Table S1. Primers, Plasmids, and Strains used in this study

Primers used in this study

Primer Name	Description	Sequence (5' to 3')
ES315	pES036_mTurqR	ATTGGATCCTTATTTGTACAGTTCGTCCATG
ES395	pES036_mTurqF	ATTAAGCTTACATAAGGAGGAACTACTATGGTTTCAAAAG
ES429	pES045_mYPetF	ATTAAGCTTACATAAGGAGGAACTACTATGTCTAAAGGTGAAGAA
ES430	pES045_mYPetR	ATTGGATCCTTTGTACAATTCATTCATAC
ES579	himar 1 for sequencing	CATTTAATACTAGCGACGCCATCT
ES630	himar 2 for sequencing	CCTTCTTGACGAGTTCTTCTGAG
ES871	amsC-UPST REV	TAAAGCCAGTCGGTAAGGCGAA
ES872	amsC-DWST FWD	TCTGACGCGTTATAAGCCGGAA
ES880	pSR47S- <i>am</i> sC_UPST FWD	AAAGGATCGATCCTCTAGAGCGATGCCTCTATCATCGG
ES881	amsC_DWST-amsC_UPST REV	GTCAGATTGAGGTGTGATTCCTTAATTCC
ES882	amsC_UPST-amsC_DWST FWD	GAATCACACCTCAATCTGACGACCGCCTC
ES883	pSR47S-amsC_DWST REV	CGGCCGCTCTAGAACTAGTGAATGACGAAATTCTTTTTGCCCTG
ES896	pSR47S-MCS-FWD	GGATTTGCAGACTACGGGCCTA
ES897	pSR47S-MCS-REV	ATTAGGCACCCCAGGCTTTACA
ES898	pBBR1MCS-amsC FWD	GGTCGACGGTATCGATAAGCTTTTAGTGGATCAGCCAAAAC
ES900	pBBR1MCS- <i>amsC</i> +300bp REV	GGGCGAATTGGAGCTCTCATTGAGCAATAAAACAGG
ES915	amsC-DWST FWD for sequencing	CCGATTCGCCTTTGTGTTTCGA
ES916	amsC-UPST REV for sequencing	GCTGGGCGCAGATAACAAATCA
ES981	flgM::tet insertion-deletion allele	AGGAGATGCAGAAATCATAAATGCATT
ES982	flgM::tet insertion-deletion allele	GAACAACCTGCACCATTGCAAGAATTGATTGATTTCATAGGATTCCTCT
ES983	flgM::tet insertion-deletion allele	TTGATCCTTTTTTTATAACAGGAATTCAATATGATTAATTTTTATAAAAAGCAATAAAA
ES984	flgM::tet insertion-deletion allele	TTCAGAAATATAATTAAACGTTTCAGCT

Plasmids used in this study

<u>Plasmid</u>	Genotype	Reference
pSR47S	oriTRP4 oriR6K <i>kan^R</i>	[1]
pSR47S- <i>amsC</i>	oriTRP4 oriR6K <i>kan^R ∆am</i> sC	This study
pBBR1MCS	<i>cam</i> ^R	[2]
pBBR1MCS- <i>am</i> sC	PamsC-amsC (cam ^R)	This study
pKMW3	mariner transposon vector	[3]
pDG1515	amp ^R , tet ^R	[4]
pEA003	amyE::P _{spacC} -cfp (cam ^R)	Kolter lab collection
GL-FP-31	m <i>Turquiose</i> 2	Garner lab collection
pES036	amyE::P _{spacC} - <i>mTurq</i> (cam ^R)	This study
pES045	amyE::P _{spacC} - <i>Ypet</i> (<i>cam</i> ^R)	This study

Strains used in this study

<u>Strain name</u> (Pseudonym)	Bacterial species/strain	Genotype	Source (Reference)
NCIB3610	Bacillus subtilis 3610	Wild type	Shank lab collection
ES418	Pantoea agglomerans	Wild type	Shank lab collection
ES1154	Bacillus subtilis 3610	tasA::kan ^R ; Р _{tapA} -уfp	This study
ES6	Bacillus subtilis 3610	epsA-O::tet; amyE::P _{tapA} -yfp	Shank lab collection
ES787	Bacillus subtilis 3610	bsIA::erm ^R	Bacillus Genus Stock Center
ES150 (SSB46)	Bacillus subtilis 3610	srfA::erm ^R	Shank lab collection [5]
ES148 (HV1152)	Bacillus subtilis 3610	hag::tet ^R ; amyE::P _{tapA} -yfp	Shank lab collection
ES105	Bacillus subtilis subsp. s <i>pizizenii</i> (TU-B-0)	Wild type	Bacillus Genus Stock Center
ES107	Bacillus mojavensis (ROH-1)	Wild type	Bacillus Genus Stock Center
ES108	Bacillus atrophaeus (BGSC10-11A1)	Wild type	Bacillus Genus Stock Center
ES109	Bacillus pumilus (ATCC7061)	Wild type	Bacillus Genus Stock Center
ES111	Bacillus subtilis subsp. natto	Wild type	Bacillus Genus Stock Center
ES113	Bacillus vallismortis (DV1-F-3)	Wild type	Bacillus Genus Stock Center
ES329	Bacillus thuringiensis subsp. Darmstadiensis (BGC4M6)	Wild type	Bacillus Genus Stock Center
ES330	Bacillus licheniformis (ATCC14580)	Wild type	Bacillus Genus Stock Center
ES331	Bacillus mycoides (BGSC6A47)	Wild type	Bacillus Genus Stock Center
ES332	Bacillus weihenstephanensis (BGSC6A50)	Wild type	Bacillus Genus Stock Center
ES334	Bacillus amyloliquefaciens (BGSC10A5)	Wild type	Bacillus Genus Stock Center
ES348	Bacillus cereus (ATCC14579)	Wild type	Bacillus Genus Stock Center
ES747	Bacillus subtilis 3610	amyE:: P _{spacC} - <i>mTurq cam^R</i>	This study

ES943	Escherichia coli	F ⁻ delta lac169 rpoS(Am) robA1 creC510 hsdR514endA recA1	u Arabidopsis Biological Resource Center
ES1261	Pantoea agglomerans	asmA::kan ^R	This study
ES1262	Pantoea agglomerans	galE::kan ^R	This study
ES1263	Pantoea agglomerans	wcaL::kan ^R	This study
ES1264	Pantoea agglomerans	rcsA::kan ^R	This study
ES1265	Pantoea agglomerans	ABC transporter permease::kan ^R	This study
ES1266	Pantoea agglomerans	argE::kan ^R	This study
ES1267	Pantoea agglomerans	wzc ::kan ^R	This study
ES1268	Pantoea agglomerans	amsC::kan ^R	This study
ES1269	Pantoea agglomerans	amsD::kan ^R	This study
ES1270	Pantoea agglomerans	crtE::kan ^R	This study
ES1271	Pantoea agglomerans	amsB::kan ^R	This study
ES1272	Pantoea agglomerans	amsC::kan ^R	This study
ES1147 (DS322)	Bacillus subtilis 3610	flgM::tet ^R	Kearns lab collection
ES1153 (DS2447)	Bacillus subtilis 3610	lytA-C::spec ^R , lytD::mls ^R , lytF::tet ^R , P _{hag} -yfp cam ^R	Kearns lab collection [6]
ES1172	Bacillus subtilis 3610	flgM::tet ^R , tasA::kan ^R	This study
ES2103	Bacillus subtilis 3610	<i>flgM::tet^R</i> , P _{spacC} -mTurq cam ^R	This study
ES2104	Bacillus subtilis 3610	lytA-C::spec ^R ,lytD::mls ^R ,lytF::tet ^R ,P _{spacC} -mTurq cam ^R	This study
ES2088	Pantoea agglomerans	pES045, <i>amyE</i> ::P _{spacC} -YPet cam ^R	This study
ES2125	Pantoea agglomerans	amsC	This study
ES2105	Pantoea agglomerans	amsC, pBBR1MCS-amsC, cam ^R	This study
ES2120	Pantoea agglomerans	<i>amsC,</i> pBBR1MCS, <i>cam^R</i>	This study

_	Bacillus subtilis	Coculture	Pantoea agglomerans
Top	\bigcirc		0
Side			
_	Bacillus subtilis	Coculture	Heat-killed Pantoea agglomerans
24 h		0	*
48 h			_

Α

B

Figure S1. (A) Colony morphology of *B. subtilis* and *P. agglomerans* in monoculture and coculture after 24 h of growth on biofilm-inducing medium MSgg. Scale bar is 1 mm. (B) *B. subtilis* monoculture (left) in coculture with heat-killed *P. agglomerans* (middle) and heat-killed *P. agglomerans* (right) grown on MSgg for 24 h and 48 h. Scale bar is 1 mm.

Figure S2. Multiple *Bacillus* species form a wrinkled biofilm structure in coculture with *P. agglomerans*. Phylogenetic tree of *Bacillus* species along with images of their colony morphology in monoculture and in coculture with *P. agglomerans* grown on MSgg for 48 h. In the 'wrinkle formation' column, (+) indicates the formation of wrinkles in coculture and (-) indicates no wrinkles in coculture. In the 'TasA homology' column, the number indicates percent amino acid identity between the *B. subtilis* protein TasA and the BLAST-identified gene in the other *Bacillus* species that shows the closest homology to TasA. Numbers marked with an (*) indicate that this protein is annotated as the cell division protein FtsN in those bacterial genomes.

Figure S3. (A) B. subtilis wild-type and srfA and hag mutants in monoculture (top) and in coculture with P. agglomerans (bottom) grown on MSgg for 48 h (B) P. agglomerans mutants containing transposon insertions grown in monoculture (top) and mixed with B. subtilis in coculture (bottom) that do not form the characteristic biofilm phenotype when grown on MSgg for 48 h. Scale bar is 1 mm. (C) Growth curve of P. agglomerans strains (wild-type, amsC, amsC + pBBR1MCS-amsC (complemented amsC), and amsC + pBBR1MCS (empty vector control) grown in shaking LB liquid culture at 30 °C. (D) CFU/colony of coculture colonies at 1:500 initial B. subtilis : P. agglomerans ratio harvested at 48 h.

Figure S4. Images and CFU/colony quantification of *B. subtilis* and *P. agglomerans* at varying initial ratios in coculture biofilm. (A) Top and side view of *B. subtilis* and *P. agglomerans* coculture biofilms with increasing initial ratios of *P. agglomerans* grown on MSgg for 24 h at 24 °C. (B) CFU/colony of coculture colonies at noted initial ratios harvested at 24 h. Blue and green dotted lines represent CFU/colony of *B. subtilis* monoculture and *P. agglomerans* monoculture harvested at 24 h, respectively. (C) CFU/colony of coculture colonies at noted initial ratios harvested at 48 h. Blue and green dotted lines represent CFU/colony of *P. agglomerans* monoculture colonies at noted initial ratios harvested at 48 h. Blue and green dotted lines represent CFU/colony of *B. subtilis* monoculture and *P. agglomerans* monoculture harvested at 48 h. Blue and green dotted lines represent CFU/colony of *B. subtilis* monoculture and *P. agglomerans* monoculture harvested at 48 h. Blue and green dotted lines represent CFU/colony of *B. subtilis* monoculture and *P. agglomerans* monoculture harvested at 48 h. Blue and green dotted lines represent CFU/colony of *B. subtilis* monoculture and *P. agglomerans* monoculture harvested at 48 h. respectively. Error bars indicate standard deviation. (D) Growth curve of monoculture *P. agglomerans* and *B. subtilis* wild-type strains in shaking MSgg liquid culture at 24 °C.

Figure S5. Development of a *B. subtilis* and *P. agglomerans* coculture biofilm. *B. subtilis* P_{spacc} -*mTurq* (false-colored blue) and *P. agglomerans* P_{spacc} -*Ypet* (false-colored green) in coculture grown on MSgg and imaged over time. Colocalization of two species is indicated in cyan. Phase contrast (top) and fluorescence (bottom) coculture images at 8X magnification. Scale bar is 0.5 mm.

monoculture

Figure S6. Scanning electron microscopy of monoculture *B. subtilis* and *P. agglomerans* biofilms. Top (A, B) and side (D, E) views of *B. subtilis* monoculture colony. Top (E, F) and side (G, H) views of *P. agglomerans* monoculture colony. Scale bars are 1 μ m and apply to all images within that column.

Figure S7. Colony morphology and localization of *B. subtilis flgM* and *lytABCDF* and *P. agglomerans* in coculture. (A) B. subtilis (false-colored blue) and *P. agglomerans* (false-colored green) in coculture at increasing initial ratios of *P. agglomerans* grown on MSgg after 48 h of growth. Colocalization of two species is indicated in cyan. Coculture images of phase contrast (top) at 1X magnification, fluorescence (middle) at 1X magnification, and fluorescence (bottom) at 8X magnification. Scale bars are 0.5 mm. (B) CFU/colony of *B. subtilis* wildtype, *flgM*, and *lytABCDF* mutants in coculture with *P. agglomerans* grown on MSgg for 48 h. There are no statistically significant differences between CFU/colony measured for each of the two bacterial species.

Figure S8. CFU/colony counts of *B. subtilis* monoculture (dark blue), *B. subtilis* coculture (light blue), *P. agglomerans* monoculture (dark green), and *P. agglomerans* coculture (light green) biofilms either untreated or treated (indicated by +) with gentamicin for 24 h after 24 h of growth. Untreated and treated colonies were harvested 48 h after cultures were initially spotted. Error bars indicate standard deviation. *, P < 0.05. Statistical significance was determined by a two-tailed T-test.

Supplemental References

- 1. Merriam JJ, Mathur R, Maxfield-Boumil R, Isberg RR. 1997. Analysis of the *Legionella pneumophila flil* gene: intracellular growth of a defined mutant defective for flagellum biosynthesis. Infect Immun 65:2497–501.
- 2. Kovach ME, Phillips RW, Elzer PH, Roop RM, Peterson KM. 1994. pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–2.
- Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow J, Butland G, Arkin AP, Deutschbauer A. 2015. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons. MBio 6:e00306-15.
- 4. Guérout-Fleury A-M, Shazand K, Frandsen N, Stragier P. 1995. Antibioticresistance cassettes for *Bacillus subtilis*. Gene 1:335–336.
- Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. 2001. Fruiting body formation by *Bacillus subtilis*. Proc Natl Acad Sci USA 98:11621– 11626.
- 6. Cozy LM, Kearns DB. 2010. Gene position in a long operon governs motility development in *Bacillus subtilis*. Mol Microbiol 76:273–285.

Supplemental Movie 1. Spatial organization of *B. subtilis* and *P. agglomerans* within a coculture biofilm. *B. subtilis* P_{spacC}-*mTurq* (false-colored blue) and *P. agglomerans* P_{spacC}-*Ypet* (false-colored yellow) grown in coculture on glass coverslips embedded in MSgg agar and imaged at 48 h using confocal laser scanning microscopy. The Z-stack series is composed of 12-overlaping Z-stacks taken upward from the agar surface.