Supplementary Information

Integrating tough *Antheraea pernyi* silk and strong carbon fibres for impact-critical structural composites

Kang Yang, Juan Guan, Keiji Numata, Change Wu, Sujun Wu, Zhengzhong Shao, and Robert O. Ritchie

Supplementary Figure 1 Peak-fitting analysis of the WAXS profiles using Gaussian functions. **a** *B.mori* silk, **b** *A. pernyi* silk.

Supplementary Figure 2 DMTA plots of storage modulus and $tan\delta$ for natural *A*. *pernyi* silk and UHMWPE.

Supplementary Figure 3 SEM images of the cross-sectional morphologies. **a**. *pernyi* silk bundle, and **b**, **c** and **d** SFRP at various magnifications. Scale bars: **a** 20 μ m, **b** 500 μ m, **c** and **d** 50 μ m.

Supplementary Figure 4 Fracture morphology of different composites after unnotched Charpy impact testing. **a** CFRP, **b** SFRP, **c** 8C2S, **d** 5C5S-1, **e** 5C5S-2, and **f** 5C5S-3.

Supplementary Figure 5 Photographs of two intra-ply/IP hybrid fabrics from *A*. *pernyi* silks and carbon fibres. **a** and **b** IP-1 and **c** and **d** IP-2. Note that the two fabrics were designed and woven at a textile factory. Scale bars: **b** and **d** 5 mm.

Supplementary Figure 6 Charpy impact strength of different samples. The samples include epoxy resin matrix, CFRP, inter-ply HFRP/5C5S and HFRPs from the two intra-ply hybrid fabrics, IP1-HFRP and IP2-HFRP. Note that the epoxy resin matrix was epoxy 1564 with hardeners 3486. The error bars represented the standard deviation of measured means.

Supplementary Figure 7 Comparison of the mass increase of five fibres after environmental conditioning. The error bars represented the standard deviation of measured means.

Supplementary Figure 8 Comparison of mass increase of different composites as a function of immersion time. The immersion condition was in ultrapure water at 23° C $\pm 2^{\circ}$ C. Note that the epoxy resin matrix was epoxy 1564 with hardeners 3486.

Supplementary Figure 9 Comparison of flexural properties of three composites. **a** and **b** SFRP, **c** and **d** CFRP, **e** and **f** HFRP/5C5S, before and after the water-immersion treatment for 7 days and 21 days. Note: The epoxy resin matrix was epoxy 1564 with hardeners 3486. The error bars represented the standard deviation of measured means.

Supplementary Figure 10 Creep behaviour of epoxy resin, *A. pernyi* SFRP and HFRP/5C5S. **a** and **b** tensile stress of 60 MPa, and **c** and **d** flexural stress of 10 MPa. Note that the epoxy resin matrix was epoxy 1564 with hardeners 3486.

Speci	Physical		Tensile properties					Flexural properties				Impact		
men	properties												prop	erties
	ρ	V_f	E_t	E_t / ρ	σ_t	σ_t / ho	ε_t	BE_t	E_f	E_f / ρ	$\sigma_{\!f}$	σ_{f}/ ho	σ_i	σ_i / ho
Epoxy	1.2	0	$3.2\pm$	2.7±	$76.6\pm$	$63.8\pm$	$2.8\pm$	1.1±	$3.5\pm$	2.9±	$134.2\pm$	111.8	12.8	10.7
resin			0.1	0.1	1.3	1.1	0.1	0.1	0.0	0.0	6.4	± 5.3	±0.2	± 0.1
CFRP	1.61	69	65.2	40.5	554.8	344.6	0.91	$2.4\pm$	55.1	34.2	1002.1	622.4	43.3	26.9
			±3.2	±2.0	± 13.7	± 8.5	± 0.0	0.1	±2.1	± 1.3	± 28.5	± 17.7	±3.7	±2.3
8C2S	1.56	65	63.5	40.7	501.4	321.4	0.86	$2.4\pm$	43.2	27.7	571.3±	366.2	73.6	47.2
			± 3.8	±2.4	± 14.2	± 9.1	±0.1	0.2	±2.5	±1.6	17.4	± 11.2	±5.2	± 3.3
5C5S-	1.43	61	39.3	27.4	380.0	265.7	$1.0\pm$	$2.0\pm$	38.1	26.6	641.3±	448.5	97.5	68.2
1			±2.7	± 1.9	± 10.9	± 7.6	0.1	0.1	±2.4	±1.7	25.3	± 17.7	±4.7	± 3.3
5C5S-	1.43	61	38.5	26.9	376.5	263.3	0.99	$2.0\pm$	15.2	10.6	$461.2\pm$	322.5	85.5	59.8
2			± 3.0	±2.1	± 8.9	±6.2	± 0.1	0.1	± 0.8	±0.6	18.9	± 13.2	± 4.8	± 3.4
5C5S-	1.43	61	40.6	28.3	393.3	275.0	1.1±	$2.0\pm$	34.4	24.0	$335.9\pm$	234.9	80.4	56.2
3			± 2.8	± 1.9	± 10.4	± 7.3	0.0	0.1	± 2.8	± 1.9	21.4	± 15.0	±6.2	±4.3
2C8S	1.32	56	17.2	13.0	176.0	133.3	$1.2\pm$	$1.2\pm$	31.8	24.1	$262.6\pm$	198.9	77.3	58.6
			±1.7	± 1.3	±5.4	±4.1	0.1	0.2	±2.6	± 2.0	17.3	± 13.1	±6.0	±4.5
SFRP	1.25	51	7.8±	$6.2\pm$	129.3	103.4	9.6±	9.9±	6.8±	5.4±	256.6±	205.3	90.8	72.6
			0.2	0.2	±3.2	±2.6	0.1	0.3	0.3	0.2	13.6	± 10.9	±5.4	±4.3

Supplementary Table 1 Mechanical properties of the resin and composites in this work.

 ρ :density (10³ kg.m⁻³), V_{f} : fibre volume fraction (%), E_{t} : tensile modulus (GPa), ρ :density, E_{t}/ρ : specific tensile modulus (GPa(10³ kg.m⁻³)⁻¹), σ_{t} : tensile strength (MPa), σ_{t}/ρ : specific tensile strength (MPa(10³ kg.m⁻³)⁻¹), ε_{t} : ultimate tensile strain (%), BE_{t} : tensile fracture energy (MJ.m⁻³), E_{f} : flexural modulus (GPa), E_{f}/ρ : specific flexural modulus (GPa(10³ kg.m⁻³)⁻¹), σ_{t} : flexural strength (MPa), σ_{f}/ρ : specific flexural strength (MPa(10³ kg.m⁻³)⁻¹), σ_{t} : impact strength (kJ.m⁻²), σ_{t}/ρ : specific impact strength (kJ.m⁻²(10³ kg.m⁻³)⁻¹)

	X 7 X	D !/	Impact		
Sample	Volume	Density	strength	Reference	
I	fraction	[10° kg m ⁻ 3]	[kJ m ⁻²]		
Flax-PP	20%	1.02	10	1	
Flax-PP	40%	1.11	15	1	
Flax-epoxy	35%	1.27	10.5 ± 1.1	2	
Hemp-epoxy	65%	1.37	12	3	
Hemp-PLA	30%	1.28	9	4	
Kenaf-PLA	40%	1.32	14	5	
Hemp-PLA	30%	1.28	19	6	
Kenaf-PHB	40%	1.35	10	5	
Jute-Acrylic	None	1.25	8.8 ± 1.0	7	
Jute-polyester	None	1.27	10.6 ± 1.0	7	
Sisal-acrylic	None	1.20	12.7 ± 1.4	7	
Sisal-polyester	None	1.19	12.2 ± 1.7	7	
Flax-acrylic	None	1.22	15.0 ± 0.9	7	
Flax-polyester	None	1.21	13.2 ± 0.9	7	
Hemp-PLA	45%	1.32	25	8	
PALF-polyester	30%	1.27	24	9	
Flax-PP	30%	1.06	22	10	
Flax-PP	30%	1.06	18	11	
Carbon-epoxy	66%	1.6	109.8	12	
Carbon-	200/	1.40	11 5	12	
polyimide	30%	1.49	11.3	15	
Carbon-epoxy	10%	1.26	19.6	14	
Carbon-epoxy	None	None	69.4	15	
Carbon-epoxy	40%	1.44	27.8	16	
Carbon-epoxy	55%	1.53	114	17	
Glass-epoxy	None	1.69	168	18	
Glass-PP	35%	1.51	100	19	
Glass-Acrylic	30%	1.62	98.7	20	
Glass-Polyester	30%	1.62	106.5	20	
Glass-epoxy	30%	1.62	122	21	
Glass-acrylic	None	1.71	98.7 ± 8.0	7	
Glass-polyester	None	1.64	106.5 ± 4.2	7	
Glass-polyester	57%	2.02	69	22	
Glass-epoxy	61%	2.05	137	22	

Supplementary Table 2 Dataset of density and impact strength of the composites in the literature.

N.B., We estimated the density in ref. 15 as 1.5×10^3 kg m⁻³ from the matrix and fibre species.

Supplementary References

- 1. Van den Oever, M. J. A., Bos, H. L. & Molenveld, K. Flax fibre physical structure and its effect on composite properties: Impact strength and thermo-mechanical properties, *Die Angew. Makromol. Chem.* **272**, 71-76 (1999).
- George, J., Weyenberg, I. V. D., Ivens, J. & Verpoest, I. Mechanical properties of flax fibre reinforced epoxy composites. *Macromol. Mater. Eng.* 272, 41-45(1999).
- 3. Islam, M. S., Pickering, K. L. & Foreman, N. J. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. *J. Appl. Polym. Sci.* **119**, 3696-3707(2011).
- 4. Islam, M. S., Pickering, K. L. & Foreman, N. J. Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. *Compos. Part A: Appl. Sci. Manufac.* **41**, 596-603(2010).
- Graupner, N. & Mussig, J. A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3hydroxybutyrate) (PHB) composites. *Compos. Part A: Appl. Sci. Manufac.* 42, 2010-2019(2011).
- 6. Baghaei, B. et al. Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behavior. *Compos. Part A: Appl. Sci. Manufac.* **61**, 1-12(2014).
- 7. Rodriguez, E., Petrucci, R., Puglia, D., Kenny, J.M. & Vazquez, A. Characterization of composites based on natural and glass fibers obtained by vacuum infusion. *J. Compos. Mater.* **39**, 265-282(2005).
- 8. Baghaei, B., Skrifvars, M. & Berglin, L. Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. *Compos. Part A: Appl. Sci. Manufac.* **50**, 93–101(2013).
- 9. Devi, L. U., Bhagawan, S. S. & Thomas, S. Mechanical properties of pineapple leaf fiber-reinforced polyester composites. *J. Appl. Polym. Sci.* **64**, 1739-1748(1997).
- Snijder, M. H. B. & Bos, H. L. Reinforcement of polypropylene by annual plant fibers: optimisation of the coupling agent efficiency. *Compos. Interface* 7, 69-79(2000).
- Hill, C. A. S., Khalil, H. P. S. & Hale, M. D. A study of the potential of acetylation to improve the properties of plant fibres. *Ind. Crop. Prod.* 8, 53-63(1998).
- 12. Ouyang, G. E., Sun, Q. H. & Lin, F. S. Studying impact behavior of carbon fiber/epoxy composites, fiber reinforced plastics. *Composites*, **4**, 6-7(2003).
- Wang, X. D., Wang, X., Zhu, P. & Huang, P. Mechanical properties and tribological performance of plastic polyimide reinforced by carbon fibers. *Mat. Sci. Eng. R.* 29, 42-45(2005).
- 14. Chang, L., Zhang, Z. & Breidt, C. Impact resistance of short fibre/particle reinforced epoxy. *Appl. Compos. Mater.* **11**, 1-15(2004).

- Dong, J. D. et al. Improved mechanical properties of carbon fiber-reinforced epoxy composites by growing carbon black on carbon fiber surface. *Compos. Sci. Technol.* 149, 75-80 (2017).
- 16. Zhong, W. Z., Ye, F. T. & Yi, T. U. Mechanical properties of epoxy resin composites reinforced by short carbon fibers treated with ball milling-liquid phase oxidation method, *Acta Armamentarii* **34**, 869-875(2013).
- 17. Adams, D. F. & Miller, A. K. An analysis of the impact behavior of hybrid composite materials. *Mat. Sci. Eng.* **19**, 245-260(1975).
- Sebastian, H., Tim, W., Lozoya, V. & Tomas, J. Comparison of impact behaviour of glass, carbon and Dyneema composites. *P. I. Mech. Eng. C-J. Mec.* 233, 951-966(2019).
- Zhao, N., Rödel, H., Herzberg, C., Gao, S. L. & Krzywinski, S. Stitched glass/PP composite. Part I: Tensile and impact properties. *Compos. Part A: Appl. Sci. Manufac.* 40, 635-643(2009).
- 20. Rodriguez, E. Characterization of composites based on natural and glass fibers obtained by vacuum infusion. *J. Compos. Mater.* **39**, 265-82(2005).
- 21. Aldulaim, Q. Effect of water absorption on impact strength for epoxy-glass fibers composite, *J. Univ. Anbar Pure Sci.* **5**, 1-6, (2011).
- 22. Yeung, P. & Broutman, L. J. The effect of glass-resin interface strength on the impact strength of fiber reinforced plastics. *Polym. Eng. Sci.* 18, 62-72(2010).