Supplementary Information

Diversity-triggered deterministic bacterial assembly constrains community functions

Authors: Weibing Xun^{1, 2}, Wei Li¹, Wu Xiong¹, Yi Ren¹, Yunpeng Liu², Youzhi Miao¹, Zhihui Xu¹,

Nan Zhang¹, Qirong Shen^{1*}, Ruifu Zhang^{1, 2*}

Affiliations:

¹Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China

²Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China

*Corresponding authors:

Ruifu Zhang & Qirong Shen, College of Resources & Environmental Sciences, Nanjing Agricultural University, 210095, Nanjing, China; Correspondence should be addressed to R.Z (email: rfzhang@njau.edu.cn) and Q.S (email: shenqirong@njau.edu.cn).

List of content:

Supplementary Figures: 2

Supplementary Tables: 5

Supplementary Note (R codes): 1

Supplementary Figure 1. Taxonomic distributions of re-assembled bacterial community at phylum level (class level for Proteobacteria) based on amplicon sequencing data. Dil indicates the dilution level.

Supplementary Figure 2. Weighted Unifrac distances of pairwise bacterial communities between black soil and red soil at the same pH and dilution level. Dil indicates the dilution level. -Lg(Dil): Lg transformed dilution level. -Lg(Dil) = 0 represents the untreated soil. **, *P*-value < 0.001 based on t-tests. Error bars represent standard deviations (n = 144).

Supplementary Table 1. The number of unique genes and the increased and decreased genes which are significantly associated with dilution for each functional

category.

Functional catergory	No. Unique Gene	Sig. Decreased	Sig. Increased
Glycolysis/Gluconeogenesis	151949	4326(2.85%)	66158(43.54%)
TCA cycle	75595	1495(1.98%)	31542(41.72%)
Pentose phosphate pathway	68622	3614(5.27%)	35498(51.73%)
Fructose & Mannose metabolism	79299	2841(3.58%)	40580(51.17%)
Galactose metabolism	42364	955(2.25%)	25481(60.15%)
Starch & Sucrose metabolism	72156	5857(8.12%)	38475(53.32%)
Pyruvate metabolism	101546	3029(2.98%)	51439(50.66%)
Butanoate metabolism	66624	1413(2.12%)	41273(61.95%)
Glyoxylate & Dicarboxylate metabolism	99822	2747(2.75%)	47616(47.70%)
Propanoate metabolism	61750	4682(7.58%)	21542(34.89%)
Amino acid metabolism	765657	281462(36.76%)	94560(12.35%)
Lipid metabolism	233079	70134(30.09%)	22453(9.63%)
Xenobiotics biodegradation/metabolism	98384	30943(31.45%)	1774(1.80%)
Terpenoids & Polyketides metabolism	120489	75468(62.63%)	2016(1.67%)
Methane metabolism	53827	34915(64.87%)	3240(6.02%)
Nitrogen metabolism	85115	39470(46.37%)	7844(9.22%)
Sulfur metabolism	38915	21308(54.76%)	1856(4.77%)

Percentages in brackets are the proportions of the increased or decreased genes to the number of unique genes for each functional category. The correlations were

calculated using Spearman correlations. The significant associated genes were counted with the statistical r-value > 0.60 and P-value < 0.05, two-sided tests.

KEGG_gene ID	KO_ID	KO_name	KO_definition	KO_EC	KO_class_1 KO_class_2		Enriched/Depleted	IndVal	р
msp:Mspyr1 _23710	K01523	hisE	phosphoribosyl-ATP pyrophosphohydrolase	3.6.1.31	Amino Acid Metabolism	Histidine metabolism	Enriched	0.803	0.001
rpb:RPB_36 40	K02610	paaB	ring-1,2-phenylacetyl-Co A epoxidase subunit PaaB		Amino Acid Metabolism	Phenylalanine metabolism	Depleted	0.653	0.002
rha:RHA1_r 001853	K00014	aroE	shikimate dehydrogenase	1.1.1.25	Amino Acid Metabolism	Phenylalanine, tyrosine and tryptophan biosynthesis	Depleted	0.539	0.001
bam:Bamb_ 4307	K03392	E4.1.1.45, ACMSD	aminocarboxymuconate-s emialdehyde decarboxylase	4.1.1.45	Amino Acid Metabolism	Tryptophan metabolism	Depleted	0.697	0.002
rpb:RPB_10 00	K00666	K00666	fatty-acyl-CoA synthase	6.2.1	Lipid Metabolism	Lipid biosynthesis proteins	Enriched	0.913	0.001
bgf:BC1003 _0498	K00252	GCDH, gcdH	glutaryl-CoA dehydrogenase	1.3.99.7	Lipid Metabolism	Fatty acid metabolism	Enriched	0.503	0.004
syn:sll1441	K10257	FAD8, desB	omega-3 fatty acid desaturase (delta-15 desaturase)	1.14.19	Lipid Metabolism	Biosynthesis of unsaturated fatty acids	Depleted	0.642	0.002
aba:Acid345 _2787	K01061	E3.1.1.45	carboxymethylenebutenol idase	3.1.1.45	Xenobiotics Biodegradation and Metabolism	Fluorobenzoate degradation	Depleted	0.644	0.002

Supplementary Table 2. Indicator values obtained by indicator species analysis for functional genes which are strongly associated with dilution

Continued ta	able								
bur:Bcep181 94_C7122	K03379	E1.14.13. 22	cyclohexanone monooxygenase	1.14.13.22	Xenobiotics Biodegradation and Metabolism	Caprolactam degradation	Depleted	0.757	0.001
bcj:BCAL20 29	K03382	atzB	hydroxyatrazine ethylaminohydrolase	3.5.99.3	Xenobiotics Biodegradation and Metabolism	Atrazine degradation	Depleted	0.653	0.003
bra:BRADO 4348	K08684	E1.14.13. 25	methane monooxygenase	1.14.13.25	Methane metabolism	Methane metabolism	Depleted	0.665	0.003
rpc:RPC_09 52	K02567	napA	periplasmic nitrate reductase NapA	1.7.99.4	Nitrogen metabolism	Nitrogen metabolism	Enriched	0.938	0.001
acm:AciX9_ 0125	K00372	E1.7.99.4 C	nitrate reductase catalytic subunit	1.7.99.4	Nitrogen metabolism	Nitrogen metabolism	Depleted	0.698	0.001
azc:AZC_10 39	K02591	nifK	nitrogenase molybdenum-iron protein beta chain	1.18.6.1	Nitrogen metabolism	Nitrogen metabolism	Depleted	0.771	0.001
bps:BPSS12 43	K00362	nirB	nitrite reductase (NAD(P)H) large subunit	1.7.1.4	Nitrogen metabolism	Nitrogen metabolism	Depleted	0.812	0.001
ach:Achl_28 19	K00390	cysH	phosphoadenosine phosphosulfate reductase	1.8.4.8	Sulfur metabolism	Sulfur metabolism	Depleted	0.946	0.002
pfv:Psefu_2 275	K00381	cysI	sulfite reductase (NADPH) hemoprotein beta-component	1.8.1.2	Sulfur metabolism	Sulfur metabolism	Depleted	0.918	0.001

Enriched: the gene was enriched by dulution; Depleted: the gene was depleted by dilution.

	Black Soil (pH = 8.0)		Red Soil $(pH = 5.3)$		
Soil pH	1M FeSO ₄	0.5M CaO	1M FeSO ₄	0.5M CaO	
	$(ml kg^{-1})$	$(ml kg^{-1})$	$(ml kg^{-1})$	$(ml kg^{-1})$	
4.5	98.7	0	9.5	0	
5.5	26.4	0	0	1.2	
6.5	11.2	0	0	14.7	
7.5	2.5	0	0	38.3	
8.5	5 0 1.3		0	67.5	

Supplementary Table 3. The added amount of CaO and FeSO_4 to manipulate soil pH.

	,	· ·	
Soil Sample	Fe $(g kg^{-1})$	Ca (g kg ⁻¹)	SO_4^{2-} (mmol kg ⁻¹)
Untreated Black Soil	16.1 (0.6 d)	11.05 (0.7a b)	4.1 (0.06 e)
Black Soil (pH=4.5)	24.7 (0.7 a)	10.25 (0.4 b)	21.5 (0.16 a)
Black Soil (pH=5.5)	19.5 (0.2 b)	9.26 (0.6 c)	8.6 (0.08 b)
Black Soil (pH=6.5)	17.6 (0.7 c)	12.01 (0.5 a)	4.6 (0.07 c)
Black Soil (pH=7.5)	16.9 (1.0 cd)	11.85 (1.2 a)	4.4 (0.12 d)
Black Soil (pH=8.5)	15.5 (0.8 d)	12.19 (1.4 a)	4.4 (0.19 d)
Untreated Red Soil	31.2 (1.1 ab)	0.09 (0.02 d)	15.1 (0.08 e)
Red Soil (pH=4.5)	30.4 (0.7 b)	0.11 (0.06 d)	16.2 (0.06 c)
Red Soil (pH=5.5)	27.8 (0.6 c)	0.13 (0.05 d)	15.7 (0.14 d)
Red Soil (pH=6.5)	30.7 (0.4 b)	0.25 (0.06 c)	16.4 (0.11 b)
Red Soil (pH=7.5)	29.9 (1.2 b)	0.57 (0.07 b)	15.2 (0.11 e)
Red Soil (pH=8.5)	32.6 (0.9 a)	0.75 (0.02 a)	16.6 (0.13 a)
		-	

Supplementary Table 4. The concentrations of Fe, Ca and SO₄²⁻ of soil samples after incubation.

Values indicate the mean concentrations of Fe, Ca and SO_4^{2-} in soil samples. Values in brackets represent standard deviations (n = 12). Different letters in column (shown in Bold) indicate significant differences (*P*-value < 0.05, Duncan's multiple comparisons test) within the same soil type.

	Black Soil		Red Soil						
Soil pH	Amplicon sec	luencing	Amplicon sequen	Amplicon sequencing		Metagenomic sequencing			
	Dilution loval	No. of 16S	Dilution level	No. of 16S	Assembly	total length	Average	N50	No. of
	Dilution level	reads	Dilution level	reads	rate (%)	(bp)	len(bp)	Len(bp)	unigenes
	Untreated Black Soil	22697	Untreated Red Soil	23874	66.47	1,982,255,184	758	838	38,531,429
	$Dil = 10^{-1}$	17855	$Dil = 10^{-1}$	12331	63.04	3,241,428,864	710	748	37,351,896
15	$\text{Dil} = 10^{-4}$	21055	$Dil = 10^{-4}$	11384	62.10	3,354,976,701	631	631	11,795,336
4.5	$Dil = 10^{-7}$	20858	$Dil = 10^{-7}$	11166	64.80	3,227,262,438	672	671	2,359,067
	$Dil = 10^{-10}$	16703	$Dil = 10^{-10}$	13776	63.19	3,203,194,074	729	783	629,085
	$Dil = 10^{-1}$	19005	$Dil = 10^{-1}$	12442	56.70	3,714,657,996	679	678	37,725,415
5 5	$Dil = 10^{-4}$	22084	$Dil = 10^{-4}$	13015	56.22	3,727,109,277	662	645	11,913,289
5.5	$Dil = 10^{-7}$	26696	$Dil = 10^{-7}$	12588	63.06	2,882,336,403	695	724	2,382,658
	$Dil = 10^{-10}$	19762	$Dil = 10^{-10}$	15634	57.30	2,737,577,775	585	554	635,375
	$\text{Dil} = 10^{-1}$	18398	$\text{Dil} = 10^{-1}$	11469	58.74	2,898,502,167	663	646	38,102,669
65	$Dil = 10^{-4}$	19209	$Dil = 10^{-4}$	12101	62.10	2,954,053,434	688	691	12,032,422
0.5	$Dil = 10^{-7}$	28208	$Dil = 10^{-7}$	11970	57.92	3,279,099,201	681	687	2,406,484
	$Dil = 10^{-10}$	30306	$Dil = 10^{-10}$	12129	62.77	3,502,986,303	681	688	641,729
	$Dil = 10^{-1}$	25539	$Dil = 10^{-1}$	11636	64.12	3,793,939,005	677	673	37,340,615
75	$Dil = 10^{-4}$	25768	$Dil = 10^{-4}$	12118	62.07	3,557,786,829	690	693	11,791,773
1.5	$Dil = 10^{-7}$	26905	$Dil = 10^{-7}$	11557	66.85	3,835,308,711	724	771	2,358,355
	$Dil = 10^{-10}$	28127	$Dil = 10^{-10}$	11610	63.02	3,189,474,909	689	715	628,895
	$Dil = 10^{-1}$	23659	$Dil = 10^{-1}$	11020	66.58	3,256,577,337	682	704	36,593,803
0.5	$Dil = 10^{-4}$	27587	$Dil = 10^{-4}$	11324	56.75	2,874,628,578	576	550	11,555,938
8.5	$Dil = 10^{-7}$	27177	$Dil = 10^{-7}$	11759	57.30	2,777,649,639	588	560	2,311,188
	$Dil = 10^{-10}$	39488	$Dil = 10^{-10}$	13476	66.77	2,313,261,129	678	675	616,317

Supplementary Table 5. Summary of the reads of amplicon sequencing data and the assembly results of metagenomic sequencing data.

Supplementary Note 1 (R codes)

rm(list=ls()) data.set.name = 'test' setwd("E:/NTI_files")

library(picante)

```
# read in a rarefied OTU table with all OTUs have abundance of 1 or greater.
otu =
as.data.frame(read.table(paste(data.set.name,"_rarefied_otu.txt",sep=""),header=T,ro
w.names=1)); # species as rows, samples as columns for otu table
```

```
# read in phylo and match
phylowb = read.tree(paste(data.set.name,"_phylo_tree.nwk",sep=""))
phylowb
```

match.phylowb.otu = match.phylowb.data(phylowb, t(otu))
str(match.phylowb.otu)

write.tree(match.phylowb.otu\$phy,paste(data.set.name,"_matched_tree_to_rarified_ot
u.tre",sep=""))

```
phylowbMatch =
read.tree(paste(data.set.name,"_tree_matched_to_rarified_otu_table.tre",sep=""))
phyloMatch
```

```
match.phylowbMatch.otu = match.phylowbMatch.data(phylowbMatch, t(otu))
str(match.phylowbMatch.otu)
```

```
beta.mntd.weighted =
as.matrix(comdistnt(t(match.phylowbMatch.otu$data),cophenetic(match.phylowbMat
ch.otu$phy),abundance.weighted=T));
dim(beta.mntd.weighted);
beta.mntd.weighted[1:5,1:5];
write.csv(beta.mntd.weighted,'betaMNTD_weighted.csv',quote=F);
```

identical(colnames(match.phylowbMatch.otu\$data),colnames(beta.mntd.weighted)); #
Just checking and should be TRUE
identical(colnames(match.phylowbMatch.otu\$data),rownames(beta.mntd.weighted));
Just checking and should be TRUE

```
# calculate randomized betaMNTD
```

beta.reps = 999; # number of randomizations

```
random.weighted.bMNTD.comp =
array(c(-999),dim=c(ncol(match.phylowbMatch.otu$data),ncol(match.phylowbMatch.
otu$data),beta.reps));
dim(random.weighted.bMNTD.comp);
```

```
for (rep in 1:beta.reps) {
```

```
random.weighted.bMNTD.comp[,,rep] =
as.matrix(comdistnt(t(match.phylowbMatch.otu$data),taxaShuffle(cophenetic(match.
phylowbMatch.otu$phy)),abundance.weighted=T,exclude.conspecifics = F));
```

```
print(c(date(),rep));
```

}

```
weighted.bNTI =
matrix(c(NA),nrow=ncol(match.phylowbMatch.otu$data),ncol=ncol(match.phylowb
Match.otu$data));
```

```
dim(weighted.bNTI);
```

```
for (columns in 1:(ncol(match.phylowbMatch.otu$data)-1)) {
   for (rows in (columns+1):ncol(match.phylowbMatch.otu$data)) {
```

```
random.vals = random.weighted.bMNTD.comp[rows,columns,];
weighted.bNTI[rows,columns] = (beta.mntd.weighted[rows,columns] -
mean(random.vals)) / sd(random.vals);
rm("random vals");
```

```
rm("random.vals");
```

```
};
};
```

```
rownames(weighted.bNTI) = colnames(match.phylowbMatch.otu$data);
colnames(weighted.bNTI) = colnames(match.phylowbMatch.otu$data);
weighted.bNTI;
write.csv(weighted.bNTI,"weighted_bNTI.csv",quote=F);
```