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Supplementary Figure 1 Peak-fitting analysis of the WAXS profiles using Gaussian 
functions. a B.mori silk, b A. pernyi silk. 
  



 
Supplementary Figure 2 DMTA plots of storage modulus and tanδ for natural A. 
pernyi silk and UHMWPE. 
  



 
Supplementary Figure 3 SEM images of the cross-sectional morphologies. a. pernyi 
silk bundle, and b, c and d SFRP at various magnifications. Scale bars: a 20 µm, b 
500 µm, c and d 50 µm. 
 
 
 



 
Supplementary Figure 4 Fracture morphology of different composites after 
unnotched Charpy impact testing. a CFRP, b SFRP, c 8C2S, d 5C5S-1, e 5C5S-2, and 
f 5C5S-3. 



 

Supplementary Figure 5 Photographs of two intra-ply/IP hybrid fabrics from A. 
pernyi silks and carbon fibres. a and b IP-1 and c and d IP-2. Note that the two fabrics 
were designed and woven at a textile factory. Scale bars: b and d 5 mm. 
  



 

Supplementary Figure 6 Charpy impact strength of different samples. The samples 
include epoxy resin matrix, CFRP, inter-ply HFRP/5C5S and HFRPs from the two 
intra-ply hybrid fabrics, IP1-HFRP and IP2-HFRP. Note that the epoxy resin matrix 
was epoxy 1564 with hardeners 3486. The error bars represented the standard 
deviation of measured means. 
  



 

 
Supplementary Figure 7 Comparison of the mass increase of five fibres after 
environmental conditioning. The error bars represented the standard deviation of 
measured means.  



 

Supplementary Figure 8 Comparison of mass increase of different composites as a 
function of immersion time. The immersion condition was in ultrapure water at 23oC 
± 2oC. Note that the epoxy resin matrix was epoxy 1564 with hardeners 3486. 

 
 



 
Supplementary Figure 9 Comparison of flexural properties of three composites. a 
and b SFRP, c and d CFRP, e and f HFRP/5C5S, before and after the water-immersion 
treatment for 7 days and 21 days. Note: The epoxy resin matrix was epoxy 1564 with 
hardeners 3486. The error bars represented the standard deviation of measured means. 

 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 10 Creep behaviour of epoxy resin, A. pernyi SFRP and 
HFRP/5C5S. a and b tensile stress of 60 MPa, and c and d flexural stress of 10 MPa. 
Note that the epoxy resin matrix was epoxy 1564 with hardeners 3486. 
 



 
Supplementary Table 1 Mechanical properties of the resin and composites in this work. 

 
Speci
men 

Physical 
properties 

Tensile properties Flexural properties Impact 
properties 

  ρ Vf Et Et/ρ σt σt/ρ εt BEt Ef Ef/ρ σf σf/ρ σi σi/ρ 
Epoxy 
resin 

1.2 0 3.2±
0.1 

2.7±
0.1 

76.6±
1.3 

63.8±
1.1 

2.8±
0.1 

1.1±
0.1 

3.5±
0.0 

2.9±
0.0 

134.2±
6.4 

111.8
±5.3 

12.8
±0.2 

10.7
±0.1 

CFRP 1.61 69 65.2
±3.2 

40.5
±2.0 

554.8
±13.7 

344.6
±8.5 

0.91
±0.0 

2.4±
0.1 

55.1
±2.1 

34.2
±1.3 

1002.1
±28.5 

622.4
±17.7 

43.3
±3.7 

26.9
±2.3 

8C2S 1.56 65 63.5
±3.8 

40.7
±2.4 

501.4
±14.2 

321.4
±9.1 

0.86
±0.1 

2.4±
0.2 

43.2
±2.5 

27.7
±1.6 

571.3±
17.4 

366.2
±11.2 

73.6
±5.2 

47.2
±3.3 

5C5S-
1 

1.43 61 39.3
±2.7 

27.4
±1.9 

380.0
±10.9 

265.7
±7.6 

1.0±
0.1 

2.0±
0.1 

38.1
±2.4 

26.6
±1.7 

641.3±
25.3 

448.5
±17.7 

97.5
±4.7 

68.2
±3.3 

5C5S-
2 

1.43 61 38.5
±3.0 

26.9
±2.1 

376.5
±8.9 

263.3
±6.2 

0.99
±0.1 

2.0±
0.1 

15.2
±0.8 

10.6
±0.6 

461.2±
18.9 

322.5
±13.2 

85.5
±4.8 

59.8
±3.4 

5C5S-
3 

1.43 61 40.6
±2.8 

28.3
±1.9 

393.3
±10.4 

275.0
±7.3 

1.1±
0.0 

2.0±
0.1 

34.4
±2.8 

24.0
±1.9 

335.9±
21.4 

234.9
±15.0 

80.4
±6.2 

56.2
±4.3 

2C8S 1.32 56 17.2
±1.7 

13.0
±1.3 

176.0
±5.4 

133.3
±4.1 

1.2±
0.1 

1.2±
0.2 

31.8
±2.6 

24.1
±2.0 

262.6±
17.3 

198.9
±13.1 

77.3
±6.0 

58.6
±4.5 

SFRP 1.25 51 7.8±
0.2 

6.2±
0.2 

129.3
±3.2 

103.4
±2.6 

9.6±
0.1 

9.9±
0.3 

6.8±
0.3 

5.4±
0.2 

256.6±
13.6 

205.3
±10.9 

90.8
±5.4 

72.6
±4.3 

 
ρ:density (103 kg.m-3), Vf: fibre volume fraction (%), Et: tensile modulus (GPa), ρ:density, Et/ρ: specific tensile 
modulus (GPa(103 kg.m-3)-1), σt: tensile strength (MPa), σt/ρ: specific tensile strength (MPa(103 kg.m-3)-1), εt: ultimate 
tensile strain (%), BEt: tensile fracture energy (MJ.m-3), Ef: flexural modulus (GPa),  Ef/ρ: specific flexural modulus 
(GPa(103 kg.m-3)-1), σf: flexural strength (MPa), σf/ρ: specific flexural strength (MPa(103 kg.m-3)-1), σi: impact 
strength (kJ.m-2), σi/ρ: specific impact strength (kJ.m-2(103 kg.m-3)-1) 



Supplementary Table 2 Dataset of density and impact strength of the composites in 
the literature. 

Sample Volume 
fraction 

Density 
[103 kg m-3] 

Impact 
strength 
[kJ m-2] 

Reference 

Flax-PP 20%  1.02 10 1 
Flax-PP 40% 1.11 15 1 
Flax-epoxy 35% 1.27 10.5 ± 1.1 2 
Hemp-epoxy 65% 1.37 12 3 
Hemp-PLA 30% 1.28 9 4 
Kenaf-PLA 40% 1.32 14 5 
Hemp-PLA 30% 1.28 19 6 
Kenaf-PHB 40% 1.35 10 5 
Jute-Acrylic None 1.25 8.8 ± 1.0 7 
Jute-polyester None 1.27 10.6 ± 1.0 7 
Sisal-acrylic None 1.20 12.7 ± 1.4 7 
Sisal-polyester None 1.19 12.2 ± 1.7 7 
Flax-acrylic None 1.22 15.0 ± 0.9 7 
Flax-polyester None 1.21 13.2 ± 0.9 7 
Hemp-PLA 45% 1.32 25 8 
PALF-polyester 30% 1.27 24 9 
Flax-PP 30% 1.06 22 10 
Flax-PP 30% 1.06 18 11 
Carbon-epoxy 66%  1.6 109.8 12 
Carbon-
polyimide 30% 1.49 11.5 13 

Carbon-epoxy 10% 1.26 19.6 14 
Carbon-epoxy None None 69.4 15 
Carbon-epoxy 40% 1.44 27.8 16 
Carbon-epoxy 55% 1.53 114 17 
Glass-epoxy None 1.69 168 18 
Glass-PP 35% 1.51 100 19 
Glass-Acrylic 30% 1.62 98.7 20 
Glass-Polyester 30% 1.62 106.5 20 
Glass-epoxy 30% 1.62 122 21 
Glass-acrylic None 1.71 98.7 ± 8.0 7 
Glass-polyester None 1.64 106.5 ± 4.2 7 
Glass-polyester 57% 2.02 69 22 
Glass-epoxy 61% 2.05 137 22 

N.B., We estimated the density in ref. 15 as 1.5×103 kg m-3 from the matrix and fibre species. 
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