Supplemental Materials for "Magnetically Switchable Light-Matter Interaction in the Two-Dimensional Magnet CrI₃"

Yang Zhang, $^{1,\,2,\,3}$ Tobias Holder, 4 Hiroaki Ishizuka, 5 Fernando de

Juan,
6,7 Naoto Nagaosa,
8,9 Claudia Felser,
1 and Binghai Yan $^{\ast 10}$

¹Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany

²Leibniz Institute for Solid State and Materials Research, 01069 Dresden, Germany

³Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

⁴Department of Condensed Matter Physics,

Weizmann Institute of Science, Rehovot 7610001, Israel

⁵Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan ⁶Donostia International Physics Center,

P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain ⁷IKERBASQUE, Basque Foundation for Science,

Maria Diaz de Haro 3, 48013 Bilbao, Spain

⁸RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

⁹Department of Applied Physics and Quantum Phase Electronics Center (QPEC),

University of Tokyo, Tokyo 113-8656, Japan

¹⁰Department of Condensed Matter Physics,

Weizmann Institute of Science, Rehovot 7610001, Israel Email: binghai.yan@weizmann.ac.il

Supplementary Fig. 1. Band structure of the bilayer CrI_3 for the (a) AFM phase with SOC, (b) AFM without including SOC and (c) FM phase with SOC. In both (b) and (c), the **k** to $-\mathbf{k}$ symmetry is preserved in the band structure. In contrast, momentum inversion symmetry is broken in (a).

Supplementary Fig. 2. The photoconductivity contributions from (a) the three-band and (b) twoband processes. Distribution of the photoconductivity σ_{xx}^x ($\hbar\omega = 1.2 \text{ eV}$) in the first Brillouin zone, the hexagonal area. Note that the colorbar of the three-band contribution is two orders in magnitude smaller than the two-band one. The momentum inversion symmetry is broken in both (a) and (b). The three-band distribution is relatively uniform in the Brillouin zone, because it has no energy selection rule.

Supplementary Fig. 3. The photoconductivity for different relaxation time (a) $\hbar/\tau = 5$ meV, (b) 1 meV (same as Fig. 2a) and (c) 0.01 meV. The photoconductivity scales linearly with τ .

Supplementary Fig. 4. The photoconductivity σ_{xx}^x in different electric field applied for the (a) AFM and (b) FM phases. The electric field E is in unit of V/*a.u.* (1 *a.u.* = 0.53 Å).