Supporting Information For

The Effects of Deuteration of ¹³C-enriched Phospholactate On the Efficiency of Parahydrogen-Induced Polarization Using Magnetic Field Cycling

Oleg G. Salnikov,^{a,b,}# Roman V. Shchepin,^{c,d}# Nikita V. Chukanov,^{a,b,}# Lamya Jaigirdar,^{c,e} Wellington Pham,^{c,d,f,g} Kirill V. Kovtunov,^{a,b} Igor V. Koptyug,^{a,b} and Eduard Y. Chekmenev^{c,d,f,g,h,i,*}

^aInternational Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia

^bNovosibirsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia

^eVanderbilt University Institute of Imaging Science (VUIIS), ^d Department of Radiology, ^eSchool of

Engineering, ^fDepartment of Biomedical Engineering, and ^gVanderbilt-Ingram Cancer Center (VICC),

Vanderbilt University, Nashville, Tennessee 37232-2310, United States

^hDepartment of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute

(KCI), Detroit, Michigan, 48202, United States

ⁱRussian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia

Table of Contents

1.	Characterization of potassium 1- ¹³ C-phosphoenolpyruvate	S3
2.	Characterization of potassium 1- ¹³ C-phosphoenolpyruvate-d ₂	S5
3.	Additional data	S9

1. Characterization of potassium 1-¹³C-phosphoenolpyruvate

Figure S1. ¹H NMR spectrum of potassium 1^{-13} C-phosphoenolpyruvate in D₂O. Note two NMR multiplets at ~5.8 ppm and ~5.4 ppm corresponding to two protons of 1^{-13} C-phosphoenolpyruvate. The resonance at 4.7 ppm is the residual proton signal of D₂O.

Figure S2. ³¹P NMR spectrum of potassium 1^{-13} C-phosphoenolpyruvate in D₂O.

Figure S3. ¹³C NMR spectrum of potassium 1-¹³C-phosphoenolpyruvate in D₂O.

2. Characterization of potassium 1-¹³C-phosphoenolpyruvate-d₂

Figure S4. HR-MS negative ion spectrum of 1^{-13} C-phosphoenolpyruvate-d₂. High resolution mass spectrometry was performed by direct liquid infusion using an Orbitrap mass spectrometer (Thermo-Finnigan, San Jose, CA) equipped an Ion-Max source housing and a standard electrospray (ESI) ionization probe in negative ion mode at a resolving power of 60,000 (at m/z 400). Calculated for ${}^{12}C_{2}{}^{13}C_{1}H_{2}D_{2}O_{6}P^{-}$ (M-H-): 169.99101; found 169.99079 (-1.3 ppm).

Figure S5. ¹H NMR spectrum of potassium 1^{-13} C-phosphoenolpyruvate-d₂ in D₂O. Note two NMR multiplets at ~5.8 ppm and ~5.4 ppm (corresponding to two protons of 1^{-13} C-phosphoenolpyruvate) have significantly reduced intensity compared to those seen in Figure S1. The resonance at 4.7 ppm is the residual proton signal of D₂O.

Figure S6. ³¹P NMR spectrum of potassium 1^{-13} C-phosphoenolpyruvate-d₂ in D₂O.

Figure S7. ¹³C NMR spectrum of potassium 1^{-13} C-phosphoenolpyruvate-d₂ in D₂O.

3. Additional data

Table	S1 .	Signal	enhancements	and	Ή	polarizations	obtained	in	PASADENA	and	ALTADENA
experi	ment	s with p	hosphoenolpyri	uvate	and	phosphoenolp	vruvate-d	2 aft	ter 5 s of p-H ₂	bubbl	ling.

HP molecule	Protocol	p-H ₂ fraction, %	ϵ_{1H}	P _{1H} , %	
				experimental	at 85% p-H ₂
	PASADENA	85	240	0.71	0.71
Phospholactate					
_	ALTADENA	66	17	0.05	0.07
	PASADENA	69	640	1.86	2.53
Phospholactate-d ₂					
_	ALTADENA	70	220	0.64	0.87

Figure S8. Plot of phosphoenolpyruvate conversion to phospholactate vs. duration of H₂ bubbling.

Table S2. Signal enhancements and ¹³ C polarizations obtained in MFC experiments with phosphoenolpyruvate
and phosphoenolpyruvate-d ₂ after 5 s of p-H ₂ bubbling.

HP molecule	Magnotic field uT	n H. fraction %	Crew	<i>P</i> _{13C} , %		
III molecule	Magnetic netu, µ1	p-11 ₂ 11 action, 70	&13C	experimental	at 85% p-H ₂	
	0	71	2.4	0.002	0.002	
	0.025	72	37	0.027	0.034	
Phospholactate	0.05	72	85	0.062	0.078	
	0.075	71	56	0.041	0.053	
	0.1	81	31	0.022	0.024	
	0	70	25	0.018	0.024	
	0.025	69	62	0.045	0.062	
	0.04	68	23	0.016	0.023	
Phospholactate-d ₂	0.05	69	104	0.076	0.10	
	0.06	68	93	0.067	0.094	
	0.075	69	7.2	0.005	0.007	
	0.1	69	27	0.020	0.027	

Figure S9. Experimental setup for the 1st step synthesis of 1-¹³C-phosphoenolpyruvate-d₂. Reagents, solvents and other preparations employed in this step were as follows: 1) Pyruvic acid-1-¹³C-d₂ (MW= 91.08 g/mol, d = 1.25 g/mL, 10.0g, 0.110 mol); 2) Bromine, 470864 ALDRICH, \geq 99.99% trace metals basis (MW = 159.8 g/mol, d= 3.12 g/mL, 0.110 mol, 5.6 mL). 3) Carbon tetrachloride, 289116 SIGMA-ALDRICH, anhydrous, \geq 99.5% (~50mL). 4) 1,2-Dichloroethane, 284505 SIGMA-ALDRICH, anhydrous, 99.8% (~120 mL). 5) Ice bath should be prepared. 6) All glassware (250 mL round bottom flask, magnetic stir bar, addition funnel, glass funnel and measuring cylinder) were oven dried.

Figure S10. Experimental setup for the 2nd step synthesis of 1-¹³C-phosphoenolpyruvate-d₂. Reagents, solvents and other preparations employed in this step were as follows: 1) Trimethyl phosphite, 240907 Aldrich, \geq 99% (MW= 124.08 g/mol, d = 1.05 g/mL, 1.1eq., 14.3mL, 0.110 mol). 2) Tetrahydrofuran anhydrous, contains 250 ppm BHT as inhibitor, \geq 99.9%, 186562 Sigma-Aldrich, (~50mL). #) Ice bath should be prepared (for day #2). 4) All glassware (250 ml round bottom flask, magnetic stir bar, addition funnel, glass funnel and measuring cylinder) were oven dried.