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Supplementary Text 26 

A. Community similarity/dissimilarity metrics 27 

Various similarity/dissimilarity metrics have been applied in ecological research to measure β diversity, 28 

either by taxonomic or phylogenetic β-diversity metrics. Many metrics have both incidence-based 29 

(qualitative) and abundance-based (quantitative) formats. Table S3 summarizes commonly used taxonomic 30 

(1-14) and phylogenetic (15-20) similarity/dissimilarity metrics. Please see Parks and Beiko’s paper (17) 31 

for more phylogenetic β-diversity metrics (39 different indexes). The taxonomic diversity metrics used in 32 

our study were calculated using function “vegdist” and/or “designdist” in R package “vegan” (21). 33 

In principle, our method requires the value of the metric ranging from 0 to 1, and the complementarity 34 

of similarity (C) and dissimilarity (D) indexes (𝐶 = 1 − 𝐷). Many taxonomic and phylogenetic metrics 35 

satisfy this requirement, such as Jaccard, Ružička, Sørensen, Bray-Curtis, Kulczynski, Gower, Canberra, 36 

Morisita-Horn, unweighted Unifrac, and Phylosor, which can be directly implemented with our method. 37 

However, quite a few metrics do not have fixed upper limit and/or not have clear defined similarity measure, 38 

such as Euclidean, Manhattan, Binomial, Cao, modified Gower, βMNTD, βMPD, and most of weighted 39 

phylogenetic dissimilarity metrics. These metrics need to be standardized to meet the requirement before 40 

being applied to our method. Inspired by what Cao et al (14) did to define similarity from Cao dissimilarity 41 

index, we proposed a general method as follows.  42 

𝐷𝑖𝑗 =
𝐷𝑖𝑗
′ −𝑚𝑖𝑛{𝐷′}

𝑚𝑎𝑥{𝐷′} − 𝑚𝑖𝑛{𝐷′}
=

𝐷𝑖𝑗
′

𝐷𝑚𝑎𝑥
′  Eq. S1 

where min{𝐷′} = 0, considering the lower limit of dissimilarity metrics is always zero.  43 

𝐷𝑚𝑎𝑥
′ = {

𝐷𝑢𝑝
′ 𝑖𝑓𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡𝑖𝑠𝑓𝑖𝑥𝑒𝑑

max
𝑖𝑗

{𝐷𝑖𝑗
′ , 𝐺max 𝑖𝑗

′ } 𝑖𝑓𝑢𝑝𝑝𝑒𝑟𝑙𝑖𝑚𝑖𝑡𝑖𝑠𝑛𝑜𝑡𝑓𝑖𝑥𝑒𝑑 Eq. S2 

𝐶𝑖𝑗 = 1 − 𝐷𝑖𝑗 = 1 −
𝐷𝑖𝑗
′

𝐷𝑚𝑎𝑥
′  Eq. S3 

𝐺𝑖𝑗 =
𝐺𝑖𝑗
′

𝐷𝑚𝑎𝑥
′  Eq. S4 

𝐸𝑖𝑗 = 1 − 𝐺𝑖𝑗 = 1 −
𝐺𝑖𝑗
′

𝐷𝑚𝑎𝑥
′  

Eq. S5 

 

 

𝐷𝑖𝑗 Standardized dissimilarity between community i and j. 44 

𝐷𝑖𝑗
′  Unstandardized (original) dissimilarity between community i and j. 45 

𝐶𝑖𝑗 Standardized similarity between community i and j. 46 

𝐷𝑚𝑎𝑥
′  Probable maximum unstandardized dissimilarity. 47 

𝐷𝑢𝑝
′  Defined upper limit of original dissimilarity, e.g. for Bray-Curtis, 𝐷𝑢𝑝

′ = 1. 48 

𝐺𝑖𝑗 Standardized null (randomly expected) dissimilarity between community i and j. 49 

𝐺𝑖𝑗
′  Unstandardized null dissimilarity calculated between community i and j. 50 
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𝐸𝑖𝑗 Standardized null similarity calculated between community i and j. 51 

𝐸𝑖𝑗
′  Unstandardized null similarity calculated between community i and j. 52 

𝐺𝑚𝑎𝑥𝑖𝑗
′  The estimated maximum value of null dissimilarity between community i and j. It is calculated as 53 

3 times of smoothing bandwidth beyond the maximum simulated value of the dissimilarity 𝐷𝑖𝑗
′ , 54 

using function “density” with Gaussian model in R package “stats”. 55 

 56 

Our method described in the main text is based on similarity and dissimilarity metrics ranging from 0 57 

to 1 or standardized according to above equations. If the upper limit of dissimilarity is not fixed, 𝐷𝑚𝑎𝑥
′  is 58 

still not a fixed value but depends on community data matrix and null model algorithms, which leads to the 59 

uncertainty of metrics standardization. Therefore, the original metrics ranging from 0 to 1 (i.e. there is no 60 

need for standardization) are preferred if they have the same performance in terms of accuracy and precision 61 

as standardized metrics. 62 

 63 

We tested thirteen incidence-based metrics, which can be classified into three major categories: 64 

i. Unique-ratio metrics: the dissimilarity is measured by the ratio of unique taxa (i.e. the taxa only 65 

observed in one of the two samples). Jaccard is the unique taxa number divided by total observed 66 

taxa number in two samples, which is exactly the same as incidence-based Canberra, modified 67 

Gower (mGower), and modified Manhattan (mManhattan), and will be incidence-based Cao if 68 

multiplied with a constant. Sørensen is the unique taxa number divided by the sum of observed 69 

taxa number in two samples, which is exactly the same as incidence-based Morisita-Horn. 70 

Kulczynski is the mean of unique taxa percentage in each sample, and Gower is the unique taxa 71 

number divided by observed taxa number across all samples. Thus, these nine metrics can be 72 

classified into the same type named unique-ratio metrics. 73 

ii. Unique-number metrics: the dissimilarity is directly measured by the number of unique taxa in two 74 

samples. Incidence-based Manhattan is defined as this, and incidence-based Binomial is Manhattan 75 

multiplied with a constant. 76 

iii. Squared-root metrics: the metrics are calculated from squared root of unique taxa number. This 77 

type includes incidence-based Euclidean and modified Euclidean (mEuclidean) which is Euclidean 78 

divided by total observed taxa number in the two samples. 79 

 80 

We also tested fifteen abundance-based metrics, which can be divided into four major groups as below: 81 

i. Relative-difference metrics: the abundance difference (or the relatively smaller abundance) of each 82 

taxon between two samples is divided by the abundances of the taxon in the samples before or after 83 

summed up. Ružička, Bray-Curtis, and Kulczynski definitely belong to this type. In Chao’s formula, 84 

the total number of individuals in the taxa shared by the two samples (Ci) is divided by the total 85 

number of individuals in a sample (i.e. abundance sum in a sample), thus Chao is also classified 86 

into this type. 87 

ii. Average-relative-difference metrics: the sum of relative difference between two samples (or other 88 

value represent relative difference) is further divided by total taxa number in the samples. Canberra 89 

is a typical metric defined as average relative difference of taxon abundance between two samples. 90 

In the equation of mGower, the numerator is calculated from the difference of logarithmic 91 

transformed abundances which is equal to the ratio between larger and smaller abundance before 92 
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logarithmic transformation, thus can be regarded as relative difference. And the denominator is 93 

total taxa number in the two samples, thus mGower can be classified as average relative difference. 94 

Cao also has a numerator related to the ratio of each taxon’s abundance between two samples and 95 

the total taxa number as the denominator, thus belongs to this type. 96 

iii. Absolute-difference metrics: the abundance difference between two samples is not divided by the 97 

taxa abundances in the two samples. Manhattan is defined as the sum of absolute abundance 98 

difference. mManhattan is Manhattan divided by total taxa number in the two samples rather than 99 

any abundance-related value, thus classified into this type. Gower and Binomial appear like 100 

relative-abundance metrics, but usually show stronger correlation with Manhattan or mManhattan 101 

than other relative-abundance metrics. For example, in the empirical data used in this study, Gower 102 

and Binomial showed obviously higher correlation coefficients with Manhattan (r=0.964 and 0.897) 103 

than with Bray-Curtis (r=0.359 and 0.558). Thus, they are classified into this type. 104 

iv. Squared-sum metrics: the metrics are calculated from the sum of squared abundance difference or 105 

product of abundances in two samples. Euclidean is squared root of the squared difference sum and 106 

mEuclidean is Euclidean divided by total taxa number in the two samples. Morisita and Morisita-107 

horn are calculated from the product of abundances of each taxon in two samples. By some 108 

mathematical deviation, Morisita-horn is actually the squared sum of each taxon’s proportion 109 

difference divided by the sum of squared proportions, i.e. [∑ (𝑝𝑖𝑘 − 𝑝𝑗𝑘)
2

𝑘 ] (∑ 𝑝𝑖𝑘
2

𝑘 + ∑ 𝑝𝑗𝑘
2

𝑘 )⁄ , 110 

where pik and pjk are the proportions of taxon k in sample i and j, respectively. and Morisita has 111 

some minor difference. Thus, these four metrics are classified as a type of squared-sum. 112 

 113 

B. Normalization of stochasticity ratio 114 

Intuitively, the indexes measuring stochasticity and determinism are expected to range from 0% to 100%, 115 

and reach the extreme values when community assembly is completely deterministic or stochastic. We 116 

defined stochasticity ratio (STij) as the ratio of average null expectation (𝐸𝑖𝑗̅̅ ̅̅  or 𝐺𝑖𝑗̅̅ ̅̅ ) to observed similarity 117 

(Cij) or dissimilarity (Dij). Because null expectation is calculated from null model which simulates stochastic 118 

assembly, when community assembly is highly stochastic, the average observed similarity or dissimilarity 119 

can be very close to the average null expectation, and ST can approach the accurate value of stochasticity 120 

(i.e. 100%). However, also because null model simulates stochastic assembly, the average null expectation 121 

always has substantial deviations from 0, no matter how deterministic the observed similarity or 122 

dissimilarity is. Therefore, when the community assembly is highly deterministic, the expected stochasticity 123 

approaches 0%, but the values of STij always has substantial deviations from 0%. It means that ST would 124 

obviously overestimate stochasticity when expected stochasticity is very low, although it could be relatively 125 

accurate when expected stochasticity is high. Thus, we applied the following formula to obtain normalized 126 

selection strength (NSS) and normalized stochasticity ratio (NST). 127 

𝑁𝑆𝑆 =
𝑆𝑆 − 𝑆𝑆𝑇

𝑆𝑆𝐷 − 𝑆𝑆𝑇  Eq. S6 
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𝑁𝑆𝑇 = 1 −𝑁𝑆𝑆 =
𝑆𝑆𝐷 − 𝑆𝑆

𝑆𝑆𝐷 − 𝑆𝑆𝑇  Eq. S7 

where 𝑆𝑆 is the observed selection strength, 𝑆𝑆𝐷  and 𝑆𝑆𝑇  are the theoretical extreme values of 𝑆𝑆 under 128 

completely deterministic and stochastic assembly, respectively. After normalization, when community 129 

assembly is completely deterministic, 𝑆𝑆 is equal to 𝑆𝑆𝐷 , NSS will be 100%, and NST will be 0%. When 130 

community assembly is completely stochastic, 𝑆𝑆 will be equal to 𝑆𝑆𝑇 , NSS will be 0% and NST will be 131 

100%. Thus, NSS and NST are theoretically better than SS and ST for measuring determinism and 132 

stochasticity in community assembly.  133 

Before further derivation, we introduce a generalized function ξ to make equations simpler. 134 

𝜉(𝑥, 𝑦) =
𝑥 − 𝑦

𝑥 − 𝛿
𝛿 = {

0 𝑥 ≥ 𝑦
1 𝑥 < 𝑦

 Eq. S8 

If we set x as the observed similarity between community i and j (𝐶𝑖𝑗), and set 𝑦 as the average null 135 

expectation of the similarity between community i and j (𝐸𝑖𝑗̅̅ ̅̅ ), 𝑥 ≥ 𝑦  means type A situation, 𝑥 < 𝑦  means 136 

type B situation, and 𝜉(𝐶𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ ) is the same as our definition of SS between community i and j. Thus, we 137 

can simplify Eq. 1 and Eq. 3 in the main text into one equation as below. 138 

𝑆𝑆𝑖𝑗 = 𝜉(𝐶𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ ) Eq. S9 

and 139 

𝐸𝑖𝑗̅̅ ̅̅ =
∑ 𝐸𝑖𝑗

(𝑘)𝑁𝑟
𝑘=1

𝑁𝑟
 Eq. S10 

where 𝐸𝑖𝑗
(𝑘)

 is the null similarity between community i and j at the kth randomization time of null model 140 

analysis, and 𝑁𝑟 is the randomization time of null model, which is usually set as 1000 times. 141 

To estimate 𝑆𝑆𝐷 , we consider two extreme situations. If the deterministic factors lead to more similar 142 

community structure (𝐶𝑖𝑗 ≥ 𝐸𝑖𝑗̅̅ ̅̅ , type A situation), the extremely deterministic assembly should have the 143 

similarity, 𝐶𝐷 𝑖𝑗, approaching to the maximum value of 1. In contrast, if the deterministic factors lead to 144 

more dissimilar community structure (𝐶𝑖𝑗 < 𝐸𝑖𝑗̅̅ ̅̅ , type B situation), the extremely deterministic assembly 145 

should have the dissimilarity close to the maximum and the similarity, 𝐶𝐷 𝑖𝑗 , close to 0. Thus, 𝑆𝑆𝐷
𝑖𝑗 and 146 

𝑆𝑆𝐷  can be estimated by following equations. 147 

𝐶𝐷 𝑖𝑗 = {
1 𝐶𝑖𝑗 ≥ 𝐸𝑖𝑗̅̅ ̅̅

0 𝐶𝑖𝑗 < 𝐸𝑖𝑗̅̅ ̅̅
 Eq. S11 

𝑆𝑆𝐷
𝑖𝑗 = 𝜉( 𝐶𝐷 𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ ) Eq. S12 

𝑆𝑆𝐷 =
∑ 𝑆𝑆𝐷

𝑖𝑗𝑖𝑗

𝑛
=
∑ 𝜉( 𝐶𝐷 𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗

𝑛
 Eq. S13 

where n is the number of pairwise comparisons. 148 
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Before estimating 𝑆𝑆𝑇 , we would like to explain why 𝑆𝑆𝑇  cannot be simply set as zero. We need to 149 

consider the “uncertainty” of similarity/dissimilarity of communities when they are under completely 150 

stochastic assembly. Here “uncertainty” means that, similarity of each pairwise comparison under 151 

completely stochastic assembly ( 𝐶𝑇 𝑖𝑗) has probability to be any value within the range of null expectation, 152 

because of the randomness of stochastic assembly. The completely stochastic assembly can be simulated 153 

by null model. 𝐶𝑇 𝑖𝑗 can be estimated as null similarity 𝐸𝑖𝑗 which is not a certain value but a distribution 154 

{𝐸𝑖𝑗
(𝑘)

}
𝑘

 with highest probability usually at the average null expectation 𝐸𝑖𝑗̅̅ ̅̅ . The estimated SS under 155 

complete stochastic assembly 𝑆𝑆𝑇  is the average relative deviation of 𝐸𝑖𝑗 from the mean 𝐸𝑖𝑗̅̅ ̅̅ . Similar to 156 

standard deviation, 𝑆𝑆𝑇  value depends on variance of 𝐸𝑖𝑗 and could be equal to zero only if the variances 157 

of 𝐸𝑖𝑗 in every pairwise comparison are all equal to zero. Due to the randomness of stochastic assembly, 158 

𝐸𝑖𝑗 always has variance larger than zero, thus 𝑆𝑆𝑇  can never be zero. 159 

To estimate 𝑆𝑆𝑇 , we simulate stochastic assembly by randomizing the observed community structure 160 

with a null model algorithm for as many times as necessary (usually 𝑁𝑟=1000 times). At each time of 161 

randomization, the SS value of each null pairwise comparison 𝑆𝑆𝑇
𝑖𝑗
(𝑘)

can be calculated from the null 162 

similarity 𝐸𝑖𝑗
(𝑘)

. Then, we can obtain the average SS value of the null communities at each randomization 163 

time 𝑆𝑆𝑇 (𝑘). To ensure the index NSS will not exceed 100%, 𝑆𝑆𝑇  is calculated as the minimum value of 164 

{ 𝑆𝑆𝑇 (𝑘)}
𝑘
. Altogether, 𝑆𝑆𝑇  can be estimated as following equations. 165 

𝑆𝑆𝑇
𝑖𝑗
(𝑘)

= 𝜉 (𝐸𝑖𝑗
(𝑘)
, 𝐸𝑖𝑗̅̅ ̅̅ ) Eq. S14 

𝑆𝑆𝑇 = min
𝑘
{ 𝑆𝑆𝑇 (𝑘)} Eq. S15 

 166 

Altogether, NSS and NST are calculated as below. 167 

𝑁𝑆𝑆 =
𝑆𝑆 − 𝑆𝑆𝑇

𝑆𝑆𝐷 − 𝑆𝑆𝑇 =
∑ 𝜉(𝐶𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 −min

𝑘
{∑ 𝜉 (𝐸𝑖𝑗

(𝑘)
, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 }

∑ 𝜉( 𝐶𝐷 𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 −min
𝑘

{∑ 𝜉 (𝐸𝑖𝑗
(𝑘)
, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 }

 Eq. S16 

𝑁𝑆𝑇 =
𝑆𝑆𝐷 − 𝑆𝑆

𝑆𝑆𝐷 − 𝑆𝑆𝑇 =
∑ 𝜉( 𝐶𝐷 𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 − ∑ 𝜉(𝐶𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗

∑ 𝜉( 𝐶𝐷 𝑖𝑗, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 −min
𝑘

{∑ 𝜉 (𝐸𝑖𝑗
(𝑘)

, 𝐸𝑖𝑗̅̅ ̅̅ )𝑖𝑗 }
 Eq. S17 

Because such indexes are originally derived from every pairwise comparison, they are not independent. 168 

The distribution of NSS or NST is unknown and probably not normal. Therefore, the nonparametric 169 

permutation test, permutational multivariate analysis of variance (PERMANOVA), is used to examine 170 

whether the communities under different conditions differ in their NSS and NST. The ST and NST 171 

calculation and PERMANOVA test can be performed using the function “NST” on a web-based pipeline 172 

(http://ieg3.rccc.ou.edu:8080/) built on Galaxy platform (22) or a R package “NST”. 173 

 174 

http://ieg3.rccc.ou.edu:8080/
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C. Estimating stochasticity in simulated communities 175 

C1. Simulation models 176 

(a) Spatially implicit simulation model 177 

We built a spatially implicit simulation model to obtain a total of 21 datasets with the expected abundance-178 

based stochasticity ranging from 0% to 100% (5% interval, scenario A in Table S1 and Fig. S1a). Each 179 

dataset has two groups of local communities from 2 plots under distinct environments (e.g. very hot and 180 

cold environments). The two plots share the same metacommunity. Each plot has 12 local communities 181 

as biological replicates. In each local community, the total richness and total abundances of deterministic 182 

and stochastic species are set according to a certain expected stochasticity. The total abundance of 183 

microorganisms in each local community is set as 20,000, which is a normal sequencing depth of 16S rRNA 184 

gene in many microbial community studies. 185 

 186 

The metacommunity structure (i.e. abundance of each species in the metacommunity) is generated 187 

according to metacommunity zero-sum multinomial distribution (mZSM) (23) derived from Hubbell’s 188 

Unified Neutral Theory Model (24), using R package “sads” (25) with J=108, θ=5000, and 10,000 species 189 

sampled. In each local community, the stochastic species are simulated as a random draw of 100 species 190 

(i.e. the assigned richness of stochastic species in the local community) from metacommunity, with 191 

probabilities proportional to their regional frequencies. The regional frequency of a stochastic species is 192 

calculated from its regional relative abundance according to Sloan’s Neutral Model (26) which was also 193 

derived from Hubbell’s neutral theory and particularly developed for microbial communities. The dispersal 194 

rate (m) is set as 0.1. The abundances of stochastic species in a local community are simulated as a random 195 

draw of a certain number of individuals (i.e. the assigned total abundance of stochastic species in the local 196 

community) from metacommunity into the stochastic species in this community, with probabilities 197 

proportional to the regional relative abundances of the species. We set only two types of deterministic 198 

species: one is thermophilic, and the other is psychrophilic. The local communities from hot environment 199 

have equal abundances of the thermophilic species, but no psychrophilic species. The communities from 200 

cold environment are under exactly opposite situation, such that the similarity of deterministic species is 201 

100% within group and 0% between groups. 202 

The expected stochasticity in a simulated community can be defined as incidence-based or abundance-203 

based measures as below. 204 

𝑆𝑇𝑒𝑥𝑝.𝑖𝑛 =
𝑆𝑡

𝑆𝑡 + 𝑆𝑑
 Eq. S18 

𝑆𝑇𝑒𝑥𝑝.𝑎𝑏 =
𝐽𝑡

𝐽𝑡 + 𝐽𝑑
 Eq. S19 

STexp.in Incidence-based expected stochasticity in a simulated local community. 205 

STexp.ab Abundance-based expected stochasticity in a simulated local community. 206 

Sd Richness of deterministic species in a simulated local community. 207 

Jd Total abundance of deterministic species in a simulated local community. 208 

St Richness of stochastic species in a simulated local community. 209 

Jt Total abundance of stochastic species in a simulated local community. 210 
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 211 

(b) Spatially explicit simulation model 212 

To examine scale dependence of stochasticity estimation, we built a spatially explicit simulation model 213 

(Scenario B-F in Table S1, Fig. 2a, and Fig. S1b). The model has four-level metacommunities, including 214 

local (for each site), regional, continental, and global metacommunities. In the model, an area of 16,384 215 

(128×128) cells are divided into 4 (2×2) continents, each continent is divided into 4 (2×2) regions, and each 216 

region is divided into 4 (2 × 2) sites. Each site has 4 (2×2) plots, sharing the same local metacommunity. 217 

Each plot has 64 (8×8) cells, and each cell represents a local community with 20,000 individuals (Fig. 2a). 218 

We take all individuals from a single cell as a sample, and a certain number of samples from each plot (6 219 

samples/plot unless specified) to get a simulated dataset. Ecological stochasticity was estimated with 220 

different indexes based on the pairwise comparisons of all samples within each unit at different spatial 221 

scales, i.e. plot, site, region, continent, or global. 222 

 223 

To investigate more complicated deterministic forces, deterministic species were simulated under three 224 

types of scenarios. The first scenario (Scenario B in Table S1 and Fig. S1b) is simple abiotic filtering 225 

without environmental noise. Plots at the same row (like latitude) have the same temperature, while 226 

temperature increases by 2°C per plot along each column (like longitude), from 0°C at the top (northmost) 227 

plot to 30°C at the bottom (southmost) plot (Fig. 2a). The temperature is homogeneous within each plot. 228 

All local communities (cells) under each temperature have equal abundance of the only deterministic 229 

species which prefer this temperature. 230 

The second type of scenarios (Scenario C-E in Table S1) is abiotic filtering with environmental noise. 231 

The mean temperature of each plot is the same as that in the first scenario, but the temperature in each cell 232 

is a random value from a normal distribution with a certain standard deviation (temperature deviation, 𝜎𝑡). 233 

Temperature within each cell is still set homogenous. The abundances of deterministic species in each cell 234 

are determined by a Gaussian function as below (Eq. S20). The temperature deviation in each plot is set at 235 

different level comparing to fitness deviation (𝜎𝑓, defined in Eq. S20), to simulate low (𝜎𝑡=5%𝜎𝑓, Table S1 236 

scenario C), medium (𝜎𝑡=25%𝜎𝑓 , Table S1 scenario D), and high (𝜎𝑡=200%𝜎𝑓 , Table S1 scenario E) 237 

environmental noise. 238 

𝐴𝑖𝑗 = 𝐽𝑑0exp[−
(𝑇𝑗 − 𝑇𝑖)

2

2𝜎𝑓
2 ] Eq. S20 

Aij Abundance of species i in local community j. 239 

Jd0 Expected maximum abundance of deterministic species i in a local community. 240 

Tj Temperature of local community j. 241 

Ti Optimum temperature of species i. 242 

𝜎𝑓 Fitness deviation, set as 0.4 in this study. 243 

 244 

The third type of scenario is to consider biotic competition (Table S1 scenario F). Each of the 256 245 

competitors randomly occupies one cell at the very beginning. Then, the competitors randomly disperse to 246 

an adjacent cell at each time step, with equal probabilities to all four directions, until all cells are occupied 247 
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by competitors. In each cell (i.e. each local community), the first-arrived competitor excludes other 248 

competitor(s) and stops them passing through the cell. 249 

The fourth type of scenario is to investigate community under complex deterministic forces (Table S1 250 

scenario G). In each simulated community with deterministic part, deterministic species controlled by 251 

abiotic filtering without environmental noise are simulated as in the first scenario, and then combined at a 252 

certain abundance ratio with species controlled by competition which are simulated as in the third types of 253 

scenarios. 254 

In different scenarios, stochastic species were simulated in the same way as below. First, a global 255 

metacommunity was generated in the same way as that in spatially implicit model, with J=109, θ=5000, and 256 

10,000 species sampled. Second, we developed a two-step random assembly model to simulate stochastic 257 

assembly in the spatially explicit model. At the first step, a certain number of species (St) are randomly 258 

drawn from the higher-level metacommunity to a lower-level (meta)community, according to the expected 259 

occurrence frequencies and relative abundance of all species in the higher-level metacommunity as 260 

described in the spatially implicit model. The expected occurrence frequencies are calculated according to 261 

Sloan’s neutral model with a certain dispersal rate (m1). At the second step, the species (St) for each lower-262 

level (meta)community are randomly drawn from three sources, the higher-level metacommunity (with a 263 

dispersal rate of m1), first-step pool of this lower-level (meta)community (m2), and all first-step pools of 264 

adjacent (meta)communities (m3), to simulate dispersal from higher-level species pool and adjacent 265 

communities, respectively. Third, we applied this two-step random assembly model to simulate the 266 

(meta)communities at each level. Each continental metacommunity (5,200 species and 8×107 individuals) 267 

is simulated as two-step random draw from global metacommunity with the dispersal rates of m1=0.001, 268 

m1=0.997, and m2=0.002. In the same way, we simulated each regional metacommunity (2,700 species, 269 

2×107 individuals, m1=0.05, m1=0.8, m2=0.15), local metacommunity (each site, 1,400 species, 5×106 270 

individuals, m1=0.1, m1=0.5, m2=0.4), and local community (each cell, 100 species, m1=0.2, m1=0.2, 271 

m2=0.6). In each local community (cell), the total individual number of stochastic species depends on the 272 

expected abundance-based stochasticity (𝑆𝑇𝑒𝑥𝑝.𝑎𝑏). The dispersal rates from the adjacent (meta)community 273 

pool (m2) are higher at lower spatial scales because dispersal is easier at smaller spatial scales. 274 

For each scenario, we combined deterministic and stochastic species at different abundance ratios to 275 

generate 11 datasets with expected abundance-based stochasticity ranging from 0% to 100% (10% interval). 276 

For each dataset, we estimated stochasticity at different spatial scales with the three indexes and evaluated 277 

their accuracy and precision as described below. 278 

 279 

C2. Stochasticity indexes 280 

In each dataset, the stochasticity within each group of simulated communities was estimated by ST and NST, 281 

and the neutral species percentage (NP). NST and ST in simulated communities were calculated based on 282 

the null model algorithm “PF” (described in part D and Table S4) and various similarity metrics (Table S2). 283 

Sloan et al. (26) developed a neutral model about the relationship between occurrence frequency and 284 

relative abundance in source community for microbial communities. We applied Sloan’s neutral model to 285 

fit the occurrence frequency of each species in a group of communities and the relative abundance in the 286 

whole dataset. The species within the 95% confidence interval of Sloan neutral model are defined as neutral 287 

species (27). The abundance-weighted and unweighted percentage of neutral species (NP) were used to 288 
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estimate abundance-based and incidence-based stochasticity, respectively. NP was calculated using the R 289 

codes reported by Burns et al. (27). 290 

Modified Roup-Crick metrics (RC) and standardized effect size (SES) were also applied to 291 

communities simulated by spatial implicit model, calculated as previously reported (28-30). The percentage 292 

of turnovers with |SES|<2 and that with |RC|<0.95 were counted as stochastic turnover ratio (SR) based on 293 

SES (SRSES) and SR based on RC (SRRC), respectively (29). These indexes showed obviously worse 294 

quantitative performance than NST and ST for data of spatial implicit model, when calculated based on 295 

Bray-Curtis and Ružička (Fig. S6). Thus, we did not further apply them to other simulated data or test 296 

various metrics. 297 

 298 

C3. Evaluating the accuracy and precision of different stochasticity indexes 299 

We evaluated the performance of each stochasticity index quantitatively by accuracy and precision 300 

coefficients. Concordance Correlation Coefficient (CCC) was developed as a measure of agreement 301 

between two methods (31). It has meaningful components of accuracy (𝜒𝑎, Eq. S21) and precision (𝜌, Eq. 302 

S22) (32), in which the precision coefficient is the same as Pearson correlation coefficient. Thus, we applied 303 

these two coefficients to evaluate the accuracy and precision of stochasticity values estimated by different 304 

methods (Table S2). Based on the equation, high accuracy coefficient value means the estimated values 305 

have very similar mean and variance as true values. In contrast, high precision coefficient means the 306 

variation of estimated values have very similar trend as true values, thus can precisely reflect the relative 307 

change of true values. Therefore, a qualified stochasticity index should have high scores in both accuracy 308 

and precision coefficients. For example, we assume the true values are 20%, 40%, 60%, 80%, 90% in 309 

sequence. When the estimated values are 90%, 60%, 80%, 40%, 20%, the accuracy is very high (𝜒𝑎=1) but 310 

the precision is very low (𝜌=-0.86, negative), thus the index is useless. When the estimated values are 2%, 311 

4%, 6%, 8%, 9%, the accuracy is very low (𝜒𝑎=0.04) but the precision is very high (𝜌=1), thus the index 312 

cannot reflect the magnitude of true value but can be used to estimate the relative changes of true values. 313 

When the estimated values are 19%, 41%, 60%, 79%, 91%, the accuracy and precision are both very high 314 

(>0.99), thus the index can be used to estimate the true values.  315 

𝜒𝑎 =
2𝜎𝑥𝜎𝑦

𝜎𝑥
2 + 𝜎𝑦

2 + (𝜇𝑥 − 𝜇𝑦)
2 Eq. S21 

𝜌 =
𝜎𝑦𝑥

𝜎𝑥𝜎𝑦
 Eq. S22 

 316 

𝜎𝑦𝑥 Covariance of x and y. In our study, x is expected stochasticity, and y is estimated stochasticity. 317 

𝜎𝑥
2 Variance of x. 318 

𝜎𝑦
2 Variance of y. 319 

𝜇𝑥 Mean of x. 320 

𝜇𝑦 Mean of y. 321 
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D. Null model algorithms 322 

In general, there are nine major types of null model algorithms for species co-occurrence analysis, 323 

previously elucidated by Gotelli (33) (Table S4). When randomizing the observed communities, different 324 

null model algorithms use different ways to constrain the occurrence frequency of each taxon and taxon 325 

richness in each sample. We listed the abbreviation and formula to calculate the probability of a taxon 326 

present in a sample in each algorithm in Table S4. If abundance weighted metrics are used, after getting 327 

occurrence data matrix, abundance can be assigned as random draw of individuals with probabilities 328 

proportional to the regional relative abundances of the taxa as previously described by Stegen et al (29). 329 

All samples of the empirical dataset were considered as from the same regional species pool, thus 330 

randomization was performed across all samples. ST and NST can be calculated based on different null 331 

model algorithms and different metrics using the function “NST” on the pipeline 332 

(http://ieg3.rccc.ou.edu:8080), or using the function “tNST” in a R package “NST”. 333 

 334 

http://ieg3.rccc.ou.edu:8080/
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Supplementary Figures 335 

  336 
Fig. S1. Community composition, stochastic assembly model and expected stochasticity in the 337 

example datasets from (a) the spatially implicit model and (b) the spatially explicit model. The OTU 338 

tables and associated annotation (left part of each panel) show the abundances, richness, and abundance 339 

sum of deterministic (blue) and stochastic (orange) species in each sample, while Sd.tot and St.tot represent 340 

the total richness of deterministic and stochastic species across all samples in a dataset. Each column of 341 

the OTU tables represents a sample, and each OTU represents a species. The bottom box (brown) in each 342 

panel shows how the expected stochasticity is calculated. The box of stochastic assembly model on the 343 
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right panel shows how the stochastic species are simulated. In both spatially implicit (a) and explicit (b) 344 

models, the top-level metacommunity is simulated according to Hubbell’s neutral theory model, and each 345 

local community is generated as random draw from local metacommunity based on Sloan’s neutral 346 

model. In the spatially explicit model with four-level metacommunities, lower-level metacommunities are 347 

simulated as random draw of species from higher-level metacommunities using a two-step random 348 

assembly method based on Sloan’s neutral model. In the spatially implicit model, all simulated local 349 

communities (12/plot) are taken as samples. In the spatially explicit model, a certain number (6 in this 350 

example) of local communities are taken as samples from each plot (the box about sampling). See 351 

supplementary text part C and Table S1 for details. 352 
 353 

  354 
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  355 
Fig. S2. Accuracy and precision of stochasticity estimation in simulated communities under abiotic 356 

filtering with noise from deterministic environmental factors (i.e. environmental noise) or with 357 

competition. (a) Influence of sample size on precision of normalized stochasticity ratio (NST) at plot scale 358 

with different degrees of environmental noise. The precision obviously decreased when sample size was 359 

not large enough (≤6 samples/plot), which was more obvious when environmental noise was higher. The 360 

accuracy did not show obvious trend, thus not showed here. (b) Accuracy and precision of stochasticity 361 

estimation under low environmental noise (σt/σf =5%, Table S1 scenario C) and (c) high environmental 362 

noise (σt/σf =200%, Table S1 scenario E) across different spatial scales (P, plot; S, site; R, region; C, 363 

continent; G, global). NST can have high accuracy and precision when environmental noise was not too 364 

high. All indexes had very low accuracy especially at large scales, although stochasticity ratio (ST) still 365 

showed high precision across different spatial scales. The community was simulated by spatially explicit 366 

model (see Supplementary text C and Table S1 for details). σt, the standard deviation of temperature in each 367 

plot; σf, the fitness deviation defined in Eq. S20. (d, e, f) Accuracy and precision of stochasticity estimation 368 

when deterministic species include some controlled by abiotic filtering and the others controlled by 369 

competition with the ratio of (d) 20%, (e) 50%, and (f) 80%. NST (red bars), normalized stochasticity ratio; 370 

ST (green bars), stochasticity ratio; NP (blue bars), neutral species percentage. NST and ST were based on 371 
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Ružička similarity index (Table S3) and the null model “PF” (Table S4). Accuracy (solid color bars) and 372 

precision (diagonal strip bars) were evaluated by the coefficients derived from concordance correlation 373 

coefficient (Eq. S21-22). (g) NST of simulated communities controlled by abiotic filtering and 374 

competition without stochastic assembly, estimated across different scales. Although the expected 375 

stochasticity is zero, NST still overestimated stochasticity. The overestimation is more obvious 376 

when filtering and competition are comparable (e.g. NST>50% when ratio of competition is 377 

50~60%). The overestimation is the lowest at plot level. In contrast, NST became up to 100% at 378 

regional to global scales when the ratio of competition is 70~90%. 379 

  380 
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Fig. S3. Effects of null model algorithms on NST estimation with incidence-based Jaccard (upper) 381 

and abundance-based Ružička (lower) similarity metric. The emulsified vegetable oil was injected at 382 

Day 1 and almost exhausted at Day 269, and had minimal impact on the control well (W8). Therefore, at 383 

Day 0, Day 269, and W8, the microbial communities were under very high selection pressure caused by 384 

high concentrations of pollutants (e.g. heavy metals, nitrate) and carbon poor (34, 35), thus they should be 385 

under more deterministic assembly with low stochasticity. The vegetable oil injection significantly 386 

increased carbon resources (electron donors) and decreased some pollutants (34), thus should reduce the 387 

impact of selection and increase stochasticity. The null model PP and PF showed more significant and 388 

expected variations of stochasticity along time. Null model EP and EF showed similar trend but much less 389 

estimated stochasticity than expected. Other null models did not show consistent or clear trend. The NST 390 

values based on Ružička were obviously higher than those based on Jaccard although the trend is very 391 

similar. See Table S4 for the detailed algorithms of null models. 392 
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Fig. S4. Effects of similarity metrics on NST estimation. Most metrics showed very similar trend of 393 

stochasticity variation, but the magnitude of NST obviously varied among some metrics. Most abundance-394 

based metrics showed similar trend of stochasticity variation but obviously higher magnitude of NST 395 

comparing to their corresponding incidence-based metrics. Null model algorithm used was “PF” (Table 396 

S4). See Table S3 for detailed definition of each similarity metric, and supplementary text part A for 397 

metrics standardization method. 398 
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Fig. S5. Comparison between NST and ST estimated with different similarity metrics. Although NST 400 

and ST basically showed consistent trend, NST exhibited much less variation when based on different 401 

similarity metrics, i.e. NST is less sensitive to metric selection than ST. 402 
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 404 

Fig. S6. Comparison of different null-model-based indexes applied to the simulated 405 

communities with various levels of expected stochasticity. (a) Estimated stochasticity with 406 

different indexes based on Bray-Curtis; (b) Mean of standardized effect size (SES) and modified 407 

Raup-Crick metrics (RC) based on Bray-Curtis; (c) Estimated stochasticity with different indexes 408 

based on Ružička; (d) Mean of SES and RC based on Ružička. The simulation model was spatially 409 

implicit. NST (red), normalized stochasticity ratio; ST (green), stochasticity ratio; SES (orange, 410 

panel b and d), standardized effect size; SRSES (orange, panel a and c), stochastic turnover ratio 411 

based on SES, i.e. percentage of turnovers with |SES|<2; RC (aqua, panel b and d), modified Raup-412 

Crick metrics; SRRC (aqua, panel a and c), stochastic turnover ratio based on RC, i.e. percentage 413 

of turnovers with |RC|<0.95. 414 

  415 
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Supplementary Tables 416 

Table S1. The richness (S) and abundance (J) of species under stochastic and deterministic 417 
assembly in simulated communities. Seven scenarios (A-G) are considered. Scenario A has 21 datasets, 418 
while the others have 11 datasets. 419 

 420 

Dataset 

# 

Expected stochasticity In each local community In all samples 

Incidence 

-based 

Abundance 

-based 

Stochastic 

species 

Deterministic 

species 

All 

species 

Stochastic 

species 

Determi

nistic 

species 

All 

species 

STexp.in STexp.ab St
[1] Jt Sd Jd S J St.tot Sd.tot Stot 

Scenario A: Spatially implicit model, abiotic filtering without environmental noise 

(12 samples/plot × 2 plots = 24 samples) 

A1 0% 0% 0 0 1 20000 1 20000 0 2 2 

A2 99% 5% 100 1000 1 19000 101 20000 1353 2 1355 

A3 99% 10% 100 2000 1 18000 101 20000 1392 2 1394 

A4 99% 15% 100 3000 1 17000 101 20000 1433 2 1435 

A5 99% 20% 100 4000 1 16000 101 20000 1462 2 1464 

A6 99% 25% 100 5000 1 15000 101 20000 1484 2 1486 

A7 99% 30% 100 6000 1 14000 101 20000 1498 2 1500 

A8 99% 35% 100 7000 1 13000 101 20000 1528 2 1530 

A9 99% 40% 100 8000 1 12000 101 20000 1532 2 1534 

A10 99% 45% 100 9000 1 11000 101 20000 1505 2 1507 

A11 99% 50% 100 10000 1 10000 101 20000 1525 2 1527 

A12 99% 55% 100 11000 1 9000 101 20000 1577 2 1579 

A13 99% 60% 100 12000 1 8000 101 20000 1560 2 1562 

A14 99% 65% 100 13000 1 7000 101 20000 1573 2 1575 

A15 99% 70% 100 14000 1 6000 101 20000 1566 2 1568 

A16 99% 75% 100 15000 1 5000 101 20000 1572 2 1574 

A17 99% 80% 100 16000 1 4000 101 20000 1591 2 1593 

A18 99% 85% 100 17000 1 3000 101 20000 1593 2 1595 

A19 99% 90% 100 18000 1 2000 101 20000 1591 2 1593 

A20 99% 95% 100 19000 1 1000 101 20000 1599 2 1601 

A21 100% 100% 100 20000 0 0 100 20000 1559 0 1559 

Scenario B: Spatially explicit model, abiotic filtering without environmental noise 

(6 samples/plot × 256 plots = 1536 samples) 

B1 0% 0% 0 0 1 20000 1 20000 0 16 16 

B2 99% 10% 100 2000 1 18000 101 20000 3720 16 3736 

B3 99% 20% 100 4000 1 16000 101 20000 3965 16 3981 

B4 99% 30% 100 6000 1 14000 101 20000 4199 16 4215 

B5 99% 40% 100 8000 1 12000 101 20000 4299 16 4315 

B6 99% 50% 100 10000 1 10000 101 20000 4419 16 4435 

B7 99% 60% 100 12000 1 8000 101 20000 4516 16 4532 

B8 99% 70% 100 14000 1 6000 101 20000 4670 16 4686 

B9 99% 80% 100 16000 1 4000 101 20000 4688 16 4704 

B10 99% 90% 100 18000 1 2000 101 20000 4832 16 4848 

B11 100% 100% 100 20000 0 0 100 20000 4807 0 4807 
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Table S1. Continued 421 

Dataset 

# 

Expected stochasticity In each local community In all samples 

STexp.in STexp.ab St Jt Sd Jd S J St.tot Sd.tot Stot 

Scenario C: Spatially explicit model, abiotic filtering with low environmental noise 

(σt/σf =5%[2], 6 samples/plot × 256 plots = 1536 samples) 

C1 0% 0% 0 0 1 
19628~ 

19999 
1 

19628~ 

19999 

0 16 16 

C2 99% 
10.0%~ 

10.2% 
100 2000 1 

17682~ 

17999 
101 

19682~ 

19999 

3701 16 3717 

C3 99% 
20.0%~ 

20.2% 
100 4000 1 

15773~ 

15999 
101 

19773~ 

19999 

3980 16 3996 

C4 99% 
30.0%~ 

30.4% 
100 6000 1 

13752~ 

13999 
101 

19752~ 

19999 

4161 16 4177 

C5 99% 
40.0%~ 

40.4% 
100 8000 1 

11814~ 

11999 
101 

19814~ 

19999 

4349 16 4365 

C6 99% 
50.0%~ 

50.4% 
100 10000 1 

9847~ 

9999 
101 

19847~ 

19999 

4454 16 4470 

C7 99% 
60.0%~ 

60.5% 
100 12000 1 

7851~ 

7999 
101 

19851~ 

19999 

4549 16 4565 

C8 99% 
70.0%~ 

70.4% 
100 14000 1 

5888~ 

5999 
101 

19888~ 

19999 

4592 16 4608 

C9 99% 
80.0%~ 

80.2% 
100 16000 1 

3945~ 

3999 
101 

19945~ 

19999 

4699 16 4715 

C10 99% 
90.0%~ 

90.1% 
100 18000 1 

1969~ 

1999 
101 

19969~ 

19999 

4804 16 4820 

C11 100% 100% 100 20000 0 0 100 20000 4798 0 4798 

Scenario D: Spatially explicit model, abiotic filtering with medium environmental noise 

(σt/σf =25%, 6 samples/plot × 256 plots = 1536 samples) 

D1 0% 0% 0 0 1~2 
15066~ 

19999 
1~2 

15066~ 

19999 
0 16 16 

D2 99% 
10.0%~ 

13.0% 
100 2000 1~2 

13358~ 

17999 

101~ 

102 

15358~ 

19999 
3735 16 3751 

D3 99% 
20.0%~ 

25.4% 
100 4000 1~2 

11721~ 

15999 

101~ 

102 

15721~ 

19999 
3956 16 3972 

D4 99% 
30.0%~ 

40.3% 
100 6000 1~2 

8870~ 

13999 

101~ 

102 

14870~ 

19999 
4147 16 4163 

D5 99% 
40.0%~ 

49.3% 
100 8000 1~2 

8228~ 

11999 

101~ 

102 

16228~ 

19999 
4308 16 4324 

D6 99% 
50.0%~ 

58.3% 
100 10000 1~2 

7145~ 

9999 

101~ 

102 

17145~ 

19999 
4436 16 4452 

D7 99% 
60.0%~ 

71.0% 
100 12000 1~2 

4890~ 

7999 

101~ 

102 

16890~ 

19999 
4523 16 4539 

D8 99% 
70.0%~ 

76.6% 
100 14000 1 

4286~ 

5999 
101 

18286~ 

19999 
4598 16 4614 

D9 99% 
80.0%~ 

86.3% 
100 16000 1~2 

2534~ 

3999 

101~ 

102 

18534~ 

19999 
4725 16 4741 

D10 99% 
90.0%~ 

93.3% 
100 18000 1 

1289~ 

1999 
101 

19289~ 

19999 
4745 16 4761 

D11 100% 100% 100 20000 0 0 100 20000 4849 0 4849 

 422 
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Table S1. Continued 423 

Dataset 

# 

Expected stochasticity In each local community In all samples 

STexp.in STexp.ab St Jt Sd Jd S J St.tot Sd.tot Stot 

Scenario E: Spatially explicit model, abiotic filtering with high environmental noise 

(σt/σf =200%, 6 samples/plot × 256 plots = 1536 samples) 

E1 0% 0% 0 0 1~2 
3~ 

19999 
1~2 

3~ 

19999 
0 16 16 

E2 99% 
10.0%~ 

100.0% 
100 2000 0~2 

0~ 

17999 

100~ 

102 

2000~ 

19999 
3747 16 3763 

E3 99% 
20.0%~ 

100.0% 
100 4000 0~2 

0~ 

15999 

100~ 

102 

4000~ 

19999 
3958 16 3974 

E4 99% 
30.0%~ 

100.0% 
100 6000 1~2 

2~ 

13999 

101~ 

102 

6002~ 

19999 
4153 16 4169 

E5 99% 
40.0%~ 

100.0% 
100 8000 0~2 

0~ 

11999 

100~ 

102 

8000~ 

19999 
4300 16 4316 

E6 99% 
50.0%~ 

100.0% 
100 10000 0~2 

0~ 

9999 

100~ 

102 

10000~ 

19999 
4455 16 4471 

E7 99% 
60.0%~ 

100.0% 
100 12000 0~2 

0~ 

7999 

100~ 

102 

12000~ 

19999 
4522 16 4538 

E8 99% 
70.0%~ 

100.0% 
100 14000 1~2 

1~ 

5999 

101~ 

102 

14001~ 

19999 
4643 16 4659 

E9 99% 
80.0%~ 

100.0% 
100 16000 0~2 

0~ 

3999 

100~ 

102 

16000~ 

19999 
4720 16 4736 

E10 99% 
90.0%~ 

100.0% 
100 18000 0~2 

0~ 

1999 

100~ 

102 

18000~ 

19999 
4779 16 4795 

E11 100% 100% 100 20000 0 0 100 20000 4887 0 4887 

Scenario F: Spatially explicit model, biotic interspecies competition 

(6 samples/plot × 256 plots = 1536 samples) 

F1 0% 0% 0 0 1 20000 1 20000 0 249 249 

F2 99% 10% 100 2000 1 18000 101 20000 3721 251 3972 

F3 99% 20% 100 4000 1 16000 101 20000 3964 247 4211 

F4 99% 30% 100 6000 1 14000 101 20000 4203 248 4451 

F5 99% 40% 100 8000 1 12000 101 20000 4351 249 4600 

F6 99% 50% 100 10000 1 10000 101 20000 4438 244 4682 

F7 99% 60% 100 12000 1 8000 101 20000 4533 253 4786 

F8 99% 70% 100 14000 1 6000 101 20000 4629 248 4877 

F9 99% 80% 100 16000 1 4000 101 20000 4714 250 4964 

F10 99% 90% 100 18000 1 2000 101 20000 4787 251 5038 

F11 100% 100% 100 20000 0 0 100 20000 4780 0 4780 

Scenario G: Spatially explicit model, abiotic filtering and competition 

(6 samples/plot × 256 plots = 1536 samples) 

G1 0% 0% 0 0 2 20000 2 20000 0 272 272 

G2 99% 10% 100 2000 2 18000 102 20000 4702 272 4974 

G3 99% 20% 100 4000 2 16000 102 20000 4923 272 5195 

G4 99% 30% 100 6000 2 14000 102 20000 5107 272 5379 

G5 99% 40% 100 8000 2 12000 102 20000 5234 272 5506 

G6 99% 50% 100 10000 2 10000 102 20000 5393 272 5665 

G7 99% 60% 100 12000 2 8000 102 20000 5447 272 5719 
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Dataset 

# 

Expected stochasticity In each local community In all samples 

STexp.in STexp.ab St Jt Sd Jd S J St.tot Sd.tot Stot 

G8 99% 70% 100 14000 2 6000 102 20000 5557 272 5829 

G9 99% 80% 100 16000 2 4000 102 20000 5588 272 5860 

G10 99% 90% 100 18000 2 2000 102 20000 5715 272 5987 

G11 100% 100% 100 20000 0 0 100 20000 5723 0 5723 

 424 
[1] St, Sd, and S are the richness of stochastic, deterministic, and all species in each local community; Jt, Jd, and J are 425 

the abundance of stochastic, deterministic, and all species in each local community; St.tot, Sd.tot, and Stot are the 426 

overall richness of stochastic, deterministic, and all species in all samples. 427 
[2] σt is the standard deviation of temperature in each plot, σf is fitness deviation defined in Eq. S20.  428 
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Table S2. Accuracy and precision of stochasticity in simulated communities estimated by different 429 
indexes based on various similarity metrics. 430 

 431 

Types 
Similarity 

metrics 

Accuracy coefficient[1] Precision coefficient[1] 

NST[2] ST[2] NP[2] NST ST NP 

In
ci

d
en

ce
-b

as
ed

 

Jaccard[3] 0.999 0.779 

0.744[6] 

1.000 0.999 

0.118 

Sørensen[3] 0.999 0.764 1.000 0.999 

Kulczynski 0.999 0.762 1.000 0.999 

Gower[3] 0.994 0.773 1.000 0.999 

Manhattan 0.999 0.607 1.000 0.999 

Euclidean (S[4]) 0.999 0.625 1.000 0.999 

mEuclidean[5] (S) 0.999 0.639 1.000 0.999 

A
b

u
n

d
an

ce
-b

as
ed

 

Ružička 0.985 0.968 

0.462 

0.985 0.925 

0.275 

Bray-Curtis 0.966 0.969 0.969 0.897 

Kulczynski 0.965 0.969 0.968 0.896 

Canberra 0.416 0.255 0.532 0.811 

Gower 0.616 0.308 0.660 0.865 

mGower[5] (S) 0.989 0.716 0.989 0.920 

Morisita 0.629 0.809 0.724 0.606 

Morisita-Horn 0.631 0.810 0.723 0.609 

Manhattan (S) 0.986 0.754 0.987 0.917 

mManhattan[5] (S) 0.989 0.714 0.988 0.920 

Euclidean (S) 0.652 0.323 0.928 0.822 

mEuclidean[5] (S) 0.637 0.275 0.936 0.829 

Binomial (S) 0.380 0.148 0.370 0.411 

Chao 0.967 0.919 0.981 0.940 

Cao (S) 0.753 0.164 -0.484 0.304 
 432 
[1] Communities are simulated by the spatially implicit model described in supplementary text C. Accuracy and 433 

precision coefficients are derived from concordance correlation coefficient according to Lin et al. (31, 32). 434 
[2] Stochasticity indexes: NST, normalized stochasticity ratio; ST, stochasticity ratio; NP, abundance-based or 435 

incidence-based percentage of species fitting neutral model. 436 
[3] The incidence-based similarity metrics Canberra, modified Gower (mGower), Cao, and modified Manhattan 437 

showed exactly the same results as Jaccard metric. The incidence-based Morista-Horn metric showed the same 438 

results as Sørensen metric. The incidence-based Binomial metrics showed the same results as Gower metric. See 439 

Table S3 for the detailed definition of each similarity metric. 440 
[4] “(S)” means the metrics need to be standardized as described in Supplementary text A before applied to ST and 441 

NST. 442 
[5] mEuclidean, mGower, and mManhattan indicate modified Euclidean, Gower, and Manhattan indexes, 443 

respectively. 444 
[6] NP does not depend on similarity metrics at all, thus only has one value here. 445 

 446 
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Table S3. List of similarity and dissimilarity metrics. 447 
 448 

No. Methods Refs 

Dissimilarity (D) 
Similarity (C) 

Qualitative (Duw) Quantitative (Dw) 

Formula 
Upper 

limit 
Formula 

Upper 

limit 
Formula 

Upper 

limit 

Taxonomic measures 

1 
Jaccard 

& Ružička 
(1, 2) 

𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵 − 𝐽
 1 

∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑘

∑ 𝑚𝑎𝑥{𝑥𝑖𝑘 , 𝑥𝑗𝑘}𝑘

 1 1 − 𝐷 1 

2 
Sørensen 

& Bray-Curtis 
(3, 4) 

𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵
 1 

∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑘

∑ (𝑥𝑖𝑘 + 𝑥𝑗𝑘)𝑘

 1 1 − 𝐷 1 

3 Kulczynski (5) 1 −
1

2
∙ (
𝐽

𝐴
+

𝐽

𝐵
) 1 1 −

1

2
∙ (
∑ min{𝑥𝑖𝑘 , 𝑥𝑗𝑘}𝑘

∑ 𝑥𝑖𝑘𝑘

+
∑ min{𝑥𝑖𝑘 , 𝑥𝑗𝑘}𝑘

∑ 𝑥𝑗𝑘𝑘

) 1 1 − 𝐷 1 

4 Canberra (6) 
𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵 − 𝐽
 1 

1

𝐴 + 𝐵 − 𝐽
∙∑

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|

𝑥𝑖𝑘 + 𝑥𝑗𝑘𝑘
 1 1 − 𝐷 1 

5 Gower (7) 
𝐴 + 𝐵 − 2𝐽

𝑀
 1 

1

𝑀
∙∑

|𝑥𝑖𝑘 − 𝑥𝑗𝑘|

𝑚𝑎𝑥{𝑥𝑘} − 𝑚𝑖𝑛{𝑥𝑘}𝑘
 1 1 − 𝐷 1 

6 
Modified 

Gower 
(8) 

𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵 − 𝐽
 1 

∑ |𝑥𝑖𝑘
′ − 𝑥𝑗𝑘

′ |𝑘

𝐴 + 𝐵 − 𝐽
 

where 𝑥𝑖𝑘
′ = 𝑙𝑜𝑔10(𝑥𝑖𝑘) + 1, 

unless 𝑥𝑖𝑘 = 0, in which 𝑥𝑖𝑘
′ = 0 

Unfix. 

𝐶𝑢𝑤 = 1 − 𝐷𝑢𝑤 1 

𝐶𝑤 =
∑ 𝑚𝑖𝑛{𝑥𝑖𝑗

′ , 𝑥𝑖𝑘
′ }𝑖

𝐴 + 𝐵 − 𝐽
 Unfix. 

7 Morisita (9) NA. - 

1 −
2∑ 𝑥𝑖𝑘𝑥𝑗𝑘𝑘

(𝜆𝑖 + 𝜆𝑗)∑ 𝑥𝑖𝑘𝑘 ∑ 𝑥𝑗𝑘𝑘

 

where 𝜆𝑖 =
∑ [𝑥𝑖𝑘(𝑥𝑖𝑘−1)]𝑘

∑ 𝑥𝑖𝑘𝑘 [(∑ 𝑥𝑖𝑘𝑘 )−1]
 

1 1 − 𝐷 1 

8 Morisita-Horn (10) 
𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵
 1 

1 −
2∑ 𝑥𝑖𝑘𝑥𝑗𝑘𝑘

(𝜆𝑖
′ + 𝜆𝑗

′)∑ 𝑥𝑖𝑘𝑘 ∑ 𝑥𝑗𝑘𝑘

 

where 𝜆𝑖
′ =

∑ 𝑥𝑖𝑘
2

𝑘

(∑ 𝑥𝑖𝑘𝑘 )2
 

1 1 − 𝐷 1 

  449 
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Table S3. Continued 450 

No. Methods Refs 

Dissimilarity (D) 
Similarity (C) 

Qualitative (Duw) Quantitative (Dw) 

Formula 
Upper 

limit 
Formula 

Upper 

limit 
Formula 

Upper 

limit 

9 Manhattan (11) 𝐴 + 𝐵 − 2𝐽 Unfix. ∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑘

 Unfix. NA. - 

10 
Modified 

Manhattan 
(8) 

𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵 − 𝐽
 1 

∑ |𝑥𝑖𝑘 − 𝑥𝑗𝑘|𝑘

𝐴 + 𝐵 − 𝐽
 Unfix. NA. - 

11 Euclidean (11) √𝐴 + 𝐵 − 2𝐽 Unfix. √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑘
 Unfix. NA. - 

12 
Modified 

Euclidean 
(8) 

√𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵 − 𝐽
 Unfix. 

√∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2

𝑘

𝐴 + 𝐵 − 𝐽
 

Unfix. NA. - 

13 Binomial (12) (𝐴 + 𝐵 − 2𝐽)𝑙𝑜𝑔2 Unfix. 

∑ [
𝑥𝑖𝑘

𝑥𝑖𝑘 + 𝑥𝑗𝑘
𝑙𝑜𝑔 (

𝑥𝑖𝑘
𝑥𝑖𝑘 + 𝑥𝑗𝑘

)
𝑘

+
𝑥𝑗𝑘

𝑥𝑖𝑘 + 𝑥𝑗𝑘
𝑙𝑜𝑔 (

𝑥𝑗𝑘

𝑥𝑖𝑘 + 𝑥𝑗𝑘
)

− 𝑙𝑜𝑔
1

2
] 

Unfix. NA. - 

14 Chao (13) NA. - 

1 −
𝑈𝑖𝑈𝑗

𝑈𝑖 + 𝑈𝑗 − 𝑈𝑖𝑈𝑗
 

where 𝑈𝑖 =
𝐶𝑖

𝑁𝑖
+

𝑁𝑗−1

𝑁𝑗
∙
𝑞1

2𝑞2
∙
𝑠1𝑖

𝑁𝑖
, similar for 𝑈𝑗 

1 1 − 𝐷 1 

15 Cao (14) 

𝐴 + 𝐵 − 2𝐽

𝐴 + 𝐵 − 𝐽
𝜌 

where 𝜌=1.4954 if using 

natural logarithms 

𝜌 

∑ (𝑙𝑜𝑔 (
𝑥𝑖𝑘 + 𝑥𝑗𝑘

2
) −

𝑥𝑖𝑘𝑙𝑜𝑔𝑥𝑗𝑘 + 𝑥𝑗𝑘𝑙𝑜𝑔𝑥𝑖𝑘
𝑥𝑖𝑘 + 𝑥𝑗𝑘

)𝑘

𝐴 + 𝐵 − 𝐽
 

where if 𝑥𝑖𝑘=0 or 𝑥𝑗𝑘=0, 0.1 is assigned 

Unfix. 1 −
𝐷

max{𝐷}
 1 

 451 
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Table S3. Continued 453 

No. Methods Refs 

Dissimilarity (D) Similarity (C) 

Qualitative (Duw) Quantitative (Dw)  

Formula 
Upper 

limit 
Formula 

Upper 

limit 
Formula 

Upper 

limit 

Phylogenetic measures 

16 

Phylogenetic 

analogue of 

Jaccard & 

Ružička 

(15-17) 

𝑎 + 𝑏 − 2𝑐

𝑎 + 𝑏 − 𝑐
 

 

called Unifrac 

1 

∑ |𝑝𝑖𝑛 − 𝑝𝑗𝑛|𝑊𝑛
𝑛

 

called weighted Unifrac 

Unfix. NA. - 

∑ |𝑝𝑖𝑛 − 𝑝𝑗𝑛|𝑊𝑛𝑛

∑ 𝑚𝑎𝑥(𝑝𝑖𝑛 , 𝑝𝑗𝑛)𝑊𝑛𝑛

 

Unnamed 

1 1 − 𝐷 1 

17 

Phylogenetic 

analogue of 

Sørensen 

& Bray-

Curtis 

(16, 18) 
𝑎 + 𝑏 − 2𝑐

𝑎 + 𝑏
 1 

∑ |𝑝𝑖𝑛 − 𝑝𝑗𝑛|𝑊𝑛𝑛

∑ (𝑝𝑖𝑛 + 𝑝𝑗𝑛)𝑊𝑛𝑛

 

called normalized weighted Unifrac 

1 1 − 𝐷 1 

18 βMPD (19) 
1

𝐴𝐵
∑ ∑ 𝛿𝑘𝑚

𝐵

𝑚=1

𝐴

𝑘=1
 Unfix. 

∑ ∑ 𝑝𝑖𝑘𝑝𝑗𝑚𝛿𝑘𝑚
𝐵
𝑚=1

𝐴
𝑘=1

∑ ∑ 𝑝𝑖𝑘𝑝𝑗𝑚
𝐵
𝑚=1

𝐴
𝑘=1

 Unfix. NA. - 

19 βMNTD (19, 20) 
1

2
[
∑ min

𝑚
(𝛿𝑘𝑚)

𝐴
𝑘=1

𝐴
+
∑ min

𝑘
(𝛿𝑘𝑚)

𝐵
𝑚=1

𝐵
] Unfix. 

1

2
[∑𝑝𝑖𝑘 min

𝑚
(𝛿𝑘𝑚)

𝐴

𝑘=1

+ ∑ 𝑝𝑗𝑚min
𝑘
(𝛿𝑘𝑚)

𝐵

𝑚=1

] Unfix. NA. - 

[1] A is the richness (number of taxa) in community i, while B is the richness in sample j, and J is the number of taxa that occur on both sample i and j.  454 
[2] xik is the abundance of taxon k in sample i, while xjk is the abundance of taxon k in sample j. 455 
[3] pik is the proportion of taxon k in sample i, while pim is the proportion of taxon m in sample j. 456 
[4] {xk} is the set of abundances of taxon k in all samples. 457 
[5] M is the number of taxa in all samples. 458 
[6] For Chao index, Ci is the total number of individuals in the taxa of sample i that are shared with sample j; Ni is the total number of individuals in sample i, 459 

Nj is the total number of individuals in sample j; q1 (and q2) are the number of species occurring in sample i that have only one (or two) individuals in 460 
sample j; s1i is the total number of individuals in the species present in sample i that occur with only one individual in sample j. 461 

[7] a is the amount of phylogenetic tree branch length in community i, b is the amount of branch length in community j, and c is the amount of branch length 462 
shared between community i and j. 463 

[8] pin is the proportion of sequences (taxa) from community i descendant from branch n; Wn is the weight or length of branch n. 464 
[9] δkm is the phylogenetic distance from sequence (taxon) k to sequence (taxon) m. 465 
[10] X is the set of taxa in community i, while Y is the set of taxa in community k.466 
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Table S4. Summary of null model algorithms for species co-occurrence analysis. 467 
 468 

No. 
Abbreviation 

in this paper 

Abbreviation 

in Gotelli (33) 

Ways  to constrain taxa 

occurrence frequency[1] 

Ways  to 

constrain richness 

in each sample[2] 

Probability of taxon i 

present in sample j[3] 

1 EE SIM1 Equiprobable Equiprobable 𝑃𝑖𝑗 =
1

𝑁
∙
1

𝑀
 

2 EP SIM6 Equiprobable Proportional 𝑃𝑖𝑗 =
1

𝑁
∙
𝑆𝑗

𝐹
 

3 EF SIM3 Equiprobable Fixed 𝑃𝑖𝑗 =
1

𝑁
 

4 PE SIM7 Proportional Equiprobable 𝑃𝑖𝑗 =
𝑓𝑖
𝐹
∙
1

𝑀
 

5 PP SIM8 Proportional Proportional 𝑃𝑖𝑗 =
𝑓𝑖
𝐹
∙
𝑆𝑗

𝐹
 

6 PF SIM5 Proportional Fixed 𝑃𝑖𝑗 =
𝑓𝑖
𝐹

 

7 FE SIM2 Fixed Equiprobable 𝑃𝑖𝑗 =
1

𝑀
 

8 FP SIM4 Fixed Proportional 𝑃𝑖𝑗 =
𝑆𝑗

𝐹
 

9 FF SIM9 Fixed Fixed Not applicable 
 469 
 [1] As to occurrence frequency, “Equiprobable” means that all taxa have equal probability to occur; “Proportional” 470 

means that the occurrence probability of a taxon is proportional to its observed occurrence frequency; “Fixed” 471 
means that the occurrence frequency of a taxon is fixed as observed. 472 

[2] As to species richness in each sample, “Equiprobable” means that all samples have equal probability to contain 473 
a taxon; “Proportional” means the occurrence probability in a sample is proportional to the observed richness 474 
in this sample; “Fixed” means the occurrence frequency of a taxon is fixed as observed. 475 

[3] 𝑃𝑖𝑗  is the probability of taxon i present in sample j in a null model. 476 
𝑆𝑗 is the observed richness in sample j, 𝑁 is the total number of taxa, 𝑀 is the total number of samples. 477 
𝑓𝑖 is the observed occurrence frequency of taxon i, 𝐹 is the total number of occurrences. 478 
𝐴𝑖 is the regional abundance of taxon i, 𝐽 is the total abundance of all taxa in all samples. 479 

  480 
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