
SUPPLEMENTARY METHODS

Deep Profiler and Multi-task Learning

All images were resampled to a 1.17 mm x 1.17 mm x 3 mm resolution. The original

Hounsfield Unit (HU) values were clipped at -1,000 and 1000 and rescaled to -1 to 1 to better fit

the input range of our model. To reduce complexity, we delimited a local region of interest that

encompassed the GTV. The original CT volume for each patient was cropped to a 64 x 64 x 32

sub-volume or ~7.5 cm x 7.5 cm x 9 cm, chosen to encompass all tumors. Although the original

CT volume could be used as input, given the limitation of training sample size, we selected sub-

volumes to add prior information, mitigate over-fitting and avoid spurious associations at a

distance from the tumor. The GTV mask was used as an additional channel rather than masking

the CT volume, permitting flexibility for the network to learn features from both inside and

outside of the GTV. Given that the image features extracted by the network is expected to be

minimally influenced by the bounding box position (i.e. shift invariant) as long as the box

encompasses the GTV, we randomly selected the cropped regions for each iteration of the

training process. This data augmentation technique facilitated the network’s ability to locate the

desired invariant. Moreover, since the data provided to the neural network and classical

radiomics, namely the CT volume and GTV mask, were similar, a more equitable comparison

could be made between the two methodologies.

Deep Profiler consists of an encoder for extracting imaging features and building task-

specific fingerprint, a decoder for estimating handcrafted radiomic features, and a task-specific

network for generating image signature for therapy outcome prediction. A 3-D convolutional

neural network (CNN) was used as an encoder for extracting imaging features. CNNs have been

successfully applied to the field of image segmentation, classification and object detection.1 The

input layer to the encoder network included two channels, a CT image and GTV contour. The

encoder consisted of 8 convolutional layers of 3 x 3 x 3 filter size. There were 16 filters in the

first layer with the filter size doubled every two layers. There were max pooling operations after

the second, fourth and sixth convolutional layers, with a pooling size of 2 x 2 x 2. The last

convolutional layer was followed by an average pooling layer for extracting one feature from

each feature map. Therefore, the encoder network reduced the feature dimension from 64 x 64 x

32 (input volume) to 128 (latent space). In all convolutional layers, we employed rectified linear

units (ReLUs) as the nonlinear activation function. Batch normalization was applied after each

convolutional layer.

Given that handcrafted radiomics are relatively efficient yet generic representations of

tumor phenotype (e.g. size, shape, texture, etc.), we designed a decoder network to reconstruct

radiomic features from latent fingerprint variables. Since the decoder network is tasked to

reconstruct a near full set of radiomics features, we posited that the entire network would be

more constrained and regularized, and thus less susceptible to overfitting. A fully-connected

layer was adopted to link the latent fingerprint space with handcrafted radiomics. The loss

function in this case is defined as mean square error between the decoder output and handcrafted

radiomic feature values. Since radiomic features have different physical meanings and units, all

radiomic features were normalized before they were used for training the network.

We used another neural network to predict the outcome based on latent fingerprint

variables. Deep neural network models are typically used to solve classification problems. In the

clinical setting, however, therapeutic outcomes are not merely binary but also contain time-to-

event information. The Cox proportional hazards model, which assumes the risk of failure to be a

linear combination of all covariates, is commonly used to relate the time that passes before local

failure occurs. However, in many conditions it might be too simplistic to assume that the risk

function is in a linear form. Recently, a fully connected network that models nonlinear

associations between covariates was shown to outperform standard linear Cox regression.2 In this

study, we used the deep neural network to build a signature from the input image. A CNN-based

encoder network was used to extract image features and a fully-connected layer was adopted to

combine all image features into one Deep Profiler signature. This signature was made equivalent

to the logarithm of the hazard ratio in the Cox regression, which is a linear combination of all

input variables. Similar to the Cox model, there were no assumptions made about the form of the

baseline hazard function except that the hazard ratio for an individual remains constant over

time.

To fit the model, the coefficient is estimated using the maximum likelihood method in

much the same way as it is done with Cox regression. Let 𝐗𝐗𝑖𝑖 denote the input image of patient 𝑖𝑖

with failure (or censoring) time 𝑡𝑡𝑖𝑖 and 𝜑𝜑𝜃𝜃(∙) the network model with parameters 𝜃𝜃. Treating

patients as if they were statistically independent of each other, we computed the survival loss

function of the network as a negative log partial likelihood of all samples in the training dataset:

 ℒ𝑠𝑠(𝜃𝜃) = −log∏ � exp{𝜑𝜑𝜃𝜃(𝐗𝐗𝑖𝑖)}
∑ 𝑌𝑌𝑖𝑖𝑖𝑖exp{𝜑𝜑𝜃𝜃(𝐗𝐗𝑖𝑖)}𝑁𝑁
𝑖𝑖=1

�
𝛿𝛿𝑖𝑖

𝑁𝑁
𝑖𝑖=1 ,

where 𝑌𝑌𝑖𝑖𝑖𝑖 = 1 if 𝑡𝑡𝑖𝑖 ≥ 𝑡𝑡𝑖𝑖 , and 𝑌𝑌𝑖𝑖𝑖𝑖 = 0 if 𝑡𝑡𝑖𝑖 < 𝑡𝑡𝑖𝑖. Of note, we added an indicator for data censoring

where 𝛿𝛿𝑖𝑖 = 1 if event and 𝛿𝛿𝑖𝑖 = 0 if censored.

Multi-task Learning

We used a multi-task learning framework to add constraints and regularity to the neural

network so that the fingerprint can reconstruct radiomics features and accurately estimate the

time to event for each patient. Multi-task learning has been used successfully across all

applications of machine learning from natural language processing to computer vision. In our

study, two distinct tasks were trained simultaneously (Figure 1b). The main task is the outcome

prediction, which has the loss function in the form of ℒ𝑠𝑠. The auxiliary task is the estimation

(reconstruction) of handcrafted radiomics, which is formulated as a mean square loss function

ℒ𝑟𝑟:

ℒ𝑟𝑟(𝜃𝜃) = 1
𝑁𝑁
∑ ‖𝐎𝐎𝑖𝑖 − 𝐑𝐑𝑖𝑖‖𝟐𝟐𝟐𝟐𝑁𝑁
𝑖𝑖=1 ,

where 𝑁𝑁 is the total number of patients, 𝐎𝐎𝑖𝑖 is the decoder network output of patient 𝑖𝑖 and 𝐑𝐑𝑖𝑖 =

�𝑟𝑟𝑖𝑖
(1), 𝑟𝑟𝑖𝑖

(2),⋯ , 𝑟𝑟𝑖𝑖
(𝑘𝑘)�

T
 is a vector of 𝑘𝑘 distinct handcrafted radiomic features of patient 𝑖𝑖. The total

loss is defined as a weighted combination of two tasks:

ℒtotal = 𝜆𝜆𝑠𝑠ℒ𝑠𝑠 + 𝜆𝜆𝑟𝑟ℒ𝑟𝑟

Each task loss is weighted by a scalar quantity to model the importance of each task on the

combined loss ℒtotal. The weighting terms 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑟𝑟 in the multi-task loss function introduced

additional hyper-parameters. The ratio between these two hyper parameters determined how

much handcrafted information was kept for the outcome prediction. The values of these hyper-

parameters could be equated or optimized through a grid-search in the training set. We applied

𝑳𝑳2 regularization on all network parameters (weight decay of 1 × 10−4) and used Adam

optimization with learning rate of 1 × 10−5. Our model implementation is based on PyTorch

(http://pytorch.org).

http://pytorch.org/

REFERENCES

1. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image
analysis. Med Image Anal 2017; 42: 60-88.
2. Katzman JL, Shaham U, Cloninger A, Bates J, Jiang TT, Kluger Y. DeepSurv:
personalized treatment recommender system using a Cox proportional hazards deep neural
network. Bmc Med Res Methodol 2018; 18.

Implementing Deep Profiler

Algorithm 1 Train Deep Profiler Model

Input:
Image preprocessed 3D CT images for training and validation
GTV binary 3D GTV masks
CensorF lag indicator of censoring, 1 if event and 0 if censored
SurvivalT ime time of event or censoring
Radiomics hand-crafted radiomic features

Output:
ˆDPscore deep profiler score

1: procedure TrainModel(Image, GTV , CensorF lag, SurvivalT ime, Radiomics)
2: minPLloss← +∞ . minimum partial likelihood loss of failure prediction
3: minTOTALloss← +∞ . minimum total multi-task loss
4: α← 1× 10−5 . set learning rate
5: η ← 1× 10−4 . set weight for L2 regularization
6: λ1, λ2 ← 1 . weights for different functions
7: Θ← XavierNormal(

√
2) . model weights initialization

8: training, validation← RandomSplit(PatientIndex, 0.8, 0.2)
9: while epoch < MaxEpoch do

10: set the DeepProfiler network in training mode
11: ˆDPscore, ˆRadiomics← DeepProfiler(Image[training], GTV [training]; Θ)
12: PLloss← PredictionLoss(ˆDPscore, CensorF lag[training], SurvivalT ime[training])

13: MSEloss← ReconLoss(ˆRadiomics,Radiomics[training])
14: TOTALloss← λ1PLloss+ λ2MSEloss+ η

N

∑
Θ‖Θi‖2

15: ∆Θ← ∇ΘTOTALloss . Use backpropagation to compute the gradient
16: Θ← Θ− α ·∆Θ . Update the model parameters

17: set the DeepProfiler network in evaluation mode
18: ˆDPscore, ˆRadiomics← DeepProfiler(Image[validation], GTV [validation]; Θ)
19: PLloss← PredictionLoss(ˆDPscore, CensorF lag[validation], SurvivalT ime[validation])

20: MSEloss← ReconLoss(ˆRadiomics,Radiomics[validation])
21: TOTALloss← λ1PLloss+ λ2MSEloss
22: if TOTALloss < minTOTALloss then
23: ΘminTOTALloss ← Θ
24: minTOTALloss← TOTALloss
25: end if
26: if PLloss < minPLloss then
27: ΘminPLloss ← Θ
28: minPLloss← PLloss
29: end if
30: epoch← epoch+ 1
31: end while
32: return ΘminPLloss, ΘminTOTALloss

33: end procedure

1

Algorithm 2 Calculate Loss Functions

Input:
DPscore deep profiler scores
CensorF lag indicator of censoring, 1 if event and 0 if censored
SurvivalT ime time of event or censoring

Output:
nLogPL prediction loss, negative log of partial likelihood

1: function PredictionLoss(DPscore, CensorF lag, SurvivalT ime)
2: N ← Length(DPscore) . number of patients
3: PL← 1
4: for i = 1→ N do
5: T [i]← 0
6: for j = 1→ N do
7: if SurvivalT ime[i] ≤ SurvivalT ime[j] then
8: Y ← 1
9: else

10: Y ← 0
11: end if
12: T [i]← T [i] + Y · exp(DPscore[j])
13: end for
14: L[i]← exp(DPscore[i])/T [i]
15: PL← PL· Power(L[i], CensorF lag[i])
16: end for
17: nLogPL← − logPL . use negative log of the likelihood as object fucntion
18: return nLogPL
19: end function

Input:
ˆRadiomics estimation of radiomic features

Radiomics hand-crafted radiomic features
Output:

MSE reconstruction loss, mean squared error between feature vectors
20: function ReconLoss(ˆRadiomics, Radiomics)
21: Np ← Size(Radiomics, 1) . number of patients
22: Nf ← Size(Radiomics, 2) . number of features
23: Error ← 0
24: for i = 1→ Np do
25: for j = 1→ Nf do

26: Error ← Error + | ˆRadiomics[i, j]−Radiomics[i, j]|2
27: end for
28: end for
29: MSE ← 1

NpNf
Error

30: return MSE
31: end function

2

Algorithm 3 Calculate Deep Profiler Score

Input:
TestingImage preprocessed 3D CT image for testing
TestingGTV binary 3D GTV mask
ΘminPLloss parameters of deep profiler model with minimum validation loss

Output:
ˆDPscore deep profiler score

1: function TestModel(TestingImage, TestingGTV , ΘminPLloss)
2: set the DeepProfiler network in evaluation mode
3: ˆDPscore, ˆRadiomics← DeepProfiler(TestingImage, TestingGTV ; ΘminPLloss)
4: return ˆDPscore
5: end function

Algorithm 4 Calculate Saliency Map

Input:
TestingImage preprocessed 3D CT image for testing
TestingGTV binary 3D GTV mask
ΘminPLloss parameters of deep profiler model with minimum validation loss

Output:
SaliencyMap saliency map of each input volume

1: function GetSaliency(TestingImage, TestingGTV , ΘminPLloss)
2: set the DeepProfiler network in evaluation mode
3: for i = 1→ Length(TestingImage) do . number of patients

4: ˆDPscore, ˆRadiomics← DeepProfiler(TestingImage[i], T estingGTV [i]; ΘminPLloss)
5: SaliencyMap[i]← ∇TestingImage[i] ˆDPscore
6: end for
7: return SaliencyMap
8: end function

Algorithm 5 Pre-process CT image, GTV mask and Radiomics

Input:
RawImage raw 3D CT image
RawGTV raw 3D GTV mask

Output:
Image preprocessed CT image
GTV preprocessed GTV mask
Radiomics normalized radiomic features

1: function Preprocessing(RawImage, RawGTV)
2: N ← Length(RawImage) . number of patients
3: V oxelSpacing ← [1.17, 1.17, 3]
4: xSize, ySize, zSize← [64, 64, 32]
5: for i = 1→ N do
6: if GetVoxelSpaCing(RawImage[i]) 6= V oxelSpacing then
7: RawImage[i]← Resample(RawImage[i], V oxelSpacing, order = 1) . linear interpolation
8: RawGTV [i]← Resample(RawGTV [i], V oxelSpacing, order = 0) . nearest neighbour interpolation
9: end if

10: Cx,Cy,Cz ← CenterOfMass(RawGTV [i])
11: GTV [i]← RawGTV [i, Cx± xSize/2, Cy ± ySize/2, Cz ± zSize/2]
12: Image[i]← RawImage[i, Cx± xSize/2, Cy ± ySize/2, Cz ± zSize/2]
13: Image[i]← Image[i]/1000
14: Radiomics[i]← RadiomicsEngine(RawImage[i], RawGTV [i])
15: end for
16: Radiomics← Zscore(Radiomics)
17: return Image, GTV , Radiomics
18: end function

3

3D
 C

on
v,

16

3D
 C

on
v,

16

3D
 C

on
v,

32

FC
, 3

84

3D Conv Block

3x3x3 Conv

M
ax

 P
oo

lin
g

3D
 C

on
v,

32

M
ax

 P
oo

lin
g

3D
 C

on
v,

64

3D
 C

on
v,

64

M
ax

 P
oo

lin
g

3D
 C

on
v,

12
8

3D
 C

on
v,

12
8

Av
g

Po
ol

in
g

FC
, 1

Output Shape:
16x64x64x32

Im
ag

e
+

GT
V

Output Shape:
32x32x32x16

Input Shape:
2x64x64x32

Output Shape:
64x16x16x8

Output Shape:
128x8x8x4

Output Shape:
128x1

BatchNorm

ReLU

Convolution Block

2x2x2 max pooling Max Pooling

Avg Pooling global average pooling

FC fully-connected layer

Deep Profiler Architecture

4

	Supplementary Methods
	Suppementary_Methods
	Supplementary_Methods.pdf
	Structure.pdf
	network

