
Towards better prediction of Mycobacterium

tuberculosis lineages from MIRU-VNTR data -

Supplementary Materials

Nithum Thaina, Christopher Lea, Aldo Crossab, Shama Desai Ahujab,
Jeanne Sullivan Meissnerb, Barun Mathemac, Barry Kreiswirthd, Natalia

Kurepinad, Ted Cohene, Leonid Chindelevitcha

aSchool of Computing Science, Simon Fraser University, Burnaby, BC, Canada
bNew York City Department of Health and Mental Hygiene, Queens, NY, USA

cDepartment of Epidemiology, Mailman School of Public Health, Columbia University,
New York, NY, USA

dPublic Health Research Institute TB Center, Rutgers University, Newark, NJ, USA
eEpidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA

1. The LP and ILP formulations and NP-hardness proof

1.1. LP and ILP formulations

The linear programming (LP) formulation of the problem of determining
the smallest set of rules that can accurately predict those strains belonging
to a given lineage (denoted by P , and called “positive examples”) from those
that do not belong to it (denoted by N , and called “negative examples”), is
adopted from the one proposed by Malioutov and Varshney [1].

Let n be the total number of strains and l, the total number of loci. We
start by exchanging the roles of positive and negative examples and define
~y ∈ {0, 1}m as a vector with value 1 in the components corresponding to
negative examples, and 0 in those corresponding to positive examples. We
also define the m = 2 · l ·K variables xjb and yjb, where K is the largest copy
number a locus can have. The variable xjb is true for a strain when it has
value more than b in locus j, while the variable yjb is true for it if it has value
at least b in locus j. Note that exactly half of the variables are true for each
strain. Lastly, we define the matrix A ∈ {0, 1}m×n whose rows correspond
to the strains and whose columns correspond to the variables x and y. We

Preprint submitted to Elsevier July 10, 2019

define Aij = 0 if variable j is true for strain i, and 1 otherwise. Note that

~y = A
∨

~w ⇐⇒ ~yC = AC
∧

~w,

where
∧

and
∨

denote the Boolean (logical) conjunction and disjunction,
respectively, and ~w is any Boolean (0-1) vector. For this reason, since we are
looking for conjunctive rules, we defined both ~y and A as the complemented
versions of what we would normally expect them to be.

The ILP formulation given in [1] is

Minimize
n∑

j=1

wj subject to

wj ∈ {0, 1} ∀ j
AP ~w ≥ ~1
AN ~w = ~0,

where P and N denote the subsets of positive (~y = 0) and negative (~y = 1)
examples, respectively, and ~w is a sparse vector containing a 1 for those vari-
ables that will form the complex rule.

Since this problem is generally not solvable if the positive examples are
not perfectly separable by a complex rule from the negative ones, Malioutov
and Varshney use slack variables to penalize errors, as follows:

Minimize
n∑

j=1

wj + λ

m∑
i=1

ξi subject to

wj ∈ {0, 1} ∀ j
ξi ≥ 0 ∀ i
ξi ≤ 1 ∀ i ∈ P
AP ~w + ξP ≥ ~1
AN ~w = ξN ,

where λ is a penalty parameter and the ξi are so-called slack variables.

2

This is the ILP formulation that we optimize, with λ = 100 chosen to
be the penalty parameter throughout our experiments. On the other hand,
the original paper [1] further relaxes this to an LP by replacing the Boolean
(integrality) constraint on ~w with the inequality 0 ≤ wj ≤ 1 ∀ j.

1.2. The rule extraction process and classification strategy

We adopt an iterative strategy for extracting rules for the set of lineages
we have. At every iteration, the rule that gets added is the one that has
the lowest weighted sum of the cost of the rule and the penalty term; all
strains with the corresponding lineage are then removed from the dataset.
The process is repeated until only two lineages remain; the rules produced
at this last stage are taken to be those that differentiate the remaining two
lineages from one another.

To classify a new strain, the rules are applied in the same order that
they were produced, and the first one that the strain satisfies is the one that
determines the lineage that gets assigned to it. We experimented with two
variants of this strategy - a hard classification, and a soft classification. In
the former, the first rule that is satisfied determines the lineage of the strain,
and if the strain does not satisfy any rule, then no lineage is assigned. In the
latter, each lineage gets a score that reflects the fraction of the simple rules in
the complex rule that it satisfies, and the lineage with the highest score gets
selected, with ties resolved in favor of earlier rules. Our experiments showed
that the soft strategy tends to work better, and it is the one we adopted here.

2. Description of the machine learning methods used

2.1. Random Forest

A decision tree is a machine learning classifier which is often favored
for its interpretability and robustness [2]. Building a decision tree consists
of recursively splitting a dataset by identifying threshold values of variables
which are successful at separating the data by class. Two often used criteria
for measuring the effectiveness of a given split are the Gini Index and the
entropy [3]. Once a tree is built, predicting the class of a data point simply
consists of comparing the point to each of the variable thresholds along the
tree, starting from the root, and arriving at a leaf node labeled with a class.

3

While decision trees have some advantages, they tend to be vulnerable
to overfitting and produce classifiers with high variance. In order to reduce
this variance, a random forest is built by collecting a large number of deci-
sion trees. Oftentimes, each tree is trained on both a different subset of the
data and a subset of the available variables to increase variability and reduce
overfitting. When these trees are combined, the ultimate prediction obtained
by taking the mode among the classes predicted by different decision trees
tends to have a higher accuracy and significantly lower variance than that of
any individual tree.

2.2. Gradient Boosted Machine

A gradient boosted machine is a machine learning technique which
combines multiple weak learners into a single strong learner [4]. Typical ex-
amples of weak learners include logistic regression models or decision trees.
Unlike random forests, gradient boosted machines don’t simply train these
weak learners independently and aggregate them. Rather, each learner is
trained iteratively to improve the classification strength of the aggregate. In
particular, initial learners help determine which examples are hard and later
learners focus on getting these hard examples right. Because of this gradient
boosted machines can have a higher accuracy than random forests but are
more vulnerable to overfitting.

2.3. k-Nearest Neighbors

The k nearest neighbors algorithm is among the simplest of machine
learning algorithms [5]. Given a training set, this algorithm classifies new
data points by majority vote of the classes of the k closest data points in the
training set. The definition of closest depends on the metric that is chosen.
Popular metrics include the Euclidean distance (L2 norm) or rectilinear dis-
tance (L1 norm) [6]. One weakness of the algorithm is that more frequent
classes tend to dominate the neighborhoods of less frequent classes, which
can lead to misclassification when the underlying distribution is skewed. This
can be corrected somewhat by weighing the votes of the neighbors by how
far away each one is from the data point of interest.

The value of k is a hyper-parameter of this model and can affect its overall
performance. Using 3-fold cross-validation, we determine that using a value

4

of k = 5 maximizes our model’s accuracy. Note that the standard method
for predicting lineages from MIRU-VNTR data can be seen as a k nearest
neighbors algorithm with k = 1.

2.4. Multinomial Logistic Regression

Multinomial logistic regression is an extension of the logistic regres-
sion algorithm to the multiclass setting, i.e. where the data can belong to
more than two possible classes [7]. This technique works by modeling the log
probability that a data point belongs to a certain class as a linear combination
of the variables minus a normalization factor. The coefficients in this linear
model are learned from the training data, in a manner analogous to standard
logistic regression. The model additionally assumes that each variable has
a single value for each class and that the collinearity between variables is low.

3. Sensitivity analysis

Table 1 shows the results of repeating our experiments with 100 random
partitions of the data into an 80% training set and a 20% testing set. The
values in brackets are the standard deviations. As we can see by comparing
it to table 5, our results on the random partition we used are consistent with
the observed distribution, and in fact mostly fall within 1 standard deviation,
and always within 3.6 standard deviations from the mean. Furthermore, al-
most all of the z-scores with large magnitude are negative, suggesting that
the results we report in table 5 are generally conservative.

We also compared the sets of rules produced by RuleTB with different
splits of the data, in order to make sure that they are generally pretty con-
sistent. In order to do so, we compared a) the order in which the rules were
extracted and b) the overlap between the sets of rules used to predict each
lineage. We found that 87 out of 100 splits had the exact same rule order
as the one we found, 10 had the order of the last two rules reversed, and
3 had the order of the penultimate and the antepenultimate rules reversed,
suggesting that the order we found is quite robust. Furthermore, by comput-
ing the Jaccard index [8] between the sets of rules we found for each lineage,
we found a mean index of 0.44 (standard deviation 0.09) between the rules
we extracted with the original split and those for the other splits, suggesting

5

Algorithm Overall EAI East-Asian Euro-American Indo-Oceanic M. africanum M. bovis
MIRU-VNTRplus (?) 49.1 (2.1) 45.1 (7.6) 74.4 (4.7) 38.1 (2.8) 55.8 (6.2) 70.6 (13.4) 92.8 (10.8)

Same, no threshold (?) 98.5 (0.6) 96.1 (2.8) 98.7 (1.0) 99.0 (0.6) 98.6 (1.5) 91.5 (8.2) 100 (0)
MIRU-VNTRplus (†) 91.8 (1.1) 95.8 (2.8) 97.5 (1.7) 93.0 (1.5) 78.6 (4.9) 87.7 (10.4) 79.8 (17.6)

Same, no threshold (†) 97.7 (0.6) 98.3 (1.7) 99.4 (0.8) 98.6 (0.7) 91.5 (3.5) 94.9 (5.7) 100 (0)
TB-Insight 98.3 (0.6) 92.8 (3.9) 98.8 (1.2) 99.1 (0.6) 99.0 (1.3) 91.5 (8.2) 100 (0)

TBminer - MIRU-VNTRplus 98.2 (0.6) 91.6 (4.3) 98.8 (1.1) 99.1 (0.6) 99.0 (1.3) 91.5 (8.2) 100 (0)
TBminer - Expert 98.2 (0.6) 95.5 (3.2) 99.0 (1.0) 99.0 (0.6) 97.4 (2.0) 86.3 (10.9) 100 (0)

TBminer - MIRU-VNTRplus (‡) 97.7 (0.7) 89.6 (4.6) 98.2 (1.3) 99.1 (0.6) 99.0 (1.3) 85.7 (10.6) 97.0 (7.2)
TBminer - Expert (‡) 97.5 (0.6) 89.6 (4.6) 98.3 (1.3) 98.8 (0.7) 98.6 (1.5) 82.1 (11.4) 100 (0)

RuleTB 94.9 (1.1) 93.4 (5.5) 93.2 (4.3) 95.8 (1.1) 96.0 (2.5) 88.9 (9.8) 86.2 (11.6)
StackTB 98.8 (0.5) 97.4 (2.4) 99.7 (0.6) 99.0 (0.6) 98.7 (1.5) 91.5 (8.2) 99.2 (3.9)

Table 1: Mean (standard deviation) accuracy of algorithms trained on broad lineages
over 100 random partitions. Legend: (?) = the MIRU-VTNRplus database is used for
training; (†) = the training subset of the entire data is used for training; ‡= only the 15
most discriminative VNTR loci are used for the prediction.

that these rules themselves are more often than not helpful for other splits
(at even odds the Jaccard index, computed as J(A,B) = |A∩B|

|A∪B| , would be 1
3
).

A qualitatively similar situation occurs for the other two datasets, where
we also create 100 random partitions of the data, and report the mean and
standard deviation of the resulting distribution of accuracies in Tables 2 and
3, respectively. The increasing number of lineages resulted in an increase in
the number of possible orders in which the rules were extracted, with 5 dif-
ferent orders on the refined lineages and 7 on the SNP clusters. However, the
Jaccard index remained high, with a mean of 0.47 and a standard deviation
of 0.08 in both cases, suggesting robustness of the found rules.

Algorithm Overall EAI East-Asian Euro-American Indo-Oceanic M. africanum 1 M. africanum 2 M. bovis M. caprae
MIRU-VNTRplus (?) 49.5 (2.1) 44.9 (7.1) 75.0 (4.3) 38.2 (3.0) 56.7 (5.2) 53.4 (16.5) 100 (0) 93.4 (10.7) 100 (0)

Same, no threshold (?) 97.8 (0.6) 95.5 (2.8) 98.8 (1.0) 99.2 (0.5) 98.4 (1.5) 53.4 (16.5) 100 (0) 100 (0) 100 (0)
MIRU-VNTRplus (†) 91.5 (1.3) 95.8 (3.2) 97.8 (1.8) 93.3 (1.4) 77.9 (5.7) 77.7 (13.4) 70.6 (24.1) 80.6 (17.9) 60.5 (32.0)

Same, no threshold (†) 97.3 (0.5) 97.9 (2.0) 99.6 (0.7) 98.8 (0.6) 90.5 (3.3) 80.6 (12.4) 70.6 (24.1) 100 (0) 100 (0)
TBminer - MIRU-VNTRplus 97.2 (0.6) 91.5 (4.2) 99.0 (0.9) 99.3 (0.5) 98.8 (1.3) 53.4 (16.5) 100 (0) 100 (0) 0 (0)

TBminer - Expert 97.1 (0.6) 95.1 (3.2) 99.1 (1.0) 99.2 (0.5) 97.4 (2.1) 46.8 (15.4) 100 (0) 100 (0) 0 (0)
TBminer - MIRU-VNTRplus (‡) 96.7 (0.7) 89.2 (4.3) 98.4 (1.3) 99.3 (0.5) 98.8 (1.3) 49.5 (16.1) 100 (0) 95.8 (8.2) 0 (0)

TBminer - Expert (‡) 96.5 (0.7) 89.6 (4.3) 98.5 (1.2) 99.0 (0.6) 98.4 (1.5) 43.2 (16.4) 100 (0) 100 (0) 0 (0)
RuleTB 94.6 (1.1) 92.2 (9.7) 86.3 (20.3) 88.7 (20.9) 92.8 (8.7) 85.9 (17.4) 89.8 (15.9) 89.0 (13.6) 92.3 (14.9)
StackTB 98.5 (0.5) 96.9 (2.8) 99.8 (0.6) 99.2 (0.5) 98.4 (1.6) 78.1 (13.6) 86.0 (24.7) 97.8 (6.9) 100 (0)

Table 2: Mean (standard deviation) accuracy of algorithms trained on refined lineages
over 100 random partitions. Legend: (?) = the MIRU-VTNRplus database is used for
training; (†) = the training subset of the entire data is used for training; ‡= only the
15 most discriminative VNTR loci are used for the prediction. Note that TB-Insight is
omitted because it does not identify lineages at this level of refinement.

6

Algorithm Overall LI LII LIIa LIII LIV LV LVI LVII LVIII M. afri 1 M. afri 2 M. bovis
MIRU-VNTRplus (†) 84.7 (1.5) 77.5 (5.0) 97.7 (1.6) 93.5 (3.5) 87.0 (3.6) 71.8 (9.0) 68.5 (12.7) 85.7 (3.8) 73.2 (5.4) 67.6 (20.5) 78.5 (12.2) 67.0 (26.3) 81.2 (17.7)

Same, no threshold (†) 89.6 (1.3) 91.0 (3.9) 99.4 (0.7) 95.9 (3.0) 88.2 (3.3) 74.3 (8.5) 73.3 (10.9) 90.9 (3.1) 79.0 (5.1) 74.3 (17.9) 82.4 (11.0) 67.0 (26.3) 100 (0)
RuleTB 81.6 (1.8) 96.1 (2.7) 92.0 (3.4) 87.7 (5.2) 76.1 (5.6) 46.3 (9.7) 60.4 (16.9) 74.2 (4.3) 86.1 (6.3) 85.8 (18.6) 75.8 (15.6) 79.0 (30.3) 86.6 (12.7)
StackTB 92.7 (1.3) 98.7 (1.6) 99.6 (0.6) 95.7 (3.6) 91.6 (3.1) 85.4 (8.2) 75.1 (13.9) 93.4 (2.8) 80.2 (6.9) 87.3 (16.9) 79.3 (12.5) 82.5 (26.9) 98.0 (6.0)

Table 3: Mean (standard deviation) accuracy of algorithms trained on SNP clusters over
100 random partitions. Note that MIRU-VNTRplus (with the database as training set),
TB-Insight and TBminer do not produce this classification, and are therefore omitted.

[1] Malioutov, D and Varshney, K. Exact Rule Learning via Boolean Com-
pressed Sensing Proceedings of ICML-13 (2013), pp. 765-773.

[2] Friedl MA, Brodley CE (1997). Decision tree classification of land cover
from remotely sensed data. Remote sensing of environment. 61(3):399-409.

[3] Rokach L, Maimon O (2002). Top-down induction of decision trees
classifiers-a survey. IEEE transactions on systems, man and cybernet-
ics: part c. 1(11):1-2.

[4] Friedman JH (2001). Greedy function approximation: a gradient boosting
machine. Annals of statistics 1:1189-232.

[5] Ho TK (1998). Nearest neighbors in random subspaces. InJoint IAPR
International Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp.
640-648. Springer Berlin Heidelberg.

[6] Aggarwal CC, Hinneburg A, Keim DA (2001). On the surprising behavior
of distance metrics in high dimensional space. InInternational Conference
on Database Theory, pp. 420-434. Springer Berlin Heidelberg.

[7] Greene WH (2012). Econometric Analysis Seventh edition. Boston: Pear-
son Education. pp. 803-806.

[8] Jaccard P (1901). Étude comparative de la distribution florale dans une
portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences
Naturelles. 37:547-579.

7

