Proofs and supplementary algorithms

Proofs for the Max-diameter min-cut partitioning problem

Proof for Theorem[1 We use induction. The base case for the induction is the simple
rooted tree with root v and two leaves w; and u,.. If w; + w, > a the algorithm cuts the
longer branch whereas if w; + w, < a no branch is cut. In both cases, the theorem holds.

The inductive hypothesis is that for a node u, the algorithm has computed A(u;),
A(uy), B(w), and B(u,) optimally. We need to prove that a solution other than the
one computed by our algorithm 4) cannot have a lower number of clusters, call it A’ (u),
and i7) when A’(u) = A(u), cannot have a lower distance to the farthest connected leaf,
call it B'(u).

When B(u;) +w; + B(uy) + w, < a, we have A(u) = A(w;) + A(u,) — 1, which is the
minimum possible by inductive hypothesis and the fact that the number of clusters
cannot go down by more than one on node u. Also, B(u) is optimal by construction.

When B(u;) + w; + B(u,) + w, > «, without loss of generality, assume that
B(u;) + w; > B(u,) + w, and thus, the algorithm cuts the (u,u;) branch, getting
A(u) = A(wy) + A(u,.) and B(u) = B(u,) + w,. Note that A’(u) < A(u) is only possible
if A'(w;) = A(w;) and A’(u,) = A(u,) and we do not cut any branch at « in the
alternative clustering. However, this scenario is not possible because

B'(w) +w; + B'(uy) +w, > B(w) +w; + B(u,) + w, >«

where the first inequality follows from the inductive hypothesis and the final inequality
shows that we will have to cut a branch in any alternative setting. Finally, we need to
show that an alternative solution with A’(u) = A(u) but B’'(u) < B(u) is not possible.
The inequality requires that either B'(u;) < B(w;) or B’(u,) < B(u,.). First, consider
the B’(u;) < B(u;) case, which is possible only if A’(u;) = A(w;) + 1. Note that

A'(u) = A(u) requires A’ (u,) = A(u,) (and thus B’(u,) = B(u,)) and that

B'(w) + w; + B(u,) + w, < «, which is possible. Under this condition, we find:

B'(u) = maz(B'(w) + wy, B(u,) + w,) > B(u,) + w, = B(u) (4)
If instead B’(u,) < B(u,), similar conditions can be written, resulting in
B'(u) = maz(B(w) + wy, B'(u,) + w,.) > B(w;) +w; > B(u,) +w, = B(u) (5)

Thus, A(u) and B(u) are optimal when B(u;) + w; + B(u,) + w, > a.
O

Proof for Corollary[dl Let o, and o; denote the right and the left child of the root of
T°. Every edge in T can be mapped to T° except the edge (o, 0;), from which we
define a mapping to (0,0,) (w.l.o.g). Using this mapping, the optimal clustering (i.e.,
optimal cut-set) on T' can be translated to an alternative Max-diameter min-cut
partitioning on T°. However, by Theorem |1} A(0) is optimal and cannot be improved by
any alternative partitioning. Since any admissible clustering on 7 is also admissible on
T, Algorithm [T minimizes the number of clusters.

O

Linear-time solution for the Sum-length min-cut partitioning
problem

We now show that Algorithm [A]is correct. Let A(u) be the minimum number of
clusters under U all with a diameter less than «; i.e., A(0) is the objective function.

August 8, 2019

21/2§

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

77

778

779

780

781

782

783

784

Algorithm A: Linear-time solution for Sum-length min-cut partitioning

Input: A tree 7° = (V, E) and a threshold «
B(u)«0forveV
for u € post order traversal of internal nodes of T° do
if B(u;) +w; + B(u,) + w, > « then
if B(w) +w; < B(u,) + w, then
E <+ E—{(u,u,)}
B(u) «+ B(w) +wy
else
E+ FE—{(u,w)}
L B(u) + B(u,) + w,

© 00 N O ok W N

10 else
11 | B(u) < B(w) + w; + B(u,) + w,

12 return Leafsets of every connected component in T°

Theorem A. Algorithm computes a clustering with minimum A(o) for rooted tree
T°. In addition, among all possible such clusterings, the algorithm picks the solution
with minimum B(o).

Proof. The proof uses induction. The base case for the induction is the simple rooted
tree with root u and two leaves w; and u,.. If w; + w, > «, the algorithm cuts the longer
branch, whereas if w; + w, < «, no branch is cut. In both cases, the theorem holds.

The inductive hypothesis is that, for a node u, the algorithm has computed A(u;),
A(uy), B(u), and B(u,) optimally. We need to prove that a solution other than the
one computed by our algorithm 4) cannot have a lower number of clusters, call it A’ (u),
and 4i) when A’(u) = A(u), cannot have a lower distance to the farthest connected leaf,
call it B'(u).

When B(u;) +w; + B(u,) + w, < «, we have A(u) = A(u;) + A(u,-) — 1, which is the
minimum possible by the inductive hypothesis along with the fact that the number of
clusters cannot decrease by more than one on node u. Also, B(u) is optimal by
construction.

When B(u;) + w; + B(u,) + w, > «, without loss of generality, assume that
B(u;) + w; > B(uy) + w,, and thus, the algorithm cuts the (u,u;) branch, resulting in
A(u) = A(wy) + A(u,.) and B(u) = B(u,) + w,. Note that A’(u) < A(u) is only possible
if A'(w;) = A(w;) and A’(u,) = A(u,) and we do not cut any branch at « in the
alternative clustering. However, this scenario is not possible because

B'(w) +w; + B'(uy) +w, > B(w) +w; + B(u,) + w, > «

where the first inequality follows from the inductive hypothesis and the final inequality
shows that we will have to cut a branch in any alternative setting. Finally, we need to
show that an alternative solution with A’(u) = A(u) but B’(u) < B(u) is not possible.
The inequality requires that either B'(u;) < B(w;) or B’(u,) < B(u,). First, consider
the B’(u;) < B(u;) case, which is possible only if A’(u;) = A(w;) + 1. Note that

A’(u) = A(u) requires A’ (u,) = A(u,) (and thus B’(u,) = B(u,)) and that

B'(w) + w; + B(u,) + w, < «, which is possible. Under this condition, we find

B'(u) = B'(w) + w; + B(u,) + w, > B(u,) + w, = B(u) (6)
If, instead, B'(u,) < B(u,), similar conditions can be written, resulting in

B'(u) = B(w) + w; + B'(u,) + w, > B(u;) +w; > B(u,) + w, = B(u) (7)

August 8, 2019

222§

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

Thus, A(u) and B(u) are optimal when B(v;) + w; + B(u,) + w, > a.
O

Corollary A. Let C' be the cut-set obtained by running Algorithm[1] on any arbitrary
rooting T° of unrooted tree T. C' optimally solves the Maz-diameter min-cut
partitioning problem.

Proof. Let o, and o; denote the right and the left child of the root of T°. Every edge in
T can be mapped to T° except the edge (o,,0;), from which we define a mapping to
(0,0,) (w.lo.g). Using this mapping, the optimal clustering (i.e., the optimal cut-set) on
T can be translated to an alternative Max-diameter min-cut partitioning on 7°.
However, by Theorem [1} A(0) is optimal and cannot be improved by any alternative
partitioning. Since any admissible clustering on T is also admissible on T, Algorithm
minimizes q.

O

Proofs for the Single-linkage min-cut partitioning problem

Proof of Proposition[1l (<) If d(a,b) < « but a and b are in distinct clusters L,, Ly

respectively, N can be reduced by one by simply merging L, and Ly. fr(L,U L) < «
is satisfied if for any split of L, U Ly, there exists a pair of leaves that are from distinct
splits and are within « threshold. For any pair of non-empty sets S and S’ that satisfy

S C L, and S’ C Ly, we have d(j,k) < min d(j,k) < a
jesus’, kE(L ULb) (SUS”) JESkELL—S
and min d(j,k) < min d(], k) < a. On the other hand,
JESU(Ly—5'),k€S"U(Lq—S) j€S, k€L,

min d(j, k) < d(a,b) < a. This concludes that for L =L, U Ly, fr(L) < o is
Jj€La,kELy—S

satisfied. L, and L; can still be merged if the chain H described above exists. It is
trivial to show that there is a link (¢;, ¢;41) in H such that ¢; € L, and ¢;11 ¢ Ly,.
Using the argument above, we can iterate over H and keep merging clusters (and
decrease N) every time we see such a link until we finally merge L, with L.

(=) We describe a procedure to compute the chain H. If @ and b in the same cluster

L dla, k) < i,k)} < a holds, implying that there is a leaf
7keerr% (a, k) ?gzc{jesrggi B d(j,k)} < a holds, implying that there is a leaf ¢;

in set L — {a} such that d(a,c1) < a. If ¢ = b, theorem follows. If ¢; # b, we union a

and c1, call the union set L,, and add the link a — ¢; to H'. Iteratively, we find the

pair (j, k) that yields to . r{tlin . d(j,k), add the link j — k to H’, and add k to L,
J€ a

as

until we finally add b to L,. The elements forming the path between a, and b in H’,
which can be computed using depth-first-search, constitute a valid chain H. O

Wirs AP v 7 P i Py

a: EEEEN
Po s@) Sy S(p)

Fig SA. A sketch showing the setup for constructing the chain #.

Proof for Theorem[Z Let a «~ b be the path between leaves a and b on T Fixing a
and b, for each node j, we use the term support of j, denoted by s(j), to refer to the
unique node on all the three paths a «~ b, a «~ j, and b «~ 7. We refer to a group of
leaves that share a mutual support with respect to a and b as a bubble (e.g. triangles in

August 8, 2019

23/128

808

809

810

811

812

813

814

815

816

817

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

Fig . Among all bubbles branching out of a «~ b, let the one with the closest
support to a be A’. We name the leaf closest to a on A" as a’ (Fig[SA).

We start with the observation that if d(a,b) < « holds, the algorithm will never cut
any edge on a «~ b. For every internal node u on a «~ b, let v and w be the adjacent
nodes on a «~ u and u «~ b, respectively. Also, let p, be the closest leaf to u whose
support s(p,) is on a e~ u, and let p, be the closest leaf to u whose support s(py) is on
u e~ b. Now, note that d(ps,u) + d(u, py) < d(a,u) + d(u,b) < a holds, so regardless of
the rooting, (v,u) and (u,w) are never cut by Algorithm

If a chain H exists, due to the previous observation, there are no cuts on ¢; ¢~ ¢;11
for every 0 < ¢ < m. Consequently, a and b are connected through a path and are thus
in the same cluster.

Assume Algorithm [2| places a and b on the same cluster, i.e., it does not cut any edge
on a «~ b. We present a procedure to generate a chain H as described in Definition
But we first need some definitions. We define pg = a and p,, = b. For 1 <i < m/, let p;
denote the closest leaf to p;—1 whose support s(p;) is on p;—1 «~ b and s(p;) # s(pi—1);
i.e., p; is in the bubble to the right of the bubble of p; ;. Conversely, for 1 < i < m/, let
m; denote the closest leaf to p; whose support is on a «~ s(p;_1); i.e., is in a bubble to
the left of p;. Also define 71 = a. We can also show that every m; € {pg...p;—1}. If a m;

is not equal to one of {pg ...p;—1}, then, s(m;) has to be on s(pj_1) e~ s(p;) for some j.
However, we would have d(p;_1,7;) < d(pj_1,p;), which contradicts the definition of p;.

Now we construct the chain. The fact that Algorithm [2| retains (a, s(a’)) indicates
that min(d(a,a’),d(a,p1)) = d(a,p1) < «; therefore, we add a — p; to an auxiliary
graph H’. Now, consider Algorithm [2] when it processes the node s(p;—1) for 1 < 4. The
fact that the first edge on path s(p;—1) «~ s(p;) (shown in red in Fig is not cut
indicates that either d(m;—1,p;) < a or d(p;—1,pi) < a. Depending on which is true, we
add a link from m;_1 — p; or p;_1 — p; to H'. We repeat this process for all ¢ until we
reach i = m’, where we add an edge to p,,, = b. Noting that m; € {po...p;—1}, the H’
graph becomes a directed tree, rooted at a with a directed path to the leaf b. This
directed path constitutes the valid chain H. O

August 8, 2019

24/28

844

846

847

848

849

850

851

852

853

854

855

856

857

859

860

861

862

863

864

865

866

867

868

869

870

871

872

Mean-diameter clustering with clade constraint

Algorithm B: AVERAGE DIAMETER CLADE Average diameter clade min-cut
partitioning

1 for u € post order traversal of T° do

2 tot Pair Dist[u] < 0; totLeaf Dist[u] < 0;

3 if u in £ then

4 | numLeaves[u] < 1; avgPair Dist[u] < 0;

5 else

6 numLeaves[u] < numLeaves[u;] + numLeaves|u,];

7 tot Pair Dist[u] < tot Pair Dist[u;] + tot Pair Dist[u,] + tot Lea f Dist[u;] x

numLeaves|u,] + totLea f Dist[u,] x numLeaves|u];
8 totLea f Dist[u] < totLeaf Dist[u;] + w; X numLeaves[u;] +
totLeaf Dist[u,] + w, X numLeaves|u,];

avgPairDist[u] < tot PairDist[u]/ (”umLZ‘wes[“]) ;

9 toEzplore < queue containing the root of T;

10 while toExplore # () do

11 curr < toExzplore.dequeue();

12 if u not in £ and avgPairDist[u] > « then

13 E <+ E\ (u,w); E <+ E\ (u,u);

14 L toExplore.enqueue(u;); toExplore.enqueue(u,.);

15 return Leafsets of every connected component in T°

All optimal solutions

Lemma A. Let {e1,e2, - ,en} be the set of edges in an unrooted tree T'. Consider
the following algorithm: root T' at e; and run Algom'thm and let S; denote the set of
edges cut by the algorithm in this run. Any optimal clustering for T has to draw its
cut-set from ¥ = UL, S;.

Proof. The proof is by contradiction. Assume there is an optimal cut-set S’ that
contains an edge e; such that e; ¢ ¥. Consider the rooting of T' at e;. Denote the root
of this tree as v, the immediate left and right branches of v as e¢; and e,., and the left
and right child nodes of v as v; and v,. Note that the concatenation of ¢; and e,
corresponds to e; in T'; thus, e; ¢ S; and e, ¢ S;. When e; is removed from T, two new
trees form, called T} (the one containing the node v;) and T, (the one containing the
node v,.). If p cuts in & are in T, and if ¢ cuts in 8 are in T}, then [S'| =p+ g+ 1.
The number of cuts in S’ and S; are equal, and e; and e, are not cut, which implies
that either the tree rooted by v; or v, has an alternative clustering with one less cut. By
the design of Algorithm [1] if this was the case, the algorithm would have chosen the
alternative cut. O

Commands and parameters
Ancestral state reconstruction using TreeTime. FEach cluster tree is first
rooted at its balance point using MinVar rooting version (commit 8c1581a):

$ python FastRoot.py —i unrooted_tree.nwk —m MV
—o0 rooted_tree.nwk

Before performing maximum likelihood ancestral state reconstruction, we inferred
GTR parameters from the input tree using RAxML v8.2.12:

August 8, 2019

25/128

873

874

875

876

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

894

895

896

897

$ raxmlHPC—PTHREADS —f e¢ —t ../input_tree.nwk —s aln.fa
-m GIRGAMMA —n tre —T 4

We manually hardcoded those parameters into built-in TN93 parameters matrix in

treetime software (v0.5.5) and reconstructed ancestral states of rooted tree using this
command:

$ treetime ancestral —tree rooted_tree.nwk —aln aln.fa
—outdir outdir ——gtr TN93

Listing A. Default FAVITES Parameters

{

”ContactNetworkGenerator”: ” Communities” ,
"cn_generators”: [{
"ContactNetworkGenerator”: ”BarabasiAlbert”,
"num_cn_nodes” : 5000,
"num_edges_from_new”: 5
%20,

cn_p_across”: 1/(2%x19%5000),
”NodeEvolution”: ”VirusTreeSimulator”,
"vts_growthRate”: 2.851904,

”vts_max_attempts”: 100,
”vts_model”: ”logistic”,
?vts_n0”: 1,

Pvts_t507: =2,
”NumBranchSample” : ” Single” |
"NumTimeSample” : 7 Once” ,
”SeedSelection”: ”Random” ,

"num_seeds” : 15000,

”SeedSequence” : ”VirusNonHomYuleHeight GTRGamma” |
"seed_height”: 25,

"seed_speciation_rate_func”: "exp(—t*xx2)+17,
"viral_sequence_type”: ”HIVI-B-DNA-POL-LITTLE” ,
"seqgen_freq_a”: 0.392,

7seqgen_freq_c¢”: 0.165,

"seqgen_freq_g”: 0.212,

”seqgen_freq_t”: 0.232,

"seqgen_a_to_c”: 1.765707,

”seqgen_a_to_g”: 9.587649,

”seqgen_a_to_t”: 0.691915,

"seqgen_c_to_g”: 0.863348,

"seqgen_c_to_t”: 10.282617,

"seqgen_g_to_t”: 1.0,

”seqgen_gamma._shape”: 0.405129,

”seqgen_num_gamma_rate_categories”: 77

)

”SequenceEvolution” : ”GTRGammaSeqGen” ,
”Sequencing”: ”Perfect”,
”SourceSample” : ”Random” ,

”"TimeSample” : 7 GranichFirstART” |
”"TransmissionTimeSample” : "HIVARTGranichGEMF” |
7end_time” : 10,

"hiv_freq_ns”: 0,

"hiv_freq_i3”7: 0,

August 8, 2019

26,128}

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

"hiv_freq_id4”:
"hiv_freq_-a3”:
"hiv_freq_.a4d”:
"hiv_freq_d”:

"hiv_freq_s”:

"hiv_freq_il”:
"hiv_freq_i27:
"hiv_freq_.al”:
"hiv_freq_a2”:

7hiv_al_to_a2”:

"hiv_al_to_d”:

hiv_al_to_il17:
”hiv_a2_to_a3”:

”hiv_a2_to_d”:

7hiv_a2_to_i27:
”hiv_a3_to_a4d”:

"hiv_a3_to_d”:

7hiv_a3_to_i37:

"hiv_a4_to_d”:

"hiv_ad_to_i47:

” .

7hiv_il_to_al
Phiv_.il_to_d”:

7hiv_il_to_i27:
?hiv_i2_to_a2”:

"hiv_i2_to_d”:

7"hiv_i2_to_i37:
7hiv_i3_to_a3”:

"hiv_i3_to_d”:

hiv_i3_to_i4”:
Phiv_id_to_a4”:

”hiv_id_to_d”:
”hiv_ns_to_d”:
"hiv_ns_to_s”:
”hiv_s_to_d”:

"hiv_s_to_il_by_al”:
"hiv_s_to_il_by_a2”:
"hiv_s_to_il_by_a3”:
”hiv_s_to_il_by_a4”:

100000-15000,
50,
5094,
9)

15000-50-5094-9,
4.333333333333333,

999999,
0,

o O OO

"hiv_s_to_il_by_il”: 0.1125,
"hiv_s_to_il_by_i27: 0.0225,
"hiv_s_to_il_by_i3”: 0,
"hiv_s_to_il_by_i4”7: 0,
"hiv_s_to_il_seed”: 0,

?TreeUnit”: ”TruncatedNormal”

"tree_rate_loc
"tree_rate_max
7tree_rate_min

"1 0.0008,
": float (’inf '),
"0,

"tree_rate_scale”: 0.0005,

” ContactNetwork” :

”Driver”: ”Default”,

?EndCriteria” :

"GEME”
)

”Logging”: ”File”,

66666666666666 ,

.005625,

”NetworkX” ,

August 8, 2019

27/128]

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

"NodeAvailability”: ”Perfect”,
” TransmissionNodeSample” :
”TreeNode” : ”Simple”,
?gemf_path”: "GEME” ,

”hmmemit_path” :

” hmmemit” ,

”java_path”: ”java”,
7out_dir”: "FAVITES_output”,

”seqgen_path”:

”seq—gen” |

)

August 8, 2019

28/128

999

1000

1001

1002

1003

1004

1005

1006

1007

