Additional file 1

Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome

Pedro J. Cabello-Yeves¹ and Francisco Rodriguez-Valera^{1*}

¹ Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, 03550 Alicante, Spain.

*Correspondence: Francisco Rodríguez-Valera, E-mail: frvalera@umh.es

Phone +34-965919313, Fax +34-965 919457

Keywords: Isoelectric point, marine-freshwater transition, metaproteome, acid shift,

electrostatic surface potential.

Running title: Marine-freshwater transitions predicted proteome

This PDF file includes: Figs. S1 to S10.Other Additional files for this manuscript include the following:Additional files 2 and 3

Figure S1. Whole proteome pl versus relative frequency plot of some representatives from different habitats of the class Alphaproteobacteria. A) Rhodospirillaceae and *Roseobacter* clades and B) SAR11 clade.

Figure S2. Whole proteome pl versus relative frequency plot of some representatives from different habitats of A) phylum Bacteroidetes and B) Order Betaproteobacterales.

Figure S3. Whole proteome pl versus relative frequency plot of some representatives from different habitats of A) phylum Chloroflexi and B) phylum Actinobacteria.

Figure S4. Whole proteome pl versus relative frequency plot of some representatives from different habitats of A) Genera Synechococcus/Cyanobium and B) Assorted halophiles (bacteria and archaea).

Figure S5. Whole proteome pl versus relative frequency plot of some representatives from different habitats of A) phylum Verrucomicrobia and B) phylum Planctomycetes.

Figure S6. Whole proteome pl versus relative frequency plot of some representatives from different habitats of the phylum Thaumarchaeota.

x =)

Y = Ty

W = Trp

V = Val

T = Thr

S = Ser

R = Arg

Q = GIn

P = Pro

Pelagibacter ubique HTCC 7214

Property	Residues	P.ubique HTCC 7214 (Mole %)	Pelagibacteraceae Baikal-G1 (Mole %)
Tiny	(A+C+G+S+T)	24.689	23.791
Small	(A+B+C+D+G+N+P+S+T+V)	45.48	44.387
Aliphatic	(A+I+L+V)	30.134	30.152
Aromatic	(F+H+W+Y)	11.187	11.433
Non-polar	(A+C+F+G+I+L+M+P+V+W+Y)	52.627	52.274
Polar	(D+E+H+K+N+Q+R+S+T+Z)	47.373	47.726
Charged	(B+D+E+H+K+R+Z)	26.407	26.294
Basic	(H+K+R)	15.069	15.327
Acidic	(B+D+E+Z)	11.338	10.967

Amino acid	P.ubique HTCC 7214 (Mole %)	Pelagibacteraceae Baikal-G1 (Mole %)	
A = Ala	5.652	5.221	
C = Cys	1.001	0.989	
D = Asp	5.302	5.07	
E = Glu	6.036	5.897	
F = Phe	5.252	5.398	
G = Gly	6.33	6.035	
H = His	1.593	1.555	
I = Ile	9.552	10.191	
K = Lys	10.28	10.565	
L = Leu	9.317	9.472	
M = Met	2.291	2.069	
N = Asn	6.599	7.107	
P = Pro	3.277	3.151	
Q = Gln	2.66	2.78	
R = Arg	3.196	3.208	
S = Ser	6.869	6.817	
T = Thr	4.838	4.728	
V = Val	5.613	5.268	
W = Trp	0.968	0.905	
Y = Tyr	3.374	3.575	

	A = Ala			
Xaa	14 C	= Cys		
7	12	D = Asp		Svnech
1	10	E=Gu		eyneen.
< 1	8			
\sum	6	F = Phe		——Synech
\searrow				
		G = Gly	Property	Residues
4	2 ACT		Tiny	(A+C+G+S+T)
			Small	(A+B+C+D+G+N+P+
\sim		H = His	Aromatic	(F+H+W+Y)
\searrow			Non-polar	(A+C+F+G+I+L+M+P+
\sim /		</td <td>Polar</td> <td>(D+E+H+K+N+Q+R+</td>	Polar	(D+E+H+K+N+Q+R+
. /		I = lle	Charged	(B+D+E+H+K+R-
X		$\sim \times$ /	Basic	(H+K+R) (P+D+E+7)
\leftarrow		K = Lys	Acidio	(8.8.2.2)
		L = Leu		
N = Asr	n M = Me	t		

——————————————————————————————————————						
——————————————————————————————————————						
Property	Residues	Synechococcus sp. RCC 307 (Mole %)	Synechococcus lacustris Tous (Mole %)			
Tiny	(A+C+G+S+T)	31.323	30.845			
Small	(A+B+C+D+G+N+P+S+T+V)	51.438	50.679			
Aliphatic	(A+I+L+V)	34.943	34.77			
Aromatic	(F+H+W+Y)	8.7	9.042			
Non-polar	(A+C+F+G+I+L+M+P+V+W+Y)	59.039	58.322			
Polar	(D+E+H+K+N+Q+R+S+T+Z)	40.961	41.204			
Charged	(B+D+E+H+K+R+Z)	22.394	21.638			
Basic	(H+K+R)	11.53	11.363			
Acidic	(B+D+E+Z)	10.865	10.275			

Amino acid	Synechococcus sp. RCC 307	Synechococcus Iacustris Tous	
A = Ala	11.07	10.624	
C = Cys	1.219	1.222	
D = Asp	4.959	4.592	
E = Glu	5.906	5.683	
F = Phe	3.057	3.325	
G = Gly	8.509	8.043	
H = His	2.016	1.873	
I = Ile	3.953	4.796	
K = Lys	2.61	3.463	
L = Leu	12.985	13.017	
M = Met	1.992	1.802	
N = Asn	2.527	3.607	
P = Pro	5.692	5.316	
Q = Gln	5.513	5.003	
R = Arg	6.904	6.027	
S = Ser	6.244	6.546	
T = Thr	4.282	4.41	
V = Val	6.936	6.319	
W = Trp	1.814	1.749	
Y = Tyr	1.813	2.094	
X = Xaa	0	0 474	

Methy	lopumilus	planktonicus	MMS-2-

Methylophilales bacterium MBRS-H7

		Methylophilales	Methylopumilus
Property	Residues	bacterium MBRSH7	planktonicusMMS-2-53
		(Mole%)	(Mole%)
Tiny	(A+C+G+S+T)	24.848	26.443
Small	(A+B+C+D+G+N+P+S+T+V)	46.146	46.476
Aliphatic	(A+I+L+V)	30.884	31.73
Aromatic	(F+H+W+Y)	11.257	10.982
Non-polar	(A+C+F+G+I+L+M+P+V+W+Y)	52.989	54.054
Polar	(D+E+H+K+N+Q+R+S+T+Z)	47.011	45.946
Charged	(B+D+E+H+K+R+Z)	25.896	25.722
Basic	(H+K+R)	13.716	14.161
Acidic	(B+D+E+Z)	12.18	11.561

53	Amino acid	Methylophilales bacterium MBRSH7	Methylopumilus planktonicus MMS-2-53
53	A = Ala $C = Cys$ $D = Asp$ $E = Glu$ $F = Phe$ $G = Gly$ $H = His$ $I = Ile$ $K = Lys$ $L = Leu$ $M = Met$ $N = Asn$ $P = Pro$ $Q = Gln$ $R = Arg$ $S = Ser$ $T = Tr - Tr$	6.294 0.92 5.891 6.289 5.047 6.117 2.085 8.965 8.965 8.945 9.695 2.393 5.974 3.503 3.624 3.587 6.805 4.712	7.302 0.887 5.396 6.166 4.587 6.506 2.341 8.437 7.824 10.021 2.538 4.915 3.752 3.561 3.996 6.758
	V = Val W = Trp	4.713 5.929 0.91	4.99 5.97 1.024
	Y = Tyr	3.215	3.029

Nitrosopumilus

Nitrosoarchaeum

.....

				Amino acid	Nitrosopumilus maritimusSCM1	Nitrosoarchaeun sp. Baikal-G1
			-	A = Ala	6.055	5.792
				C = Cys	0.983	1.056
	—— Nitrosoarcha	eum sp. Ba	ikal-G1	D = Asp	6.124	5.509
		•		E = Glu	7.337	6.582
				F = Phe	4.403	4.382
	Nitrosopumil	us maritim	us SCM1	G = Gly	6.445	6.47
	-			H = His	1.772	1.824
				I = Ile	8.461	10.006
		A1:1	N!'	K = Lys	8.393	8.952
Property	Residues	Nitrosopumilus maritimus SCM1	Nitrosoarchaeaum sp. Baikal-G1	L = Leu	8.432	8.855
Tiny	(A+C+G+S+T)	26.42	25.853	M = Met	2.606	2.611
Small	(A+B+C+D+G+N+P+S+T+V)	47.982	46.256	N = Asn	4.896	5.255
Aliphatic	(A+I+L+V)	29.586	30.748	P = Pro	3.904	3.544
Aromatic	(F+H+W+Y)	10.147	10.168	Q = Gln	3.222	3.133
Non-polar	(A+C+F+G+I+L+M+P+V+W+Y)	51.899	52.774	R = Arg	3.42	3.428
Polar	(D+E+H+K+N+Q+R+S+T+Z)	48.101	47.218	S = Ser	7 199	7 05
Charged	(B+D+E+H+K+R+Z)	27.047	26.295	T = Thr	5 738	5 485
Basic	(H+K+R)	13.586	14.204	$V = V_{0}$	6.629	6.005
Acidic	(B+D+E+Z)	13.461	12.091	v – vai	0.030	0.095
				vv = Irp	0.894	0.855
				Y = Tvr	3.078	3.108

Figure S7. Star diagrams and amino acid composition of prokaryotic relatives from marine and freshwater origin.

Figure S8. Structural model of proteins from different habitat-adapted archaea. Insets show electrostatic surface potential 3D models of N5-carboxyaminoimidazole ribonucleotide synthetase (secreted protein) and radA (cytoplasmic). The potentials were coloured from -3 kcal mol-1(red) to +3 kcal mol-1 (blue). Whole proteome pl versus relative frequency plot of *Haloquadratum walsbyi* DSM 16790 (halophile, culture), *Nitrosopumilus maritimus* SCM1 (marine, culture), *Nitrosoarchaeum* sp. Baikal-G1 (freshwater, MAG).

Figure S9. Isoelectric point versus relative frequency plot of the pan-genome (core and flexible genome) of freshwater and marine prokaryotes. N indicates the number of proteins in either core or flexible genomes. A) *P.ubique* HTCC 7214 and Pelagibacteraceae bacterium Baikal-G1. B) *Ca*. Methylopumilus planktonicus MMS-2-53 and Methylophilales bacterium MBRS-H7. C) *Synechococcus* sp. RCC307 and *Synechococcus lacustris* Tous. D) *Nitrosopumilus maritimus* SCM1 and *Nitrosoarchaeum* sp. Baikal-G1.

Figure S10. Whole proteome pl versus relative frequency plot of some streamlined bacteria from different habitats.