X = x)− log{1 + e−f(x)}E(W ∗−1I(W ∗−1 < 0)|X = x).

Take the derivative with respect to f and set it to zero to obtain

f̃(x) = log
E(W ∗1 I(W ∗1 ≥ 0)|X = x)− E(W ∗−1I(W ∗−1 < 0)|X = x)

−E(W ∗1 I(W ∗1 < 0)|X = x) + E(W ∗−1I(W ∗−1 ≥ 0)|X = x)
,

which is positive if E(W ∗1 |X = x) ≥ E(W ∗−1|X = x). Thus, it has the same sign as d∗(x).
In the case of exponential loss φ(t) = e−t, for each x,

E[|W ∗1 |φ (sgn(W ∗1 )f(X)) + |W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
|X = x]

= e−f(x)E(W ∗1 I(W ∗1 ≥ 0)|X = x)− ef(x)E(W ∗1 I(W ∗1 < 0)|X = x)

+ ef(x)E(W ∗−1I(W ∗−1 ≥ 0)|X = x)− e−f(x)E(W ∗−1I(W ∗−1 < 0)|X = x).
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Take the derivative with respect to f and set it to zero, to obtain

f̃(x) =
1

2
log

E(W ∗1 I(W ∗1 ≥ 0)|X = x)− E(W ∗−1I(W ∗−1 < 0)|X = x)

−E(W ∗1 I(W ∗1 < 0)|X = x) + E(W ∗−1I(W ∗−1 ≥ 0)|X = x)
,

which is positive if E(W ∗1 |X = x) ≥ E(W ∗−1|X = x). Thus, it has the same sign as d∗(x).

Finally, if φ(t) = {max(1− t, 0)}2, then for each x,

E[|W ∗1 |φ (sgn(W ∗1 )f(X)) + |W ∗−1|φ
(
−sgn(W ∗−1)f(X)

)
|X = x]

= E(W ∗1 I(W ∗1 ≥ 0)|X = x){1− f(x)}2 − E(W ∗1 I(W ∗1 < 0)|X = x){1 + f(x)}2

+E(W ∗−1I(W ∗−1 ≥ 0)|X = x){1 + f(x)}2

−E(W ∗−1I(W ∗−1 > 0)|X = x){1− f(x)}2.

Take the derivative with respect to f and set it to zero to obtain f̃(x) = E(W ∗1 |X =
x)− E(W ∗−1|X = x), the sign of which is the same as d∗(x). 2

(b) Without loss of generality, we assume that Wm
1 and Wm

−1 are nonnegative. If not,
we can always transform Y to Y + C and Q(·) to Q(·) + C for an arbitrary constant
C > 0 such that Wm

1 and Wm
−1 are nonnegative with probability tending to one. Note that

E(Wm
a |X = x) = E(W ∗a |X = x) if either Qm(x, a) = Q(x, a) or πm(a;x) = π(a;x). Then

cm(x) = E(W ∗1 |X = x) + E(W ∗−1||X = x). Let η(x) = E(W ∗1 |X = x)/cm(x). It follows
that 2η(x)− 1 = {E(W ∗1 |X = x)−E(W ∗−1|X = x)}/cm(x). Recall that R(f) and Rmφ (f)
are defined in the beginning of Section 3. Therefore,

R(f) = E[cm(X)(η(X)I(sgn(f(X)) 6= 1) + (1− η(X))I(sgn(f(X)) 6= −1))],

and

Rmφ (f) = E [cm(X)(η(X)φ(f(X)) + (1− η(X))φ(−f(X)))] .

Note that R∗ = R{η(X)− 1/2]}, so that

R(f)−R∗ = E [(I[sgn{f(X)} 6= 1]− I[sgn{η(X)− 1/2} 6= 1)])cm(X){2η(X)− 1}]
= E (I[sgn{f(X)} 6= sgn{η(X)− 1/2}]cm(X) |2η(X)− 1|) . (2)

The second equality follows because (I[sgn{f(X)} 6= 1]−I[sgn{η(X)−1/2} 6= 1)]){2η(X)−
1} = I[sgn{f(X)} 6= sgn{η(X)− 1/2}]{2η(X)− 1} if 2η(X)− 1 ≥ 0 and −I[sgn{f(X)} 6=
sgn{η(X)− 1/2}]{2η(X)− 1} if 2η(X)− 1 < 0.

Define C(η, α) = ηφ(α) + (1− η)φ(−α), then Rm∗φ = E [cm(X) infα∈RC(η(X), α)] and

Rmφ (f)−Rm∗φ = E

[
cm(X)

(
C(η(X), f(X))− inf

α∈R
C(η(X), α)

)]
.

By applying the result in Bartlett et al. (2006) for transforms of different surrogate losses,
we have

ψ(2η − 1) = inf
α:α(2η−1)≤0

C(η, α)− inf
α∈R

C(η, α). (3)
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The specific forms of ψ for different convex loss functions can be calculated using the method
described in Bartlett et al. (2006), and thus details are omitted. According to (2) and (3),
we have

ψ

{
R(f)−R∗

supx∈Rp cm(x)

}
≤ ψ[E {I(sgn(f(X)) 6= sgn[η(X)− 1/2])(2η(X)− 1)}]

≤ E (I(sgn(f(X)) 6= sgn[η(X)− 1/2])ψ(|(2η(X)− 1)|))

= E
(
I[sgn(f(X)) 6= sgn{η(X)− 1/2}]

[
inf

α:α(2η(X)−1)≤0
C(η(X), α)− inf

α∈R
C(η(X), α)

])
≤ E

[
C(η(X), f(X))− inf

α∈R
C(η(X), α)

]
≤ 1

infx∈Rp cm(x)
E

[
cm(X)

(
C(η(X), f(X))− inf

α∈R
C(η(X), α)

)]
=

1

infx∈Rp cm(x)
[Rmφ (f)−Rm∗φ ].2

Web Appendix D: Proof of Theorem 3.1

To make the dependence on the models for the propensity score and Q-function explicit,
we write V AIPWE,m(d) as VR(f, πm, Qm) for a given d(x) = sgn{f(x)}. For notational
simplicity, we use f̂ to denote f̂λnn . Note that for any f , V (f) = VR(f, π,Q). Therefore

V ∗ − V (f̂) = V (f∗)− sup
f∈F

VR(f, πm, Qm) + sup
f∈F

VR(f, πm, Qm)− VR(f̂ , πm, Qm)

+ VR(f̂ , πm, Qm)− V (f̂)

≤ V (f∗)− VR(f∗, πm, Qm) + {sup
f∈F

VR(f, πm, Qm)− VR(f̂ , πm, Qm)}

+ VR(f̂ , πm, Qm)− V (f̂)

≤ sup
f∈F

VR(f, πm, Qm)− VR(f̂ , πm, Qm) + 2 sup
f∈F
|VR(f, π,Q)− VR(f, πm, Qm)|.

The first inequality follows because VR(f∗, πm, Qm) ≤ supf∈F VR(f, πm, Qm). If either
πm(a;x) = π(a;x) or Qm(x, a) = Q(x, a), then supf∈F |VR(f, π,Q) − VR(f, πm, Qm)| = 0

(see Lemma 2.1). Thus, V ∗ − V (f̂) ≤ supf∈F VR(f, πm, Qm)− VR(f̂ , πm, Qm).

Without loss of generality, we assume that Wm
a , a = ±1, are nonnegative. Let fm =

argminf∈ME[Wm
1 φ {f(X)}+Wm

−1φ {−f(X)}]. Because VR(fm, πm, Qm) = supf∈M VR(f, πm, Qm),

it suffices to derive the convergence rate of VR(fm, πm, Qm)− VR(f̂ , πm, Qm). Let

fmλn = argminf∈F (E[Wm
1 φ{f(X)}+Wm

−1φ{−f(X)}] + λn‖f‖2).

Then A(λn), defined in (5), is equal to

λn‖fmλn‖
2 +

∑
a=±1

E
[
Wm
a φ{a · fmλn(X)}

]
−
∑
a=±1

E [Wm
a φ{a · fm(X)}] .
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Recall that Wm
a = Wa(Y,X, A, πm, Qm) and Ŵak = Wa(Y,X, A, π̂k, Q̂k). According to

Proposition 3.1, we have,

ψ[{VR(fm, πm, Qm)− VR(f̂ , πm, Qm)}/ sup
x∈Rp

cm(x)]

≤ [Rmφ (f̂)−Rm∗φ ]/ inf
x∈Rp

cm(x)

≤ 1

K

K∑
k=1

[Rmφ (f̂
λn,k
n,k )−Rm∗φ ]/ inf

x∈Rp
cm(x)

where the convexity of Rmφ (·) implies

Rmφ (f̂) = Rmφ

( 1

K

K∑
k=1

f̂
λn,k
n,k

)
≤ 1

K

K∑
k=1

Rmφ (f̂
λn,k
n,k ).

Thus,

Rmφ (f̂
λn,k
n,k )−Rm∗φ

≤ E[Wm
1 φ{f̂

λn,k
n,k (X)}]− E[Wm

1 φ{fm(X)}] + E[Wm
−1φ{−f̂

λn,k
n,k (X)}]− E[Wm

−1φ{−fm(X)}]

≤ λn‖fmλn‖
2 +

∑
a=±1

{
E
[
Wm
a φ{a · fmλn(X)}

]
−E[Wm

a φ{a · fm(X)}] + λn‖f̂
λn,k
n,k ‖

2 + E[Wm
a φ{a · f̂

λn,k
n,k (X)}]

−
(
λn‖fmλn‖

2 + E
[
Wm
a φ{a · fmλn(X)}

]) }
= A(λn) +

∑
a

[
λn‖f̂

λn,k
n,k ‖

2/2 + E[Waφ{a · f̂
λn,k
n,k (X)}]− λn‖fmλn‖

2/2− E[Waφ{a · fmλn(X)}]
]

= A(λn) + (I).

We now bound (I) using empirical process theory. Let

Lf = {λn‖f‖2 +
∑
a=±1

[Waφ{a · f(X)} −Waφ{a · fmλn(X)}]− λn‖fmλn‖
2, f ∈ B(Bn)},

where B(Bn) is defined in Lemma A.2. By Lemma A.2, it holds that

‖lf‖∞ ≤ 2M2 + 2
∣∣∣∑

a

Waφ{a · f(X)}
∣∣∣ = O(λ−1/2n ),

for any f ∈ B(Bn). It can be shown that E(l2f ) ≤ c′nE(lf ), where c′n = O(λ−1n ) following
the arguments for proving Theorem 3.4 in Zhao et al. (2012). Suppose that lf satisfies
Pn(lf ) ≤ ε/2 and E(lf ) ≥ ε for some ε > 0 to be chosen (note that E(lfmλn

) = 0). By the

continuity of φ, there exists an f ′ = t′f + (1 − t′)fmλn ∈ B(Bn), which for 0 ≤ t′ ≤ 1, has
E(lf ′) = ε. In addition, by the convexity of φ,

Pn(−k)(lf ′) ≤ Pn(−k)
[
t′λn‖f‖2 + t′

∑
a=±1

Waφ{a · f(X)} − t′λn‖fmλn‖
2 − t′

∑
a=±1

Waφ{a · fmλn(X)}
]

≤ t′ε/2 ≤ ε/2.
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To apply Lemma A.1, we need to further verify that

Pn(−k)(l
f̂
λn,k
n,k

) ≤ ε/2. (4)

To show (4), note that

Pn(−k)(l
f̂
λn,k
n,k

) = Pn(−k)
[
λn‖f̂

λn,k
n,k ‖

2 +
∑
a

Waφ{a · f̂
λn,k
n,k (X)} − λn‖fmλn‖

2 −
∑
a

Waφ{a · fmλn(X)}
]

= Pn(−k)
[
λn‖f̂

λn,k
n,k ‖

2 +
∑
a

Ŵakφ{a · f̂
λn,k
n,k (X)} − λn‖fmλn‖

2 −
∑
a

Ŵakφ{a · fmλn(X)}
]

− Pn(−k)
∑
a

(Ŵak −Wa)φ{a · f̂
λn,k
n,k (X)}+ Pn

∑
a

(Ŵak −Wa)φ{a · fmλn(X)}

≤ 0 + C(λ−1/2n n−(α+β) + n−(1/2+min(α,β))λ−1/2n ),

where the last step hods by the definition of f̂
λn,k
n,k and Lemma A.3. In the following, we

use C to denote a generic constant, which could differ from line to line. Thus, provided

ε ≥ C(λ
−1/2
n n−(α+β)+n−(1/2+min(α,β))λ

−1/2
n ), (4) holds. Therefore, Lemma A.1 implies that

with probability tending to one,

E
[
λn‖f̂

λn,k
n,k ‖

2 +
∑
a=±1

Waφ{a · f̂
λn,k
n,k (X)} − λn‖fmλn‖

2 −
∑
a=±1

Waφ{a · fmλn(X)}
]
≤ ε,

provided that

ε ≥ max
{
ε∗,

Cc′nK

n
,
CKBn
n

,C(λ−1/2n n−(α+β) + n−(1/2+min(α,β))λ−1/2n )
}
,

where K is a constant, Bn = O(λ
−1/2
n ), c′n = O(λ−1n ) and ε∗ ≥ 12ξLf (ε∗). It remains to find

ε∗.
Define Gf = {E(lf ) − lf : E(lf ) = ε, lf ∈ Lf}, then E(gf ) = 0 for any gf ∈ Gf . Let

Z = supgf∈Gf Pngf (X), then by definition of ξLf (see Lemma A.1),

ξLf (ε) = E(Z) = E
{

sup
gf∈Gf

Pngf (X)
}

= E
[

sup
E(l2f )≤c′nε

∣∣∣E{lf (X)} − Pnlf (X)
∣∣∣].

Because f ∈ B(Bn), there exists a constant depending on v, so that supP logN(ε,B(Bn), L2(P )) ≤
Cv(ε/Bn)−v. It follows that

logN {ε,Lf , L2(P )} ≤ logN {ε,B(Bn), L2(P )}+ logN
{
ε, {λn‖f‖2, f ∈ B(Bn)}, L2(P )

}
≤ C

( ε

Bn

)−v
+ log(M2/ε)

≤ CBv
nε
−v.

Hence, E(Z) is bounded above by

C max
{
n−

2
v+2λ

− v
2+v

n , n−
1
2λ
− v

4
n ε

2−v
4

}
, (5)

7



by Proposition 5.5 in Steinwart and Scovel (2007). Consequently, it suffices to choose

ε∗ = Cn−
2
v+2λ

− v
v+2

n ,

and by solving ε ≥ 12ξLf (ε) for ε∗, i.e., ε ≥ 12E(Z), where E(Z) can be replaced with (5).
Therefore,

ε ≥ max
{
Cn−

2
v+2λ

− v
v+2

n ,
Cc′nK

n
,
CKBn
n

,C(λ−1/2n n−(α+β) + n−(1/2+min(α,β))λ−1/2n )
}
.

This completes the proof.

Lemma A.1. [Lemma 6 from Bartlett et al. (2006)] Consider a class F of functions f :
X → R with supf∈F ‖f‖∞ ≤ B. Let P be a probability distribution on X , and suppose

that there exist c ≥ 1 and 0 < β ≤ 1 such that, for all f ∈ F , Ef2(X) ≤ c(Ef)β. Fix
0 < α, ε < 1. Suppose that if some f ∈ F has Pnf ≤ αε and Ef ≥ ε, then some f ′ ∈ F
has Pnf ′ ≤ αε and Ef ′ = ε. Then with probability at least 1 − e−x, any f ∈ F satisfies
Pnf ≤ αε⇒ Ef ≤ ε, provided that

ε ≥ max

{
ε∗,

(
9cKx

(1− α)2n

)1/(2−β)
,

4KBx

(1− α)n

}
,

where K is an absolute constant and ε∗ ≥ 6ξF (ε∗)/(1− α), with ξF (ε) = E sup[E(f) −
Pn(f) : f ∈ F , E(f) = ε].

Lemma A.2. Under the same conditions as in Theorem 3.1, we have for a = 1 or −1,

|φ(a · f̂λn,kn,k )| . λ
−1/2
n and |φ(a · fmλn)| . λ

−1/2
n .

Proof According to Assumption 2, |Ŵak| can be bounded above by a constant. We then

obtain a trivial bound for ‖f̂λn,kn,k ‖, as Pn(−k)[
∑

a=±1 Ŵakφ{a · f̂
λn,k
n,k (X)} + λn‖f̂

λn,k
n,k ‖

2] ≤

Pn(−k)[
∑

a=±1 Ŵakφ(0)], then ‖f̂λn,kn,k ‖ ≤
{
λ−1n Pn(

∑
a=±1 Ŵak)

}1/2
≤Mλ

−1/2
n , where M2 is

a constant bounding the empirical average. Similarly,

λn‖fmλn‖
2 ≤ inf

f∈F
λn‖f‖2 + E

[ ∑
a=±1

Wm
a φ{a · f(X)}

]
≤
∑
a=±1

E [Wm
a φ(0)] ,

so that ‖fmλn‖ ≤ Mλ
−1/2
n . Set Bn = Mλ

−1/2
n and let B(Bn) denote a ball of radius Bn

in F that is centered at zero. For every f ∈ B(Bn), we have |φ(a · f)| ≤ L‖f‖ + φ(0) ≤
MLλ

−1/2
n + φ(0), where L is the Lipschitz constant of the convex loss. This completes the

proof.

Lemma A.3. Under the same conditions as in Theorem 3.1, we have for a = 1 or −1,

|Pn(−k)(Ŵak −Wa)φ(afmλn(X))| = Op(λ
−1/2
n n−(α+β) + n−(1/2+min(α,β))λ−1/2n ), (6)

|Pn(−k)(Ŵak −Wa)φ(af̂
λn,k
n,k (X))| = Op(λ

−1/2
n n−(α+β) + n−(1/2+min(α,β))λ−1/2n ). (7)

8



Proof For simplicity, we only consider a = 1. For notational simplicity, we use Q̂, π̂ and

f̂ to denote Q̂k, π̂k and f̂
λn,k
n,k . For (6),∣∣∣Pn(−k)(Ŵ1 −W1)φ(f̂(X)))

∣∣∣
=
∣∣∣Pn(−k)[Y I{A = 1}

π̂(1;X)
− I{A = 1} − π̂(1;X)

π̂(1;X)
Q̂(X, 1)− Y I{A = 1}

π(1;X)

− I{A = 1} − π(1;X)

π(1;X)
Q(X, 1)

]
φ(f̂(X))

∣∣∣
≤
∣∣∣Pn(−k)(I{A = 1}

π̂(1;X)
− I{A = 1}

π(1;X)

)(
Q̂(X, 1)−Q(X, 1)

)
φ(f̂(X)))

∣∣∣
+
∣∣∣Pn(−k)(I{A = 1}

π̂(1;X)
− I{A = 1}

π(1;X)

)(
Y −Q(X, 1)

)
φ(f̂(X)))

∣∣∣
+
∣∣∣Pn(−k)(I{A = 1}

π(1;X)
− 1
)(
Q(X, 1)− Q̂(X, 1)

)
φ(f̂(X)))

∣∣∣
= (I) + (II) + (III).

We first consider (III). Let

FQ,1 =
{(I{A = 1}

π(1;X)
− 1
)(
Q(X, 1)− Q̂(X, 1)

)
φ(f(X)), f ∈ B(Bn)

}
.

Since X and Q̂ are independent by sample splitting, we have E(g) = 0 for any g ∈ FQ,1.
Then

(III) . n−1/2E sup
g∈FQ,1

|Gng|.

The envelop function is given by FQ,1 = CM |(I{A = 1}/π(1;x)−1)(Q(X, 1)−Q̂(X, 1))|λ−1/2n .

Therefore, ‖FQ,1‖P,2 = Cn−βλ
−1/2
n by the L2 convergence of Q̂k. By our entropy assump-

tion, supP logN(ε,B(Bn), L2(P )) ≤ C(ε/Bn)−v. By the Lipschitz propensity of π(·), we
have supP logN(Lε, {φ(f) : f ∈ B(Bn)}, L2(P )) ≤ C(ε/Bn)−v. This further implies

sup
P

logN(ε‖FQ,1‖P,2,FQ,1, L2(P )) ≤ Cε−v.

Thus,

J(1,FQ,1, L2) =

∫ 1

0

√
log sup

P
N(ε‖FQ,1‖P,2,FQ,1, L2(P ))dε . 1.

Thus, by the maximal inequality in Lemma 19.38 in Van der Vaart (2000), we obtain that

(III) . n−1/2n−βλ−1/2n

We can similarly show that

(II) . n−1/2n−αλ−1/2n

9



Finally, we consider (I),

(I) ≤
{
Pn(−k)

(I{A = 1}
π̂(1;X)

− I{A = 1}
π(1;X)

)2}1/2
·
{
Pn(−k)

(
Q̂(X, 1)−Q(X, 1)

)2
φ2(f̂(X))

}1/2

.
{
Pn(−k)

(
π̂(1;X)− π(1;X)

)2}1/2
·
{
Pn(−k)

(
Q̂(X, 1)−Q(X, 1)

)2}1/2
λ−1/2n

. n−(α+β)λ−1/2n ,

since Pn(−k)
(
Q̂(X, 1)−Q(X, 1)

)2
. E

(
Q̂(X, 1)−Q(X, 1)

)2
= E‖Q̂(X, 1)−Q(X, 1)‖2P,2 ≤

Cn−2β by the independence between X and Q̂. Combining the bounds for (I), (II), (III),
we obtain (7). The first result (6) is also implied by the above proof.

Web Appendix E: Proof of Corollary 3.1

Provided that

V ∗ − V̄ =
1

K

K∑
k=1

[V ∗ − V̂(−k)(f̂
λn,k
n,k )]

=
1

K

K∑
k=1

[V ∗ − V (f̂
λn,k
n,k ) + V (f̂

λn,k
n,k )− V̂(−k)(f̂

λn,k
n,k )],

we only need to derive the bound for the rate of convergence of V (f̂
λn,k
n,k )− V̂(−k)(f̂

λn,k
n,k ).

V (f̂
λn,k
n,k )− V̂(−k)(f̂

λn,k
n,k )

= Pn(−k)
[
(Ŵa −Wa)I{a = sgn(f̂

λn,k
n,k )}

]
+
∑
a=±1

(Pn(−k) − P)[WaI{a = sgn(f̂
λn,k
n,k )}]

≤

∣∣∣∣∣ ∑
a=±1

(Pn(−k) − P)[WaI{a = sgn(f̂λnn )}]

∣∣∣∣∣+Op(λ
−1/2
n n−(α+β) + n−(1/2+min(α,β))λ−1/2n ),

where the last step is from Lemma A.3, because Q̂k, π̂k and Pn(−k) are independent. We
consider a = 1, and the case with a = −1 follows similarly. Since the norm of WaI{a =
sgn(f̂λnn )} is bounded, the class F1 = {W1I[1 = sgn{f(X)}], f ∈ B(Bn)} is contained in a
Donsker class. Then,∣∣∣(Pn − P)[W1I{1 = sgn(f̂λnn )}]

∣∣∣ ≤ n−1/2 sup
g∈F1

|Gng| = Op(n
−1/2).

The first result thus follows. Finally, as seen in the proof of Theorem 3.1, 1
K

∑K
k=1[V

∗ −
V (f̂

λn,k
n,k )] has the desired convergence rate. This completes the proof.

Web Appendix F: Additional simulations studies
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F.1 Comparing convex relaxations

We also compared the performance across different surrogate loss functions. We considered
logistic loss, exponential loss, squared hinge loss, and hinge loss applied with modeling
choices CC, CI, IC, and II and sample sizes 100, 150, 200, 250, 300, 350, 400, 500, 600,
700, 800, 1000, 1200 and 1600. Figures 1 and 2 display the results which show that smooth
losses performed similarly, all exhibiting better performances when the regression model is
correct; however, hinge loss has a more robust performance when the regression model is
incorrect.

Web Figure 1: Mean values using different surrogate loss functions under EARL in Scenario
1
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Web Figure 2: Mean values using different surrogate loss functions under EARL in Scenario
2
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F.2 Parametric vs. nonparametric working models

We also conducted a set of simulation experiments to investigate the role of parametric and
nonparametric models for the propensity score and outcome regression. We consider the
following modeling choices.

CN. A correctly specified logistic regression model for π(A;X) with predictors X1, X2 and
X1X2, and a nonparametric estimator for Q(X, A) fit using a random forest.

IN. An incorrectly specified logistic regression model for π(A;X) with predictors X, and
a nonparametric estimator for Q(X, A) fit using a random forest.

NC. A nonparametric estimator for π(A;X) fit using a random forest, and a correctly
specified linear model for Q(X, A) with predictors X,X2, A,X1A and X2

1A.

12



NI. A nonparametric estimator for π(A;X) fit using a random forest, and an incorrectly
specified linear model for Q(X, A) with predictors X, A,XA.

NN. Nonparametric estimators for both π(A;X) and Q(X, A) each fit using random
forests.

As in the previous section, logistic loss was used and sample sizes considered were 200,
400, 800 and 1600. The results for Scenarios 1 and 2 are shown in Figures 3 and 4. In
the examples considered, using nonparametric working models for propensity scores could
improve results over parametric models.

Web Appendix G: Application: National Supported Work (NSW)

The National Supported Work (NSW) Demonstration was a temporary employment pro-
gram implemented in mid-1970s. The program was designed to prepare disadvantaged
workers for the labor market by providing them with work experience and counseling. NSW
was designed as a randomized clinical trial in which subjects were randomly assigned to
the NSW-exposed group and the unexposed group. LaLonde (1986) created a composite
observational dataset by taking subjects in the NSW-exposed group and the nonexperimen-
tal control group from other sources. The NSW data, including the mixed NSW data, has
been extensively analyzed to evaluate the impact of the NSW program on post-intervention
income levels (LaLonde, 1986; Dehejia and Wahba, 1999). We now use the composite NSW
data, in which treatments were not randomized, to illustrate the EARL method for identi-
fying the optimal treatment rules. The data set is available in the R package MatchIt (Ho
et al., 2011).

There are 614 observations, with 185 subjects in the NSW-exposed group and 429 in
the control group. We used the change in reported earnings from 1975 to 1978 as the
primary outcome. We used eight baseline covariates, including age, schooling years, 1974
earnings (on log scale), race (black or white), ethnicity (Hispanic origin or not), marital
status (married or not), and degree (has a high school degree or not). We used linear and
logistic regression models to estimate the Q-function and propensity score. For comparison,
we also estimated an optimal treatment rule using L1-PLS and OWL. As in the previous
example, inverse probability weighting was used to assess the quality of the estimated rule.
The estimated treatment rule when using the EARL estimator with logistic loss assigned 397
subjects to the NSW group, and 217 patients to the unexposed group. This rule indicated
that subjects who are younger, less educated, and have a lower income in 1974 are more
likely to benefit from the NSW program. The estimated value of this rule was 5884.5. In
comparison, the treatment rule estimated using L1-PLS recommended 244 subjects to the
NSW group and had a lower estimated value of 5227.0. The treatment rule estimated using
OWL with a logistic loss led to an estimated value of 5110.9.
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Web Appendix H: Example code for implementing EARL method

Here we provide the codes for running simulation Scenario 2 using correct outcome regres-
sion and propensity score models. More details can be found in help file of R package
‘DynTxRegime’.

library(DynTxRegime)

## Generate training data

n = 500

p = 10

X = matrix(rnorm(n*p), n, p)

pi = 0.5*X[, 1] - 0.5

propensity = exp(pi) / (1 + exp(pi))

A = 2*rbinom(n, 1, propensity) - 1

mX = apply(X[ , 1:10]^2, 1, sum)+apply(X[ ,1:10], 1, sum)

cX = -X[ , 1] + X[ , 2] - .1

R = mX + A*cX + rnorm(n, 1)

## Generate validation data

testn = 10000

testX = matrix(rnorm(testn * p), testn, p)

testmX = apply(testX[ , 1:10]^2, 1, sum)+apply(testX[ ,1:10], 1, sum)

testcX = -testX[ , 1] + testX[ , 2] - .1

## Prepare for the data

a = as.numeric(A > 0)

data = data.frame(1, X, X^2, X[ , 1] * X[ , 2], a, R)

names(data) = c("x0", paste0("x", 1:(2 * p+1)), "a", "R")

newData = data.frame(1, testX, testX^2, testX[ , 1]*testX[ , 2])

names(newData) = c("x0", paste0("x", 1 : (2 * p+1)))

## The following example uses correct outcome regression and

## correct propensity score models.

## Outcome regression model consists of main effect component and contrast component.

## Create modeling object for main effect component, which contains X^2 and X terms.

mod1 = paste0("x", 1 : (2 * p))

mod1 = paste(mod1, collapse=" + ")

mod_main_correct = paste("model = ~", mod1)

mod_main_correct = as.formula(mod_main_correct)

expec.mainCorrect = buildModelObj(model = mod_main_correct,
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solver.method = ’lm’)

## Create modeling object for contrast component, which contains X1 and X2

expec.contCorrect = buildModelObj(model = ~ x1 + x2,

solver.method = ’lm’)

## Propensity score model includes x1 as covariate.

## Create modeling object for propensity score.

propenCorrect = buildModelObj(model = ~ x1,

solver.method = ’glm’,

solver.args = list(’family’=’binomial’),

predict.method = ’predict.glm’,

predict.args = list(type=’response’))

## Specify the form of regimes.

## Here, we use regime of the form ~ x0 + x1 + ... + x10.

regime1 = c(paste0("x", 0:p))

regime1 = paste(regime1, collapse=" + ")

regime1 = paste("model = ~", regime1)

regime1 = as.formula(regime1)

## EARL with both correct models.

earlRes = earl(moPropen = propenCorrect, moMain = expec.mainCorrect,

moCont = expec.contCorrect,

data = data, response = data$R,

txName = ’a’, surrogate = ’logit’,

regime = regime1, lambdas=2^seq(-5,5,1),

cvFolds = 5, verbose = FALSE)

## Parameter estimates for decision function

regimeCoef(earlRes)

## Show main results of method

show(earlRes)

## Show summary results of method

summary(earlRes)

## Estimated optimal treatment for new data

optTx(earlRes, newdata)
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Web Figure 3: Boxplots for Scenario 1 results under EARL with different working models
using logistic loss.
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Web Figure 4: Boxplots for Scenario 2 results under EARL with different working models
using logistic loss.
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Both parametric
Outcome nonparametric
Propensity nonparametric
Both nonparametric
QL
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