
SUPPLEMENTARY METHODS 

Deep Profiler and Multi-task Learning 

All images were resampled to a 1.17 mm x 1.17 mm x 3 mm resolution. The original 

Hounsfield Unit (HU) values were clipped at -1,000 and 1000 and rescaled to -1 to 1 to better fit 

the input range of our model. To reduce complexity, we delimited a local region of interest that 

encompassed the GTV. The original CT volume for each patient was cropped to a 64 x 64 x 32 

sub-volume or ~7.5 cm x 7.5 cm x 9 cm, chosen to encompass all tumors. Although the original 

CT volume could be used as input, given the limitation of training sample size, we selected sub-

volumes to add prior information, mitigate over-fitting and avoid spurious associations at a 

distance from the tumor. The GTV mask was used as an additional channel rather than masking 

the CT volume, permitting flexibility for the network to learn features from both inside and 

outside of the GTV. Given that the image features extracted by the network is expected to be 

minimally influenced by the bounding box position (i.e. shift invariant) as long as the box 

encompasses the GTV, we randomly selected the cropped regions for each iteration of the 

training process. This data augmentation technique facilitated the network’s ability to locate the 

desired invariant. Moreover, since the data provided to the neural network and classical 

radiomics, namely the CT volume and GTV mask, were similar, a more equitable comparison 

could be made between the two methodologies.  

Deep Profiler consists of an encoder for extracting imaging features and building task-

specific fingerprint, a decoder for estimating handcrafted radiomic features, and a task-specific 

network for generating image signature for therapy outcome prediction. A 3-D convolutional 

neural network (CNN) was used as an encoder for extracting imaging features. CNNs have been 

successfully applied to the field of image segmentation, classification and object detection.1 The 



input layer to the encoder network included two channels, a CT image and GTV contour. The 

encoder consisted of 8 convolutional layers of 3 x 3 x 3 filter size. There were 16 filters in the 

first layer with the filter size doubled every two layers. There were max pooling operations after 

the second, fourth and sixth convolutional layers, with a pooling size of 2 x 2 x 2. The last 

convolutional layer was followed by an average pooling layer for extracting one feature from 

each feature map. Therefore, the encoder network reduced the feature dimension from 64 x 64 x 

32 (input volume) to 128 (latent space). In all convolutional layers, we employed rectified linear 

units (ReLUs) as the nonlinear activation function. Batch normalization was applied after each 

convolutional layer. 

Given that handcrafted radiomics are relatively efficient yet generic representations of 

tumor phenotype (e.g. size, shape, texture, etc.), we designed a decoder network to reconstruct 

radiomic features from latent fingerprint variables. Since the decoder network is tasked to 

reconstruct a near full set of radiomics features, we posited that the entire network would be 

more constrained and regularized, and thus less susceptible to overfitting. A fully-connected 

layer was adopted to link the latent fingerprint space with handcrafted radiomics. The loss 

function in this case is defined as mean square error between the decoder output and handcrafted 

radiomic feature values. Since radiomic features have different physical meanings and units, all 

radiomic features were normalized before they were used for training the network.  

We used another neural network to predict the outcome based on latent fingerprint 

variables. Deep neural network models are typically used to solve classification problems. In the 

clinical setting, however, therapeutic outcomes are not merely binary but also contain time-to-

event information. The Cox proportional hazards model, which assumes the risk of failure to be a 

linear combination of all covariates, is commonly used to relate the time that passes before local 



failure occurs. However, in many conditions it might be too simplistic to assume that the risk 

function is in a linear form. Recently, a fully connected network that models nonlinear 

associations between covariates was shown to outperform standard linear Cox regression.2 In this 

study, we used the deep neural network to build a signature from the input image. A CNN-based 

encoder network was used to extract image features and a fully-connected layer was adopted to 

combine all image features into one Deep Profiler signature. This signature was made equivalent 

to the logarithm of the hazard ratio in the Cox regression, which is a linear combination of all 

input variables. Similar to the Cox model, there were no assumptions made about the form of the 

baseline hazard function except that the hazard ratio for an individual remains constant over 

time.  

To fit the model, the coefficient is estimated using the maximum likelihood method in 

much the same way as it is done with Cox regression. Let 𝐗𝐗𝑖𝑖 denote the input image of patient 𝑖𝑖 

with failure (or censoring) time  𝑡𝑡𝑖𝑖   and 𝜑𝜑𝜃𝜃(∙) the network model with parameters 𝜃𝜃. Treating 

patients as if they were statistically independent of each other, we computed the survival loss 

function of the network as a negative log partial likelihood of all samples in the training dataset: 

 ℒ𝑠𝑠(𝜃𝜃) = −log∏ � exp{𝜑𝜑𝜃𝜃(𝐗𝐗𝑖𝑖)}
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where 𝑌𝑌𝑖𝑖𝑖𝑖 = 1 if 𝑡𝑡𝑖𝑖 ≥ 𝑡𝑡𝑖𝑖 , and 𝑌𝑌𝑖𝑖𝑖𝑖 = 0 if 𝑡𝑡𝑖𝑖 < 𝑡𝑡𝑖𝑖. Of note, we added an indicator for data censoring 

where 𝛿𝛿𝑖𝑖 = 1 if event and 𝛿𝛿𝑖𝑖 = 0 if censored. 

 

Multi-task Learning 

We used a multi-task learning framework to add constraints and regularity to the neural 

network so that the fingerprint can reconstruct radiomics features and accurately estimate the 

time to event for each patient. Multi-task learning has been used successfully across all 



applications of machine learning from natural language processing to computer vision. In our 

study, two distinct tasks were trained simultaneously (Figure 1b). The main task is the outcome 

prediction, which has the loss function in the form of ℒ𝑠𝑠. The auxiliary task is the estimation 

(reconstruction) of handcrafted radiomics, which is formulated as a mean square loss function 

ℒ𝑟𝑟: 

ℒ𝑟𝑟(𝜃𝜃) = 1
𝑁𝑁
∑ ‖𝐎𝐎𝑖𝑖 −  𝐑𝐑𝑖𝑖‖𝟐𝟐𝟐𝟐𝑁𝑁
𝑖𝑖=1 , 

 

where 𝑁𝑁 is the total number of patients, 𝐎𝐎𝑖𝑖 is the decoder network output of patient 𝑖𝑖 and 𝐑𝐑𝑖𝑖 =
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T
 is a vector of 𝑘𝑘 distinct handcrafted radiomic features of patient 𝑖𝑖. The total 

loss is defined as a weighted combination of two tasks: 

ℒtotal  =  𝜆𝜆𝑠𝑠ℒ𝑠𝑠  +  𝜆𝜆𝑟𝑟ℒ𝑟𝑟   

Each task loss is weighted by a scalar quantity to model the importance of each task on the 

combined loss ℒtotal. The weighting terms 𝜆𝜆𝑠𝑠  and 𝜆𝜆𝑟𝑟 in the multi-task loss function introduced 

additional hyper-parameters. The ratio between these two hyper parameters determined how 

much handcrafted information was kept for the outcome prediction. The values of these hyper-

parameters could be equated or optimized through a grid-search in the training set. We applied 

𝑳𝑳2 regularization on all network parameters (weight decay of 1 × 10−4) and used Adam 

optimization with learning rate of 1 × 10−5. Our model implementation is based on PyTorch 

(http://pytorch.org).  

 
  

http://pytorch.org/
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Implementing Deep Profiler

Algorithm 1 Train Deep Profiler Model

Input:
Image preprocessed 3D CT images for training and validation
GTV binary 3D GTV masks
CensorF lag indicator of censoring, 1 if event and 0 if censored
SurvivalT ime time of event or censoring
Radiomics hand-crafted radiomic features

Output:
ˆDPscore deep profiler score

1: procedure TrainModel(Image, GTV , CensorF lag, SurvivalT ime, Radiomics)
2: minPLloss← +∞ . minimum partial likelihood loss of failure prediction
3: minTOTALloss← +∞ . minimum total multi-task loss
4: α← 1× 10−5 . set learning rate
5: η ← 1× 10−4 . set weight for L2 regularization
6: λ1, λ2 ← 1 . weights for different functions
7: Θ← XavierNormal(

√
2) . model weights initialization

8: training, validation← RandomSplit(PatientIndex, 0.8, 0.2)
9: while epoch < MaxEpoch do

10: set the DeepProfiler network in training mode
11: ˆDPscore, ˆRadiomics← DeepProfiler(Image[training], GTV [training]; Θ)
12: PLloss← PredictionLoss( ˆDPscore, CensorF lag[training], SurvivalT ime[training])

13: MSEloss← ReconLoss( ˆRadiomics,Radiomics[training])
14: TOTALloss← λ1PLloss+ λ2MSEloss+ η

N

∑
Θ‖Θi‖2

15: ∆Θ← ∇ΘTOTALloss . Use backpropagation to compute the gradient
16: Θ← Θ− α ·∆Θ . Update the model parameters

17: set the DeepProfiler network in evaluation mode
18: ˆDPscore, ˆRadiomics← DeepProfiler(Image[validation], GTV [validation]; Θ)
19: PLloss← PredictionLoss( ˆDPscore, CensorF lag[validation], SurvivalT ime[validation])

20: MSEloss← ReconLoss( ˆRadiomics,Radiomics[validation])
21: TOTALloss← λ1PLloss+ λ2MSEloss
22: if TOTALloss < minTOTALloss then
23: ΘminTOTALloss ← Θ
24: minTOTALloss← TOTALloss
25: end if
26: if PLloss < minPLloss then
27: ΘminPLloss ← Θ
28: minPLloss← PLloss
29: end if
30: epoch← epoch+ 1
31: end while
32: return ΘminPLloss, ΘminTOTALloss

33: end procedure
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Algorithm 2 Calculate Loss Functions

Input:
DPscore deep profiler scores
CensorF lag indicator of censoring, 1 if event and 0 if censored
SurvivalT ime time of event or censoring

Output:
nLogPL prediction loss, negative log of partial likelihood

1: function PredictionLoss(DPscore, CensorF lag, SurvivalT ime)
2: N ← Length(DPscore) . number of patients
3: PL← 1
4: for i = 1→ N do
5: T [i]← 0
6: for j = 1→ N do
7: if SurvivalT ime[i] ≤ SurvivalT ime[j] then
8: Y ← 1
9: else

10: Y ← 0
11: end if
12: T [i]← T [i] + Y · exp(DPscore[j])
13: end for
14: L[i]← exp(DPscore[i])/T [i]
15: PL← PL· Power(L[i], CensorF lag[i])
16: end for
17: nLogPL← − logPL . use negative log of the likelihood as object fucntion
18: return nLogPL
19: end function

Input:
ˆRadiomics estimation of radiomic features

Radiomics hand-crafted radiomic features
Output:

MSE reconstruction loss, mean squared error between feature vectors
20: function ReconLoss( ˆRadiomics, Radiomics)
21: Np ← Size(Radiomics, 1) . number of patients
22: Nf ← Size(Radiomics, 2) . number of features
23: Error ← 0
24: for i = 1→ Np do
25: for j = 1→ Nf do

26: Error ← Error + | ˆRadiomics[i, j]−Radiomics[i, j]|2
27: end for
28: end for
29: MSE ← 1

NpNf
Error

30: return MSE
31: end function
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Algorithm 3 Calculate Deep Profiler Score

Input:
TestingImage preprocessed 3D CT image for testing
TestingGTV binary 3D GTV mask
ΘminPLloss parameters of deep profiler model with minimum validation loss

Output:
ˆDPscore deep profiler score

1: function TestModel(TestingImage, TestingGTV , ΘminPLloss)
2: set the DeepProfiler network in evaluation mode
3: ˆDPscore, ˆRadiomics← DeepProfiler(TestingImage, TestingGTV ; ΘminPLloss)
4: return ˆDPscore
5: end function

Algorithm 4 Calculate Saliency Map

Input:
TestingImage preprocessed 3D CT image for testing
TestingGTV binary 3D GTV mask
ΘminPLloss parameters of deep profiler model with minimum validation loss

Output:
SaliencyMap saliency map of each input volume

1: function GetSaliency(TestingImage, TestingGTV , ΘminPLloss)
2: set the DeepProfiler network in evaluation mode
3: for i = 1→ Length(TestingImage) do . number of patients

4: ˆDPscore, ˆRadiomics← DeepProfiler(TestingImage[i], T estingGTV [i]; ΘminPLloss)
5: SaliencyMap[i]← ∇TestingImage[i] ˆDPscore
6: end for
7: return SaliencyMap
8: end function

Algorithm 5 Pre-process CT image, GTV mask and Radiomics

Input:
RawImage raw 3D CT image
RawGTV raw 3D GTV mask

Output:
Image preprocessed CT image
GTV preprocessed GTV mask
Radiomics normalized radiomic features

1: function Preprocessing(RawImage, RawGTV )
2: N ← Length(RawImage) . number of patients
3: V oxelSpacing ← [1.17, 1.17, 3]
4: xSize, ySize, zSize← [64, 64, 32]
5: for i = 1→ N do
6: if GetVoxelSpaCing(RawImage[i]) 6= V oxelSpacing then
7: RawImage[i]← Resample(RawImage[i], V oxelSpacing, order = 1) . linear interpolation
8: RawGTV [i]← Resample(RawGTV [i], V oxelSpacing, order = 0) . nearest neighbour interpolation
9: end if

10: Cx,Cy,Cz ← CenterOfMass(RawGTV [i])
11: GTV [i]← RawGTV [i, Cx± xSize/2, Cy ± ySize/2, Cz ± zSize/2]
12: Image[i]← RawImage[i, Cx± xSize/2, Cy ± ySize/2, Cz ± zSize/2]
13: Image[i]← Image[i]/1000
14: Radiomics[i]← RadiomicsEngine(RawImage[i], RawGTV [i])
15: end for
16: Radiomics← Zscore(Radiomics)
17: return Image, GTV , Radiomics
18: end function
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