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Appendix

A Network Definition

We will set up the basic notation and definitions of the networks used in this work. We have
a set of shareholders S, labelled si, who hold shares in one or more companies, the set C
labelled cj etc. In addition, each shareholder s ∈ S carries a type label τ(s) ∈ T where T is
the set of fifteen different labels as given in the main paper.

It is sometimes convenient to indicate the subset of shareholders of one particular type so
we use Sα to indicate the set of shareholders of type τ ∈ T

Sα = {s|s ∈ S, τ(s) = α}. (A1)

We can use our data to define a Corporation-Shareholder network, B in which the
set of nodes, VB, are the union of the set of shareholders and companies, V = S ∪ C. An edge
is present in this network between a shareholder and a company if the shareholder has shares
in that company.

In practice our work focusses on a projection of the corporation-shareholder network onto
just the shareholder nodes. That is we define the Shareholder network P to have a set of
nodes S, the set of shareholders. An edge between two shareholders, say si and sj, exists in this
network if both si and sj have invested in the same company (at a level above our threshold).
In terms of an adjacency matrix P for this network, we have that

Psisj =

{
1 if

∑
cBsicBsjc > 0 and si 6= sj

0 if
∑

cBsicBsjc = 0 or si = sj
. (A2)

This ensures the shareholder network P is a simple network.

B Betweenness Centrality

A walk is a sequence of vertices in which each node is connected by an edge to the next node
in the sequence. A path is a walk in which no node appears twice. The length of the path
is the number of vertices minus one, i.e. the number of edges traversed as one moves through
the sequence of vertices.

For many centrality measures we consider the shortest path from an initial source node s
and ending with a target node t. The number of shortest paths from s to t is denoted by σst as
there can be more than one path of the same length between any pair of vertices. Given these
shortest paths, we define σst(v) to be the number of these shortest paths which pass through
some v other than s or t. Then, the betweenness [1, 3] b(v) of a node v ∈ S is defined to be

b(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
. (A3)

1

https://www.imperial.ac.uk/complexity-science
https://www.imperial.ac.uk/condensed-matter-theory


C Closeness centrality

We will define closeness centrality c(v) [2, 3] of a vertex v to be

c(v) =
n− 1

n−1∑
u=1

d(u, v)

, (A4)

where d(u, v) is the shortest path distance between u and v and n is the number nodes in the
component connected to node n.

C.1 Estimating Closeness

Consider first a general random graph, that is, one with a specific degree distribution but
otherwise unconstrained, working in large sparse graph regime, N → ∞, 〈k〉 ∼ O(1). This
type of configuration model graph can be constructed using edge rewiring. Suppose we start
at a node of degree k. Then we might estimate that the number of nodes ` steps away from
our starting node is

n` = z̄`−1k , ` ≥ 1 , (A5)

where z̄ is some effective branching ratio. That is we expect each node we arrive at `
steps away from our starting node, in some breadth first search out from the initial node, to be
connected to an average of z̄ new vertices which are then (`+1) steps away. The approximation
here is that all nodes look the same as they must in a true random graph. The exception is the
first node where we know that that has k neighbours if that node has degree k. However we
note that statistically, all we are really saying in this approximation is that for most networks,
taking a few steps is sufficient to allow us to sample any part of the network so statistically
many networks will appear to be homogeneous on larger scales.

If we are being more precise, for a random graph near its phase transition, where we can
assume a tree like structure, we know that z̄ will be the average degree of a neighbouring node
minus one — we arrive on one edge going into a neighbour, leave on the remaining edges.

Because the current degree of a neighbour
∑

k k
kp(k)
〈k〉 = 〈k2〉

〈k〉 . So

z̄ =
〈k2〉
〈k〉
− 1 . (A6)

However, for any given large network, we do not need to assume (A6) is true, merely that there
is some effective branching ratio such that (A5) still works well.

To estimate closeness, we first estimate the maximum distance `max by demanding that
the total number of nodes connected to our starting node is the number in the Largest Con-
nected Component NLCC as we assume we are studying nodes in this component. This may be
estimated as

NLCC ≈
`max∑
`=0

n` = 1 + k
(z̄`max − 1)

(z̄ − 1)
(A7)

Rearranging for NLCC � 1, we find that

`max(k) ≈ ln(1 +NLCC(z̄ − 1)/k)

ln(z̄)
. (A8)

Not surprisingly, if you start from a high degree node, a high k, your first step will reveal far
more of the network and so take you closer to the remaining parts. Thus the maximum distance
in a random graph drops as the degree k of the node increases.
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Now we can use this to find the closeness c(v) of a node v since this is defined to be the
inverse of farness, f(v), the average distance from a node to all other nodes. For the random
graphs, or graphs which appear homogeneous on larger scales, we can estimate farness using
(A5) as

f(v) =
1

(NLCC − 1)

`v∑
`=1

`n` ≈
1

NLCC

kv

(
(`v + 1)z̄`v

z̄ − 1
− z̄`v+1 − 1

(z̄ − 1)2

)
(A9)

where we have used (A7) and we write `v = `max(kv) as the largest of the shortest path lengths
from vertex v which has degree kv. Not surprisingly this is dominated by the distance to the
further nodes as in the tree they are the dominant contribution. We see that if (z̄− 1)� k/N ,
i.e. if we are not close to the transition and we have a large N , then this result for farness gives
us that f(v) ≈ `(v) so that

f(v) ≈ ln(NLCC(z̄ − 1)/kv)

ln z̄
. (A10)

While in this limit a random graph, let alone a real graph, is not a tree, it shows that we should
expect the closeness centrality measure to be correlated with the degree of a node. Indeed
the prediction is that the inverse closeness (farness) should show a linear dependence on the
logarithm of the degree of a node, ln(k), with a slope that is the inverse of the log of the
branching ration minus one, 1/ ln z̄, that is

1

c(v)
= f(v) = − 1

ln z̄
ln(kv) + a . (A11)

Since this expression is true where we do not have a tree, we do not expect the slope to match a
the value of z̄ in a random tree (A6). Rather, if we do find a linear relationship for the farness
and logarithm of degree, then the slope is a way of defining an effective branching ratio.

D Community detection algorithms

The Louvain algorithm [4] aims to produce a community structure which has a large value of
modularity Q where

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ(cicj) . (A12)

Here Aij represents the adjacency matrix between nodes i and j; ki and kj are the sum of the
weights of the edges attached to nodes i and j, respectively; m is the total number of edges in
the graph. ci and cj are the communities of the nodes. The Louvain algorithm [4] starts each
node in an individual community and tries to increase modularity by moving a node into the
community of a neighbour. When a local maximum is reached, the communities are used to
define a new graph where each node in the new network represents a single community in the
previous network, and the process is repeated.

The Infomap community detection is based on the movements of a random walker. The
aim is to choose communities which minimise the amount of information needed to record the
movement of random walkers between communities. This is done using the map equation:

L(M) = qxH(Q) +
m∑
i=1

pi�H(Pi), (A13)

where M is the modules or partitions of the network and each node is assigned to a module i.
L(M) is the description length of the trajectory of a random walker walking along the links of
the networks. qix and qiy represent that the random walker enters and exits each module i,
respectively. For details see Rosvall and Bergstrom [5].
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E Comparison of community detection results for largest compo-
nent of Turkey

If the structure of communities in the data is well established then using two different detection
methods should be able to give similar results [6]. After detecting the communities of the graphs
using the two algorithms, Louvain [4] and Infomap [5], for two countries, we found that the
percentage of nodes whose two communities contain the same nodes is about 75% in Turkey.
However, it is noticed that the Louvain method [4] produces a very large community size, while
Infomap does not have this large community.

If we look at the largest component, the two different methods are separating this component
in different ways, see Figure A1. We can see from Fig A1, most outside parts of the circles are
drawn the same shape of nodes in the same colours which means the these nodes are in one
community in both methods. In the center of the graphs, that nodes are coloured differently
show these square nodes are in same community in Louvain but in different communities in
Infomap method. In Table A1 we give out the statistics of the comparison of communities.
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Infomap Percentage Louvain Identical
Ranking of
Louvain

1st
Largest

Size Community 130 100% 1199 1st

Types 9 15

2nd
Largest

Size Community 65 100% 93 3rd

Types 5 5

3rd
Largest

Size Community 58 100% 58 yes 6th

Types 4 4

4th
Largest

Size Community 58 100% 75 4th

Types 4 4

5th
Largest

Size Community 56 100% 56 yes 7th

Types 5 5

6th
Largest

Size Community 51 100% 1199 1st

Types 5 15

7th
Largest

Size Community 41 100% 41 yes 13th

Types 4 4

8th
Largest

Size Community 38 100% 132 2nd

Types 4 6

9th
Largest

Size Community 38 100% 38 yes 15th

Types 4 4

10th
Largest

Size Community 37 100% 37 yes 17th

Types 4 4

Table A1. Table for comparison between algorithms. Table for comparison between
the consisting companies in large community for Louvain and Infomap algorithms applied to
Turkish network. It is ordered by the community size of the results of Infomap, the percentage
100% means this Infomap community is the subset of Louvain community in this row. The
ranking of Louvain reveals the size ranking of this Louvain community.
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(a) Louvain method (b) Infomap method

Figure A1. Comparison between the two detection methods. The left one is for
Louvain method and the right one is for Infomap method. The layout style is based on force-
directed graph drawing. The number of unique communities for Louvain method is 9 and
for Infomap is 124. Each colours represents a community and the colour schemes of the two
methods are the same.

F Louvain analysis of Individuals and Industrial in Turkey
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Figure A2. The bar plots for Louvain community analysis. The bar plots of frequency
analysis for One or more named individuals or families (upper ones), Corporate company (lower
ones) in Turkey: Comparison between the frequencies of percentages of this type of owners
within one community. The method used is Louvain. The figures in first row analyses all the
community sizes while those in second row excludes small communities(including CS ≥ 3)
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G Update of Data Base

The data of two countries is retrieved from BvD [7], which is updated every year. The total
number of known companies in a given year changes. For example, a 4% difference is observed
from 2017 to 2018. However, the authors have downloaded the data and done the analysis
at different years from 2016, 2017 and 2018. The results described in the main text show no
noticeable differences.

7



References

[1] Freeman LC. Centrality in social networks conceptual clarification. Social Networks.
1978;1(3):215–239.

[2] Bavelas A. Communication patterns in task-oriented groups. The Journal of the Acoustical
Society of America. 1950;22(6):725–730.

[3] Newman M. Networks: an introduction. OUP Oxford; 2010.

[4] Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of commu-
nity hierarchies in large networks. J.Stat.Mech 2008; p. P10008. doi:10.1088/1742-
5468/2008/10/P10008.

[5] Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences. 2008;105(4):1118–1123.

[6] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community de-
tection algorithms. Physical Review E. 2008;78(4):046110.

[7] Dijk BV; 2017. Available from: https://www.bvdinfo.com/en-gb/home.

8

https://www.bvdinfo.com/en-gb/home

	Network Definition
	Betweenness Centrality
	Closeness centrality
	Estimating Closeness

	Community detection algorithms
	Comparison of community detection results for largest component of Turkey
	Louvain analysis of Individuals and Industrial in Turkey
	Update of Data Base

