1 SUPPLIMENTARY MATERIAL

2 MATERIAL AND METHODS

β-galactosidase assays to assess copper inducible *copA* **promoter activity**.

4 This assay was performed as previously described with few modification (1). Strains 5 bearing plasmids with the *lacZ* gene controlled by copper inducible promoter *copAB* were 6 inoculated from freshly grown colonies into 5 ml marine broth containing 5 µg/ml Kan and 7 incubated at 30°C overnight. Overnight cultures were diluted in the same culture medium to 8 $OD_{600} = 0.10$ and incubated until an $OD_{600} = 0.4$ was reached, where copper sulfate dissolved in 9 marine broth was added to a final concentration of 0 - 250 µM. The induced cultures and controls were incubated for 2 - 4 h at 30 °C. β-galactosidase activity was measured 10 11 colorimetrically as described previously (2). Briefly, 200 µl of culture was mixed with 600 µl Z 12 buffer (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCI, 1 mM MgSO₄, 50 mM ß-13 mercaptoethanol). Cells were then permeabilized using 50 µl chloroform and 25 µl 0.1% SDS. 14 200 μl of substrate o-nitrophenyl- β-D-galactoside (4 mg/ml) was added to the permeabilized 15 cells. Upon development of a yellow color, the reaction was stopped by raising the pH to 11 with 16 addition of 400 µl of 1 M Na₂CO₃. Absorbance at 420 nm (A₄₂₀) was determined and the Miller 17 Units of β -galactosidase activity were calculated as $(A_{420})(1000)/(OD_{600})(t)(v)$ where t is the time 18 in minutes and v is the volume of culture used in the assay in mL.

19

20 Growth measurements.

Impact of $CuSO_4$ on *H. baltica* growth was measured using 24-well plates. 1 ml of cultures (Starting $OD_{600} = 0.05$) were incubated for 12 h at 30°C, using marine Broth and various $CuSO_4$ concentrations. OD_{600} were recorded after overnight incubation to determine the growth yield for the different $CuSO_4$ concentrations. Growth curves using 0 or 500 µM $CuSO_4$ were recorded

every 30 min for 20 h. All OD₆₀₀ were recorded using a Biotek Synergy HT.

26

Strain or Plasmid	Description and or genotype	Reference or source
E. coli		
α select	deoR endA1 relA1 gyrA96 hsdR17($r_{\kappa} m_{\kappa}^{+}$) supE44 thi-1 Δ (lacZYA-argFV169) Φ 80 δ lacZ Δ M15 F ⁻	Bioline
YB8430	α select /pNPTS139 Δ hfsA	This study
YB8431	α select /pNPTS139 Δ hfsL	This study
YB8432	$lpha$ select /pNPTS139 Δ <i>hfaB</i>	This study
YB8439	$lpha$ select /pNPTS139 Δ hfaD	This study
YB8440	$lpha$ select /pNPTS139 Δ hfsD	This study
YB172	$lpha$ select /pNPTS139 Δ hfsG	This study
YB8441	α select/ pMR10:hfsA	This study
YB8442	α select/ pMR10:P <i>hfa-hfaB</i>	This study
YB8443	α select/ pMR10:P <i>hfsE-hfsL</i>	This study
YB8429	α select/ pMR10:Pcu-hfsL	This study
YB8433	α select/pMR10:PhfaA-hfaD	This study
YB8436	α select/ pMR10: <i>hfsD</i>	This study
YB8437	α select/ pMR10:Pcu- <i>lacZ</i>	This study
YB173	α select/ pMR10:Pcu- <i>hfsG</i>	This study
C. Crescentus		
YB135	Wild-type strain CB15	(3)
YB4251	CB15 ∆hfaB	(4)
H. baltica		
YB5842	IFAM 1418 ^T Wild-type strain	(5)
YB8404	YB5842 ∆hfsA	This study
YB8405	YB5842 ∆hfL	This study
YB8406	YB5842 ∆hfaB	This study
YB210	YB5842 ∆hfaB ∆hfaD	This study
YB8409	YB5842 ∆hfsA /pMR10:hfsA	This study
YB8410	YB5842 ∆hfaB /pMR10:Phfa-hfaB	This study
YB8414	YB5842 ∆ <i>hfsL /</i> pMR10:P <i>hfsE-hfsL</i>	This study
YB8417	YB5842 ∆hfsG ∆hfaB /pMR10:Pcu-hfsG	This study
YB8418	YB5842 ∆hfsL ∆hfaB /pMR10:Pcu-hfsL	This study
YB8424	YB5842 ∆hfsL /pMR10:Pcu-hfsL	This study
YB8425	YB5842 ∆hfaD	This study
YB8426	YB5842 ∆hfaD /pMR10:PhfaA-hfaD	This study
YB8427	YB5842 AhtsD	This study
YB8434	YB5842 AntsD /pMR10:htsD	This study
Y B8438	YB5842 pMRTU:PCU-IACZ	This study
VB17/	TD042 AllSG VB5842 pMR10:PouchfeC	This study
		The study
riasmias	plitmus 30 dorivativa art. sacP. Kap ^r	
nNPTS1301661	nNPTS139 containing 500 bn fragments unstream and downstream of <i>b</i> feA	This study
nNPTS1301661	nNPTS139 containing 500 bp fragments upstream and downstream of <i>bfol</i>	This study
nNPTS130162	nNPTS139 containing 500 bp fragments upstream and downstream of <i>bfaR</i>	This study
pNPTS139∧ <i>hfaD</i>	pNPTS139 containing 500 bp fragments upstream and downstream of hfaD	This study
pNPTS139 <i>\hfsD</i>	pNPTS139 containing 500 bp fragments upstream and downstream of hfsD	This study
pNPTS139∆hfsG	pNPTS139 containing 500 bp fragments upstream and downstream of hfsG	This study
pMR10	Mini-RK2 cloning vector; RK2 replication and stabilization functions	R. Roberts and C.
pMR10:hfsA	pMR10 containing hfsA gene with its native promoter	This study
pMR10:Phfa-hfaB	pMR10 containing native <i>hfaA</i> promoter and the <i>hfaB</i> gene	This study
pMR10:P <i>hfsE-hfsL</i>	pMR10 containing native hfsE promoter and the hfsL gene	This study
pMR10:P <i>cu-hfsL</i>	pMR10 containing copper inducible promoter of CopA and the hfsL gene	This study
pMR10:PhfaA-hfaD	pMR10 containing native hfaA promoter and the hfaD gene	This study
pMR10:hfsD	pMR10 containing <i>hfsD</i> gene with its native promoter	This study
pMR10:Pcu-lacZ	pMR10 containing copper inducible promoter of <i>CopA</i> and the <i>lacZ</i> gene	This study
pMR10:Pcu-hfsG	pMR10 containing copper inducible promoter of <i>CopA</i> and the <i>hfsG</i> gene	This study

27 Table S1: Strains and Plasmids used in this study

28 Table S2: Primers used in this study

Primers	Sequence (5'→3')	Description
Hb <i>hfsA</i> UpF	GCGAATTCTGGATCCACGATGAAATACGCCCGGATTATTG	5' region for deletion of hfsA
HbhfsAFR	ATACTTAGTCATTCTGATTCTGCTTTATCTAAAC	
Hb <i>hfsA</i> UpR	CAGAAAGCTTCCTGCAGGATTAATTTAGTATCCGCCACAC	3' region for deletion of <i>hfsA</i>
HbhfsARR	GAATCAGAATGACTAAGTATTTGTTATTTAATTAAAAAAATATACTTTTC	
Hb <i>hfsGT_</i> pUpF	GCCAAGCTTCTCTGCAGGATCAGTATTGTTATTCCAACATTTCG	5' region for deletion of hfsL
Hb <i>hfsGT_</i> UpR	GTGAGTTTGGGTTGAATGCGATCCAAATC	
Hb <i>hf</i> sGT_DwF	CGCATTCAACCCAAACTCACAAACTGAG	3' region for deletion of hfsL
Hb <i>hfsGT_</i> pDwR	GCGAATTCGTGGATCCAGATTTGGTCCAGCTCATAACG	
Hb <i>hfaB</i> UpF	CGCGTTCGGCCGTGCTAGCGGATCATTGCTTATTCCCG	5' region for deletion of <i>hfaB</i>
Hb <i>hfaB</i> FRev	TCGCCAATTATTGCGAATTGGGCTAGTC	
Hb <i>hfaB</i> UpR	GCAGGATATCGTGGATCCAGGAAATATCGTTGACACTGG	3' region for deletion of <i>hfaB</i>
Hb <i>hfaB</i> RRev	CAATTCGCAATAATTGGCGATAAACTTCGC	
p <i>hfaD</i> upF	GTGCTAGCGAATTCTGGATCCACGATGTCTTGTCGAAACAGAATCTCTGGAAG	5' region for deletion of hfaD
<i>hfaD</i> upR	CTAAGTTTCTATATGTATATTGAGAACTTGGTGTCTGAGACCTTTTAGATAGGC	
<i>hfaD</i> dwF	GCCTATCTAAAAGGTCTCAGACACCAAGTTCTCAATATACATATAGAAACTTAG	3' region for deletion of hfaD
p <i>hfaD</i> dwR	GGCGCCAGAAAGCTTCCTGCAGGATATAGTGATGCAATGTTCGATGGTGG	
<i>hfsD</i> upF	GTGCTAGCGAATTCTGGATCCACGATTTTCTGCTATCTCTTGGGCAATTTTAG	5' region for deletion of hfsD
<i>hfsD</i> upR	CTAGTGTTTAGTTCAGCAATCTGAGGGTGCTTTCTTAATGCATCCGTTTTG	
<i>hfsD</i> dwF	CCAAAACGGATGCATTAAGAAAGCACCCTCAGATTGCTGAACTAAACACTAG	3' region for deletion of hfsD
<i>hfsD</i> dwR	GGCGCCAGAAAGCTTCCTGCAGGATACAGTAAAAGAAAATTCATGTACAAC	
hfsA_upF	ACGCCAAGCTTCCATGGGATGAAATACGCCCGGATTATTG	Complementation of hfsA
hfsA_DwpR	GCTCTGCAGGAGATCTCGATTAATTTAGTATCCGCCACAC	
<i>hfaB_</i> upF	ACGCCAAGCTTCCATGGGATAATTGCGCCATTGTG	Complementation of hfaB
<i>hfaB_</i> DwpR	GCTCTGCAGGAGATCTCGATGAAATATCGTTGACACTGGC	
PhfsE_hfsLupF	CCATGATTACGCCAAGCTTCCATGGGATGGCCATACAAATATAAGCGGTGCTC	Complementation of hfsL
PhfsE_hfsLupR	CAATACTGACTTTTACGGATTGGTTCATTCACGAAGAACACAGAGTGTCTCC	using hfsE promoter
PhfsE_hfsLdwF	GGAGACACTCTGTGTTCTTCGTGAATGAACCAATCCGTAAAAGTCAGTATTG	
PhfsE_hfsLdwR	CTAGAGCTCTGCAGGAGATCTCGATTTAAGTTGCGCTTTTGATAACTTTTTTG	
Pcu_ <i>hfsL</i> upF Pcu_ <i>hfsL</i> upR Pcu_ <i>hfsL</i> dwF	CTAGAGCTCTGCAGGAGATCTCGATTATACACGGATCGCACGCC GGGTGTGTAATGCCAATCAATCATGATGTTCTCCTTCTTGCGTTGGAC GTCCAACGCAAGAAGGAGAACATCATGATTGATTGGCATTACACACCC	Complementation of <i>hfsL</i> using copper promoter
Pcu_ <i>hfsL</i> dwR	CCATGATTACGCCAAGCTTCCATGGGATTTAAGTTGCGCTTTTGATAACTTTTTTG	
phfaABDF	CCATGATTACGCCAAGCTTCCATGGGATCGAGACGAAAACATGAACAGTTTCAC	Complementation of hfaB
phfaABDF	CTAGAGCTCTGCAGGAGATCTCGATCAGACAAACAGTTAGAAGAATTTAGAAATC	
comp <i>hfsD</i> upF	CCATGATTACGCCAAGCTTCCATGGGATTTTCTGCTATCTCTTGGGCAATTTTAG	Complementation of hfsD
comp <i>hfsD</i> dwR	CTAGAGCTCTGCAGGAGATCTCGATTTAGAAGGCGTTGTCTTTTAGGTTG	
CulacZupF	CTAGAGCTCTGCAGGAGATCTCGATTATACACGGATCGCACGCC	Expression of <i>lacZ</i> under
CulacZupR	CCCAGTCACGACGTTGTAAAACGACCATGATGTTCTCCTTCTTGCGTTGGACG	copper inducible promoter
CulacZdwF	CGTCCAACGCAAGAAGGAGAACATCATGGTCGTTTTACAACGTCGTGACTGGG	
Cu <i>lacZ</i> dwR	GATTACGCCAAGCTTCCATGGGATCGGTGGCGGCCGCTCTAGAAC	
<i>hfsG</i> upF	GTGCTAGCGAATTCTGGATCCACGATGGTTTTAACAATCAGATTATTCGTGTC	5' region for deletion of hfsG
<i>hfsG</i> upR <i>hfsG</i> dwF	CGTTTTAATTTGGCGGGAAGGGTACATTGGATGCCTAGCGCTGTGTTTTTG CAAAAACACAGCGCTAGGCATCCAATGTACCCTTCCCGCCAAATTAAAACG	3' region for deletion of hfsG
<i>hfsG</i> dwR	GGCGCCAGAAAGCTTCCTGCAGGATCAACATTAATTCCGGGAAGAATACC	
Pcu_ <i>hf</i> sGupF	GATTACGCCAAGCTTCCATGGGATATCAATCATGAAGAGCCTCCGCATATATG	Complementation of hfsG
Pcu_ <i>hf</i> sGupR	CGTCCAACGCAAGAAGGAGAACATCATGAACACAACGCCCCAACTTAGCG	using copper promoter
Pcu_ <i>hfsG</i> dwF Pcu_ <i>hfsG</i> dwR	CGCTAAGTTGGGGCGTTGTGTTCATGATGTTCTCCTTCTTGCGTTGGACG CTAGAGCTCTGCAGGAGATCTCGATTATACACGGATCGCACGCCTGACAATG	

30 Table S3: Lectin binding assays for all the lectins	used.
--	-------

Lectin	Specificity	H. baltica holdfast	C. crescentus holdfast
Wheat Germ Agglutinin	GlcNAc, sialic acid		
Succinylated Wheat Germ Agglutinin	GlcNAc	\checkmark	\checkmark
Lycopersicon Esculentum Tomato	GlcNAc 1-4	\checkmark	$\sqrt{*}$
Datura Stramonium Lectin	GlcNAc 1-4	$\sqrt{*}$	-
Solanum Tuberosum Potato Lectin	GlcNAc, prefers trimers and tetramers	\checkmark	$\sqrt{\star}$
Ricinus Communis Agglutinin	Galactose	\checkmark	-
Griffonia Simplicifolia Lectin 1	α -GalNAc, α -galactose	\checkmark	-
Soybean Agglutinin	α-GalNAc	-	-
Concanavalin A	α -linked mannose	-	-
Dolichos Biflorus Agglutinin	α -linked acetylgalactosamine	-	-
Peanut Agglutinin	Galactosyl β-1,3 N- acetylgalactosamine	-	-
Soybean Agglutinin	α or β acetylgalactosamine	-	-
Ulex Europaeus Agglutinin 1	N- acetylgalactosamine, sialic acid or chitobiose	-	-
Len Culinaris Agglutinin	α -linked mannose	-	-
Pisum Sativum Agglutinin	α -linked mannose, fucose or N-acetylchitobiose	-	-
Erythrina Cristagalli Lectin	Galactose, prefers Galactosyl β -1,4 N- acetylgalactosamine	-	-
Jacalin	Galactosyl β-1,3 N- acetylgalactosamine	-	-
Griffinia Simplicifolia Lectin 2	α or β acetylgalactosamine	-	-
Vicia Villosa Lectin	α or β terminal N- acetylgalactosamine	-	-

31 $\sqrt{Fluorescent signal detected}$

32 - No fluorescent signal detected

33 * Binding is enhanced on rosettes but weaker signals on single cells.

34 Figure S1: Design of a copper inducible promoter system in *H. baltica*.

35 **A.** Chromosomal arrangement of one of the copper sensitive operons in *H. baltica* genome, 36 showing copper operon repressor gene csoR and copper binding protein genes copA and copB 37 (top panel). The bottom diagram shows the fusion of the *copAB* promoter (P_{cu}) to the *lacZ* 38 reporter gene. B. Effect of different concentration of CuSO₄ added into marine broth on H. 39 *baltica* growth. Growth yield (OD_{600}) was measured on overnight cultures with different 40 concentration of CuSO₄. Data represent mean of four independent replicates and the error bars 41 represent standard error. **C**. Representative growth curves of *H*. baltica growing in marine broth 42 without or with 500 µM CuSO₄. OD₆₀₀ representing bacterial growth in a 24 well plate was 43 measured every 30 min. **D.** β -galactosidase activity representing the P_{cu} activity when induced 44 with different concentrations of CuSO₄. Exponential cultures were induced for 4h. Data shown is 45 representative of three independent replicates and the error bars represent the standard error. 46

47 Figure S2: DNA inhibition of holdfast binding and biofilm formation.

48 A. C. crescentus (upper panel) and H. baltica (lower panel) cells bound to a glass surface in 49 presence of eDNA from each strain. Holdfasts labeled with WGA-AF488 lectins after 50 exponentially grown cells were bound to a glass slide for 45 min. B. Biofilm guantification after 51 24 h for C. crescentus and H. baltica in presence of eDNA. Data are expressed as an average 52 of 4 independent replicates and the error bars represent the standard error.

53

54 Figure S3: Fluorescence intensity of WGA-labeled holdfast

55 A. Box and whisker plots of WGA fluorescence intensity distribution from holdfast images

56 collected in Figure 4 A-B. More than 500 holdfasts were measured in 10 independent images.

57 The variance between *H. baltica* and *C. crescentus* holdfast fluorescent intensity was analyzed

- 58 using a *t*-test. ns, not statistically significant (p<0.38).
- 59

Figure S2

Figure S3

60 SUPPLEMENTARY REFERENCES

- Berne C, Ellison CK, Agarwal R, Severin GB, Fiebig A, Morton III RI, Waters CM, Brun YV.
 2018. Feedback regulation of *Caulobacter crescentus* holdfast synthesis by flagellum
 assembly via the holdfast inhibitor HfiA. Molecular microbiology 110(2):291-238.
- 64 2. Miller JH. 1972. Assay of β-galactosidase. Experiments in molecular genetics.
- 65 3. Poindexter JS. 1964. Biological properties and classification of the Caulobacter group.
 66 Bacteriological reviews 28:231.
- Hardy GG, Allen RC, Toh E, Long M, Brown PJ, Cole-Tobian JL, Brun YV. 2010. A localized
 multimeric anchor attaches the Caulobacter holdfast to the cell pole. Molecular
 microbiology 76:409-427.
- Schlesner H, Bartels C, Sittig M, Dorsch M, Stackebrandt E. 1990. Taxonomic and
 Phylogenetic Studies on a New Taxon of Budding, Hyphal Proteobacteria, Hirschia
 baltica gen. nov., sp. nov. International Journal of Systematic and Evolutionary
 Microbiology 40:443-451.
- 74