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Supplemental Material 1 

 2 

Additional Methodology 3 

Simulating parasite dynamics post-treatment in silico with a pharmacokinetic pharmacodynamic 4 

(PK/PD) model – choice of parameters and validity of the results with use of other parameters.  5 

These relate to drug concentration (blue line in Figure 1) and changes in parasite number over time 6 

(red, green, grey and orange lines in Figure 1).  7 

Pharmacokinetics (PK) determines a drug’s concentration-time profile (solid blue line in Figure 1). 8 

Pharmacodynamics (PD) describes the sensitivity of the parasites to the drug and determines how the 9 

number of parasites changes as a function of drug concentration within a patient over time (dotted 10 

lines in Figure 1 11 

Three artemisinin-based combination therapies (ACTs) were investigated in this study: 12 

Dihydroarteminisin-Piperaquine (DHA-PPQ), Artemether-Lumefantrine (AR-LF) and Artesunate-13 

Mefloquine (AS-MQ). The mechanistic simulation of these drugs has been defined, calibrated and 14 

validated extensively in our previous work e.g.  (1-5). The parameterization of these drugs in these 15 

simulations is provided in Table S1.  Patient weight in the simulations (involved in the calculation of 16 

PK parameters for PPQ) was drawn from a uniform distribution between 45-75 kg. PK parameters for 17 

all drugs vary extensively in the literature, a fact that is not surprising given that studies are drawn 18 

from a variety of patient populations (see (5) for examples). We do not try to replicate any given 19 

population (and thus, their PK values) – rather we choose a mean value that reflects a large proportion 20 

of studies and choose a coefficient of variation (CV) for each parameter that is sufficiently large to 21 

encompass a sensible range of parameters (and consequently, drug concentration over time profiles), 22 

in order to model a “general” patient population over our large trial size (5,000 patients).  These values 23 

are shown in full in Table S1 .  24 
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There is evidence of DHA-PPQ having high estimated failure rates in vivo, and well-documented PD 25 

parameterization for this ACT as it fails (Saunders and colleagues (6) estimated PPQ IC50 had increased 26 

to 23.9ng/ml in recrudescent infections as resistance spread; this is equivalent to 0.024 mg/L which 27 

we round to 0.02mg/L in our calibration, see Table S1 ). Consequently, simulating failing DHA-PPQ 28 

using in vivo data to calibrate the model was possible and produced a 12% true failure rate with the 29 

MOI from Tanzania described in methods.  There are field data allowing calibration of PK/PD 30 

parameters for non-failing AR-LF and AS-MQ (the in vivo parameters given in Table S1 that produce a 31 

0.05% and 2% true failure rate respectively. Ideally, we would use field PK/PD calibrations for each 32 

ACT obtained from locations where the drug was failing but failing AR-LF and AS-MQ have not been 33 

observed in any known PK/PD studies. To avoid drawing conclusions based on analysis of a single 34 

failing drug (i.e. DHA-PPQ), we produced ‘failing’ calibrations of AR-LF and AS-MQ by artificially 35 

increasing the parasites’ mean  IC50 values (Table S1 ) until the simulated drug failure rates reached 36 

9% and 10% respectively. This reflected plausible future scenarios that may occur as resistance arises 37 

to these drugs. We inflated failure rates to around 10% because this is the critical point at which WHO 38 

recommend a drug be withdrawn from front-line usage (7)  so it was important to evaluate the 39 

accuracy of the various methods around this critical point. LF and MQ have very different durations of 40 

protection post-treatment so comparison of the three failing drugs allowed us to investigate different  41 

durations of follow-up post treatment. Note that we only changed the IC50 of the partner drug, to get 42 

high levels of failure for AR-LF and AS-MQ and did not alter sensitivity to the artemisinin component; 43 

drug failures still must survive artemisinin killing thus these partner-drug IC50 values may be higher 44 

than would be expected for monotherapy resistance.  45 

The parasite dynamics for DHA-PPQ in the main text were created using a one-compartment PK model 46 

for DHA and a two-compartment PK model for PPQ (parameters in Table S1 ). Reported PK values for 47 

PPQ vary widely in the literature (see (5) for examples though note this is obviously unsurprising as PK 48 

values are drawn from studies of different populations) and PPQ can be calibrated in a one, two or 49 

three compartment model. To show our results are consistent across multiple PK calibrations and for 50 
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completeness, we generated parasite dynamics using a three-compartment model described in (8) 51 

with PK parameters based on the mean values reported in table 2 of (8) and in our Table S2. 52 

Comparison of drug concentration over time for a single patient with this three compartment 53 

calibration and the two compartment calibration (i.e., mean parameters shown in Table S1 against 54 

mean parameters in table 2 of (8)) is shown in Figure S1.  55 

Note that we did not incorporate the error model or covariate effects described in (8); we were not 56 

trying to re-create their patient population (which is a mix of pregnant and non-pregnant women), 57 

rather we were trying to create parasite dynamics for a general patient population under the 58 

assumption of a three compartment PPQ model and so use the mean values for PK parameters in (8) 59 

as a base. As with the parameterizations for two-compartment PPQ and the other drugs, we then used 60 

relatively large coefficients of variation across 5,000 patients (Table S2 ).  61 

The principal difference between the parasite dynamics generated with these assumptions is that the 62 

three-compartment model is slightly more prophylactic and has a greater total area under the drug 63 

kill curve; consequently, true failure rate is slightly lower, and a smaller number of reinfections 64 

become patent. However, failure rate estimates obtained using each algorithm are not significantly 65 

different between the two compartment and three compartment models, and we later show our 66 

results (the relative performance of molecular correction algorithms) are qualitatively the same with 67 

both model calibrations. We are not attempting to comment, here, on whether DHA-PPQ is best 68 

represented by a two or three compartment model or its exact parameterization. Furthermore, we 69 

are not trying to reproduce the PK of a given population of patients reported anywhere in the 70 

literature, but rather produce a general population of patients with parasite dynamics post-treatment 71 

we can use to analyse molecular correction algorithms (which we achieve by setting the CV on our 72 

parameters such that we cover a wide range). We simply confirm and stress the consistency of the 73 

molecular correction algorithms across both parameterizations, suggesting that, regardless of the 74 
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number of PPQ PK compartments included, our conclusions regarding the accuracy of these molecular 75 

correction algorithms to estimate treatment failure rates are robust.  76 

We did not have access to validated PK/PD models for other common partner drugs i.e. Amodiaquine 77 

(AQ), sulfadoxine/pyrimethamine (SP) and pyronaridine. Both the parent form and metabolite of AQ 78 

have antimalarial activity, they are both best described with multiple PK compartment models and 79 

both are eliminated independently (e.g. (9)): we were unable to obtain robust PK/PD models (10). SP 80 

exhibits strong synergy between the sulfadoxine and pyrimethamine components which again makes 81 

it difficult to get a robust PK/PD model (11). Finally, pyronaridine is so new that we have not yet had 82 

the time or resources to attempt a PK/PD model of this treatment. However, the three drugs that we 83 

can investigate have different periods of chemoprophylaxis post treatment and are likely good guides 84 

for other drugs: specific calibrations of PK/PD models cannot affect the genetic profiles obtained prior 85 

to treatment and there seems no obvious reason why they would alter the genetic profiles of recurrent 86 

infections. so we argue that the three examples are sufficient to generate robust results for the 87 

analysis of msp-1, msp-2 and glurp markers. 88 

 89 

Force of Infection: the rate of emergence of reinfections during the follow-up period  90 

Our selection of FOI values was based on the following literature: Data from northern Ghana indicates 91 

that the average number of reinfections per patient per year was 16, and similar estimates can be  92 

obtained from efficacy data of effective ACTs (see supplementary material of (2)). Mueller et al. (12) 93 

obtain estimates of between 3 and 9 reinfections emerging per year with an average of 5.9 in Papa 94 

New Guinea. Additional work suggests the FOI in Ghana is highly seasonal with estimates ranging from 95 

44 in the high transmission season to 7 in the low transmission season (13); any yearly average (such 96 

as assumed in this manuscript) will fail to capture the nuances of seasonal transmission. Smith et al. 97 

(14) explicitly modelled the relationship between EIR and FOI. It is technical, but some illustrative data 98 

are summarised in their Figure 2: Incidence during a 2 week period at annual EIRs of 36.5 (moderate 99 
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transmission) and 365 (high transmission) were roughly 0.2 and 0.4 respectively implying annual FOI 100 

estimates of 0.2 x26=5.2 and 0.4x26= 10.4 respectively. These may be slight under-estimates because 101 

this simple calculation assumed that more than one infection could not become established in a 2 102 

week period but serves as general illustrations of the relationship between EIR and FOI.   103 

Additional Results 104 

Misclassification of recurrent infections for DHA-PPQ with varying FOI levels 105 

Figure 3 (main text) shows the misclassification of recurrent infections (recrudescence classified as 106 

reinfection and vice versa) for an FOI of 8. Figure S2 shows the same plot for an FOI of 2, 8, and 16. It 107 

shows that the number of recrudescence misclassified as reinfection is stable as FOI increased for all 108 

algorithms. Furthermore, it shows that increased FOI had nearly no impact on the number of 109 

reinfections being misclassified for the “WHO/MMV” algorithm (which correctly classified all 110 

reinfections), and a very minor impact for the “no glurp” algorithm. For the “≥ 2/3 markers” and “allelic 111 

family switch” algorithm, this figure demonstrates that increased FOI led to greatly increased numbers 112 

of reinfections being misclassified as recrudescence. The proportion of reinfections misclassified was 113 

stable as FOI increased, but the greater total number of misclassifications produced the increased 114 

failure rates seen with these algorithms in Figure 4 (main text).  115 

Results for failing DHA-PPQ with a three-compartment calibration 116 

We generated parasite dynamics for each patient using a three-compartment model calibration for 117 

DHA-PPQ (rather than the two-compartment calibration shown in the main text), i.e. Table S2 . The 118 

results are shown in Figure S3. The qualitative patterns were the same as for the two-compartment 119 

model, i.e., that “WHO/MMV” algorithm produced the lowest failure rate estimate, then “no glurp,” 120 

then “≥ 2/3 markers”, then “allelic family switch” (at most FOI, “≥ 2/3 markers” produced a slightly 121 

higher failure rate estimate at 0-2 FOI). True failure rate was slightly lower for the three compartment 122 

model (10% vs 12%). Failure rate estimates with all algorithms, given the same length of follow-up and 123 
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FOI, were lower with a three compartment model (likely due to its longer prophylactic period, see 124 

Figure S1). Thus, while the “≥ 2/3 markers” algorithm produced an accurate estimate at most FOI 125 

(though “no correction” is better with an FOI of 0) with a 42 day follow-up for a two compartment 126 

model, assuming a three compartment model of DHA-PPQ showed that “≥ 2/3 markers” produced 127 

accurate failure rate estimates but with a follow-up period of 63 days; an intuitive result given the 128 

longer prophylactic period.  129 

 130 

Results for failing Artemether-Lumefantrine (AR-LF) and failing Artesunate-Mefloquine (AS-MQ) 131 

compared with failing Dihydroarteminisin-Piperaquine (DHA-PPQ): The impact of different 132 

correction algorithms on estimated drug failure rates, and appropriate durations of trial follow-up. 133 

 134 

We investigated failing AR-LF and failing AS-MQ to confirm that the same patterns were observed as 135 

for failing DHA-PPQ. The results are discussed here to save space and to maintain focus on the key 136 

points in the main manuscript. 137 

 138 

Failure rate estimates for DHA-PPQ with 28, 42 and 63 day follow-up periods are shown in Figure 4 139 

Failure rate estimates increased as follow-up length increases because a) more true recrudescences 140 

became patent and b) more reinfections became patent that may be misclassified as recrudescent 141 

(see discussion in main manuscript Figure 4). Consequently, our results (main text) suggested that use 142 

of the “≥ 2/3 markers” algorithm and a 42-day follow-up was the most appropriate option for DHA-143 

PPQ trials.  144 

 145 

Failure rate estimates for failing AR-LF for 21-day and 28-day follow-up lengths are presented in Figure 146 

S4 . The true failure rate of AR-LF in these simulations was 0.918 (9%). The same pattern was observed 147 

as for DHA-PPQ: The non-PCR corrected algorithm over-estimated the failure rate at any FOI higher 148 
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than 1, and severely overestimated failure rates   at high FOI; the “WHO/MMV” algorithm and the “no 149 

glurp” algorithm slightly under-estimated the failure rate across all levels of FOI. Use of a 21-day 150 

follow-up period led to both the “allelic family switch” algorithm and the “≥ 2/3 markers” algorithm 151 

under-estimating the failure rate, only at a high FOI of 13 did the allelic family switch algorithm 152 

accurately recover the true failure rate. Use of a 28-day follow-up period produced more accurate 153 

failure rate estimates: The “≥ 2/3 markers” algorithm accurately recovered the true failure rate 154 

between an FOI of 5-16, with both the “≥ 2/3 markers” algorithm and the “allelic family” switch 155 

algorithm under-estimating the failure rate slightly at lower FOI. These results combined with the true 156 

classifications of recurrent infections recrudescences and reinfections (Figure S5 ) suggested a 28-day 157 

follow-up period led to more accurate failure rate estimates.  158 

 159 

Failure rate estimates for failing AS-MQ for a 42, 49 and 63-day follow-up length are presented in 160 

Figure S6 . The true failure rate of AS-MQ in these simulations was 0.1032(10%). With a 42-day follow-161 

up period (Figure S6 (A)), the “≥ 2/3 markers algorithm” under-estimated the true simulated failure 162 

rate at all FOI settings – the “allelic family switch” and “≥ 2/3 markers” algorithm were close in value 163 

up to an FOI of 9-10. As with DHA-PPQ and AR-LF, the “WHO/MMV” and “no glurp” algorithms under-164 

estimated the failure rate consistently and using no PCR correction generated a large over-estimate 165 

of the true failure rate. We simulated a novel follow-up length of 49 days (Figure S6 (B)) under which 166 

the “≥ 2/3 markers” algorithm produced a more accurate failure rate estimate than a 42-day follow-167 

up at all FOI levels. With a 63-day follow-up period (Figure S6 (C)), the “allelic family switch” algorithm 168 

over-estimated the true failure rate from an FOI of 4 and upwards. The “≥ 2/3 markers” algorithm 169 

over-estimated from an FOI of 8 and up, but only by a small amount. AS-MQ is more prophylactic than 170 

DHA-PPQ and AR-LF: Given the same period of follow-up, fewer reinfections became patent, and 171 

recrudescences occurred later in the follow-up period (Figure S7 ). As such, it was unsurprising that a 172 

longer period of follow-up led to more accurate failure rate estimates. Using the “≥ 2/3 markers” 173 

algorithm and assuming an FOI of <8, a 63-day follow-up period resulted in a more accurate estimate 174 
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than the 42 and 49-day follow-up lengths, but the differences in estimates between 49 and 63 days 175 

were small and the operational, logistical advantages of a 49-day trial over a 63-day trial are likely to 176 

be substantial. Furthermore, with an FOI of ≥8, a shorter follow-up (49 days) produced a more 177 

accurate failure rate estimate with the “≥ 2/3 markers” algorithm – a 63 day follow-up period over-178 

estimated the true failure rate slightly with higher transmission intensity using this algorithm.  179 

 180 

In summary, the results for the three failing drug calibrations differed slightly quantitatively, but the 181 

same qualitive patterns occurred i.e. the “WHO/MMV” method returned large underestimates 182 

(around two thirds the true value) of failure rates, while the “≥ 2/3 markers” algorithm produced 183 

consistently more accurate estimates, with some dependency on transmission intensity (quantified by 184 

FOI). Increased length of follow-up increased failure rate estimates, as for DHA-PPQ, though due to 185 

the different prophylactic profiles of the drugs the accuracy of failure rate estimates at a given length 186 

of follow-up differed.  187 

 188 

Results for non-failing (effective) AR-LF and AS-MQ 189 

 190 

The simulations were run for the non-failing (i.e. effective drug) PK/PD calibrations for AR-LF (Figure 191 

S8) and AS-MQ (Figure S9 ), which had true failure rates of 0.0046 (0.5%) and 0.0208 (2%) respectively. 192 

This was to investigate whether the new algorithms could incorrectly classify effective drugs as failing. 193 

Crucially, the under-estimate associated with of the “≥ 2/3 markers” algorithm was so small in terms 194 

of absolute value that the use of the algorithm can be recommended without concern for over-195 

estimating the failure rate of effective drugs i.e. there is no danger of an effective drug being 196 

misclassified as failing. These results do highlight the dangers of not using a molecular correction: The 197 

non-PCR-corrected algorithm generated estimated failure rates >10% in areas of high FOI when using 198 

long durations of follow-up. The WHO recommend that drugs be replaced when failure rates exceed 199 

10% (7), so not using molecular correction could lead to unwarranted policy change. 200 
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 201 

Sensitivity analysis of multiplicity of infection (MOI), relative detectability of alleles and the 202 

minority allele detection threshold 203 

 204 

The results presented in the main text all assumed MOI at time of treatment is representative of high 205 

transmission i.e. using Tanzanian data (see MOI in main text). We did this because high MOI makes 206 

detection of recrudescent alleles more difficult (due to the issues described in our methods section 207 

with detection of minority alleles) so represents a “worst case” scenario. There is a likely mismatch 208 

for areas of low transmission which have lower MOI at treatment, but we used high MOI across all 209 

transmission intensities (quantified by FOI) for the following reasons: 210 

• Keeping the same MOI across all transmission intensities allowed a direct comparison of 211 

molecular correction algorithms (e.g. Figure 2, Figure 4) 212 

• This assumption of high MOI at treatment is conservative (i.e. “worst case” scenarios) for low 213 

transmission areas because we show that there is little operational difference between the 214 

algorithms even if initial MOI is high; it is therefore a robust conclusion that algorithm choice 215 

is not important in these areas because if MOI at treatment is lower, then there will be even 216 

less difference between the algorithms (as illustrated by the Cambodian field data that 217 

showed negligible differences).  218 

• High MOI at time of treatment can occur even in low transmission areas if people immigrate 219 

from areas of higher transmission or have acquired sufficient protective immunity that several 220 

clones may co-circulate asymptomatically before the patient falls ill. More plausibly, this 221 

scenario may arise in areas of seasonally intense transmission where MOI at time of treatment 222 

is high, but trials are conducted during the low-transmission season to reduce the impact of 223 

reinfections.  224 
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We checked the impact of reduced MOI. Analysis of simulated data for DHA-PPQ with a 42-day follow-225 

up and a low MOI setting (the distribution obtained from PNG; see methods) is shown in Figure S10. 226 

First note that the true failure rate was slightly lower than that obtained in a high MOI setting (Figure 227 

4) because patients harboured fewer clones at time of treatment which made their infection easier to 228 

clear. Reducing the MOI to reflect a low-transmission setting reduced the difference between 229 

algorithms. Overall, the results were consistent with those obtained from a high MOI setting i.e. the 230 

“allelic family switch” algorithm produced an accurate failure rate estimate at an FOI of 4 and below, 231 

and the “≥ 2/3 markers” algorithm produced the most accurate failure rate estimate at all higher FOI.  232 

 233 

The relative detectability of the longest allele to the shortest allele was altered from 0.001:1 to 0.1:1.  234 

The results are shown in Figure S11. Failure rate estimates obtained using this altered relative 235 

detectability are nearly identical to those obtained with the relative detectability of 0.001:1 used 236 

elsewhere in this manuscript (i.e. Figure 2 of main text).  237 

 238 

The threshold at which minority genotyping signals are discounted as “noise” and disregarded was 239 

varied from 0.3 to 0.05. Analysis of simulated data for DHA-PPQ with a 42-day follow-up under these 240 

conditions is shown in Figure S12. The failure rate estimate produced by each algorithm increased as 241 

the threshold decreased. At the lower threshold of 0.05 the “no glurp” algorithm (rather than the “≥ 242 

2/3 markers” algorithm) produced the most accurate failure rate estimate from an FOI of 6 and higher. 243 

A minority detection threshold of 0.05 is unrealistic because large amounts of 244 

experimental/laboratory noise would be included in the signal, so this threshold could not be used in 245 

practice. The threshold was changed to 0.2 (a more realistic value) in Figure S13. Under this 246 

assumption the “≥ 2/3 markers” algorithm produced the most accurate failure rate estimate, robust 247 

across all FOI levels, the same as when the minority detection threshold is set to 0.3.  248 
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 249 

Per protocol vs survival analysis for using the molecular correction data to obtain estimated failure 250 

rates. 251 

 252 

WHO guidelines (7) recommend two methods for statistical analysis of molecular-corrected data: 253 

Survival analysis and per-protocol analysis. The results presented in the main manuscript and this 254 

supplemental material for DHA-PPQ, AR-LF, and AS-MQ are failure rate estimates obtained using 255 

survival analysis. The same models were analysed to obtain failure rate estimates calculated using per-256 

protocol method Figure S14 to Figure S16). Comparison of these results showed that the per protocol 257 

method generates slightly higher estimated failure rates than survival analysis. The differences were 258 

dependant on the FOI level and duration of follow-up – the more reinfections that become patent 259 

over the course of follow-up (as occurs with higher FOI and longer follow-up), the greater this 260 

difference. With a 63-day follow-up and an FOI of 16 the failure rate estimate obtained for DHA-PPQ 261 

with the per-protocol method was nearly 30%, compared to the estimate with survival analysis of 15%. 262 

The reason is a “denominator effect”. The per-protocol analysis simply removes all patients identified 263 

with reinfections from the analysis. Take the example where 20 of 200 patients are drug failures, giving 264 

a true underlying failure rate of 20/(20+180)=10%. If, for example, 50 of the 180 cured patients had 265 

reinfections and were removed from the analysis  then the estimated per-protocol failure rate would 266 

rise to 20/(20+130)= 13% and if 100 of the cured patients had reinfections then failure rate would 267 

further increase to 20/(20+80)=20%.  This example is somewhat artificial because reinfections will also 268 

occur in the recrudescence group and if they occur first, a later recrudescence could be masked, but 269 

it does serve to illustrate this denominator effect.  It is important to appreciate that use of the per-270 

protocol method with the newly proposed “≥ 2/3 markers” algorithm (which generally produced more 271 

accurate failure rate estimates with appropriate follow-up length, see main text) will result in an over-272 

estimate of failure rate. A detailed discussion of statistical  analysis of malaria drug trials can be found 273 



12 
 

elsewhere (15) but here we emphasise that reporting the failure rate estimate obtained through 274 

survival analysis is essential with the use of this new algorithm.  275 

 276 

Additional discussion 277 

Alternative markers for molecular correction 278 

 279 

We focused on the currently recommend WHO genetic markers and methods in the main text. 280 

Optimising their use is the current priority but looking forward, there are alterative methodologies 281 

and markers than may be used and which may be superior. These markers and methods will be 282 

addressed in future studies but, for the record, the three main alternative markers are as follows. 283 

• Amplicon sequencing of marker loci (16). Its main advantage over capillary electrophoresis of 284 

msp-1, msp-2 and glurp is that deep sequencing allows very sensitive detection of minor 285 

clones. Minority clones that had a frequency >1.0% of all reads were consistently detected 286 

(16). We anticipate that this sensitivity will favour a “WHO/MMV”-type algorithm (i.e. a 287 

recrudescence should share alleles at all amplicons when comparing initial and recurrent 288 

samples) as the use of amplicon sequencing should improve detection of minor clones in the 289 

initial sample (reducing the number of recrudescent clones being misclassified as reinfection) 290 

and will be better able to detect recrudescent clones in mixed infection recurrences. 291 

• Microsatellite loci have already been used in antimalarial efficacy studies (17, 18).  292 

Microsatellites are similar to the msp-1, msp-2, glurp markers as their sensitivity to detect 293 

minor clones is relatively weak (in particular the presence of stutter-bands require a stringent 294 

cut-off) but more loci are often genotyped (Plucinski et al (19) used 8 microsatellites), which 295 

means there are a greater number of potential algorithms that may be constructed to 296 
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distinguish recrudescences from reinfections. In addition, there is a Bayesian analysis method 297 

for these markers which may improve their role in molecular correction ((17)) 298 

• Finally, SNP barcodes may be used as genetic markers.  299 

The intention here is not to provide an exhaustive description of alternative markers but to emphasise 300 

that it is straightforward to assign such genotypes to our simulated patients in the same way that we 301 

assigned the msp-1, msp-2 and glurp genotypes, and test various classification algorithms based on 302 

such loci. Finally, we note that existing algorithms simply classify recurrent infections as either 303 

reinfections or recrudescences and do not account for any degree of uncertainly in these 304 

classifications; for example, although we recommend the “≥ 2/3 markers” algorithm, we may be more 305 

confident that a recurrent infection is a drug failure if it shares identical alleles at all 3 loci than if it 306 

shares alleles at only 2 loci. A natural way of incorporating such uncertainty is to use Bayesian methods 307 

and a recent paper has identified such a technique (19); we will evaluate this method in our future 308 

work. In short, validated simulations of drug treatment and the consequent post-treatment parasite 309 

dynamics provide an ideal resource to investigate many issues surrounding the design, 310 

implementation and analysis of clinic trials and we commend their use as a test platform to other 311 

interested parties working to improve the design and analysis of malaria drug clinical trials. 312 

 313 
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Drug 

parameter 

Dihydroarteminisin-Piperaquine 

(two-compartment model) Artesunate-Mefloquine Artemether-Lumefantrine 

DHA PPQ AS DHA MQ AR DHA LF 

Vd (L/kg) 

1.49 [0.48](1, 

20) 

 

173 [0.93](21) 7.1 [0.94](1) 1.49[0.48](1) 20.8[0.38](1) 46.6[0.82](20) 15[0.48](1, 20) 21[2.63](1, 20) 

Vd1 (L/kg) - 443 [1.70](21) - - - - - - 

ka (/day) - 11.2 [2.17](21) 252[1.12](1) - - 

23.98[0.68](1, 

20) - - 

z (/day) - - 30.96[0.362](1) - - 

11.97[0.65](1, 

20) - - 

Q1(L/day/kg) - 69.7[1.01](21) - - - - - - 

k (/day) 

19.8[0.23](3, 

20) 

 

 

0.02*(21, 22)  - 25.4[0.23](1) 0.053[0.63](1) - 

44.15[0.23](1, 

20) 0.16[0.05](1, 20) 

IC50 (mg/L) 

0.009 

[1.17](1, 20) 0.02 [0.3](6) 0.0016[0.86](1) 0.009[1.17](1) 

0.3[0.78]  

<0.027[0.78]> (1) 

0.0023[0.79](1, 

20) 

0.009[1.17](1, 

20) 

4[1.02]  

<0.032(1.02)>(1, 20) 
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Vmax 

27.6[0.3](1, 

20) 3.45[0.3] (3) 27.6[0.3] (1) 27.6[0.3] (1) 3.45[0.3] (1) 

27.6[0.3] (1, 

20) 

27.6[0.3] (1, 

20) 3.45[0.3] (1, 20) 

n 

4[0.3](1, 3, 

20) 6[0.3] (3) 4[0.3] (1, 3) 4[0.3] (1, 3) 5[0.3] (1) 4[0.3] (1, 3, 20) 4[0.3] (1, 3, 20) 4[0.3] (1, 3, 20) 

 

Table S1 : A summary of the PKPD parameters used to generate parasite dynamics post-treatment; means with coefficient of variation (CV) in square brackets. There are two 

IC50 values for  Lumefantrine (LF) and Mefloquine (MQ): the failing “resistant” IC50s are provided first and  drug sensitive IC50 values are shown in </>. Note that IC50 values 

for failing LF and MQ were arbitrarily increased by us to obtain ~10% drug failure rate. We only changed the IC50 of the partner drug, so to get high levels of failure we needed 

to overcome the artemisinin component (whose IC50 was not changed) – thus these IC50 values will be higher than those expected for monotherapy resistance. Piperaquine 

(PPQ) follows a two-compartment model as described in Kay, Hodel & Hastings (21). Patient bodyweight (BW) in the simulations was drawn from a uniform distribution 

between 45-75 kg and is involved in the calculations for PPQ parameters (see (21, 22)). The numbers provided in brackets in the table are citations in support of the parameter 

values 

PK/PD: Pharmacokinetic/Pharmacodynamic, BW: Patient bodyweight, DHA: Dihydroartemisinin, PPQ: Piperaquine, AS: Artesunate, MQ: Mefloquine, AR: Artemether, LF: 

Lumefantrine, BW: Patient bodyweight  Vd: Volume of Distribution (central compartment for PPQ), Vd1: Volume of Distributions (peripheral compartment for PPQ), ka: 

Absorption rate constant, z: Conversion rate of AR/AS into DHA, Q1: Intercompartmental clearance between central and peripheral compartment (for PPQ). k: Elimination 

rate, IC50: Drug concentration at which 50% of maximal killing occurs, Vmax: Maximal parasite killing constant,  n: slope of concentration-effect curve, - : No data / not 

applicable.  
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*  elimination rate for PPQ is calculated from clearance (CL) / Vd.  CL is not shown here but is 4.5 * BW0.75 as in (22); This means that elimination rate varies with body weight 

( a common PK observation) so  the value presented here is illustrative and represents a bodyweight of 42kg (the median bodyweight in previous studies(21, 22)).  
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Drug parameter 

Dihydroarteminisin-Piperaquine (three compartment model) 

PPQ 

Vd (L) 3070 [0.86](8) 

Vd1 (L) 4440 [1.21] (8) 

Vd2 (L) 31400 [0.65] (8) 

ka (/day) 
1.99 [1.08] [Table S1 ] 

Q1(L/hour) 427 [1.01](8) 

Q2(L/hour) 160 [0.7](8) 

k (/day) 0.47* (8) 

IC50 (mg/L) 0.02 [0.3](6) 

Vmax 3.45 [0.3](3) 

n 6 [0.3](3) 

 

Table S2 : A summary of the PK/PD parameters used to generate parasite dynamics post-treatment PPQ with a three-compartment model (opposed to the two compartment 

model parameters described in Table S1 ; note that DHA parameters remain the same). PK means are derived from (8); the coefficient of variation CV; in square brackets for 

each parameter is added by us. PD parameters (IC50, Vmax, n ) are the same as for the two-compartment model. The numbers provided in brackets in the table are citations 

in support of the parameter values 
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PK/PD: Pharmacokinetic/Pharmacodynamic, BW: Patient bodyweight, DHA: Dihydroartemisinin, PPQ: Piperaquine, Vd: Volume of Distribution (central compartment for PPQ), 

Vd1: Volume of Distribution (peripheral compartment 1), Vd2: Volume of Distribution (peripheral compartment 2),  ka: Absorption rate constant, z: Conversion rate of AR/AS 

into DHA, Q1: Intercompartmental clearance between central and peripheral compartment 1, Q2: Intercompartmental clearance between central and peripheral compartment 

2, k: Elimination rate, IC50: Drug concentration at which 50% of maximal killing occurs, Vmax: Maximal parasite killing constant,  n: slope of concentration-effect curve, - : No 

data / not applicable.  

* elimination rate for PPQ is calculated from clearance (CL) / Vd; CL (from (8) is 60.2 (we include a CV of 0.71 on this parameter) ) so  the value presented here is illustrative 

and represents a bodyweight of 42kg.   
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Figure S1: Comparison of drug concentration over time profiles created for a single patient with the mean parameters described in Table S1  for a two-compartment DHA-

PPQ model and the mean parameters described in table 2 of (8) for a three compartment DHA-PPQ model, showing that the three compartment model produces a more 

prophylactic drug concentration over time profile.   
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Figure S2 : Figure showing the ability of the various molecular correction algorithms to correctly classify patients with recurrent malaria. The data are for DHA-PPQ with a 42-

day follow-up obtained with FOIs of 2, 8 and 16 (8 is identical to Figure 3 (main text)), showing how misclassification by each algorithm alters as FOI changes. The X-axis shows 

the true status of patients on the day of recurrence (i.e. reinfection or a recrudescence) and the colour-coding shows how these patients were classified by each algorithm. 
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Figure S3: Analysis of simulated trial data for DHA-PPQ using a three compartment model (see Table S2 ) with follow-up lengths of (A) 28 days, (b) 42 days and (C) 63 days. 

Estimated failure rates are shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S4 : Analysis of simulated trial data for failing AR-LF with follow-up lengths of 21 days (A) and 28 days (B). Estimated failure rates are shown for the different algorithms 

of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S5 : The true status of recurrent infections on each day of follow-up for a simulated trial of AR-LF with a true simulated failure rate of 9% and an FOI of 8. The total 

height of the bars indicates the number of recurrent infections detected on that day of follow-up, and the color-coding shows the number of those recurrent infectoins that 

were truly recrudescent or reinfections.  
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Figure S6 : Analysis of simulated trial data for failing AS-MQ with follow-up lengths of 42 days (A), 49 days (B) and 63 days (C). Estimated failure rates are shown for the 

different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S7 : The true status of recurrent infections on each day of follow-up for a simulated trial of AS-MQ with a true simulated failure rate of 10% and an FOI of 8. The total 

height of the bars indicates the number of recurrent infections detected on that day of follow-up, and the color-coding shows the number of those recurrent infectoins that 

were truly recrudescent or reinfections.  
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Figure S8 : Analysis of simulated trial data for effective AR-LF with follow-up lengths of 21 days (A) and 28 days (B). Estimated failure rates are shown for the different 

algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S9 : Analysis of simulated trial data for effective AS-MQ with follow-up lengths of 42 days (A), 49 days (B) and 63 days (C). Estimated failure rates are shown for the 

different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S10: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days in a low MOI setting. Estimated failure rates are shown for the different 

algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S11: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days with the relative detectability of the longest allele to the shortest allele set to be 

0.1:1. Estimated failure rates are shown for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S12: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days and a minority allele detection threshold of 0.05. Estimated failure rates are shown 

for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S13: Analysis of simulated trial data for DHA-PPQ with a follow-up period of 42 days and a minority allele detection threshold of 0.2. Estimated failure rates are shown 

for the different algorithms of molecular correction as a function of FOI and calculated using survival analysis. 
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Figure S14: Analysis of simulated trial data for DHA-PPQ with follow-up lengths of 28 days (A), 42 days (B) and 63 days (C). Estimated failure rates are shown for the different 

algorithms of molecular correction as a function of FOI and calculated using the per protocol method.  
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Figure S15: Analysis of simulated trial data for failing AR-LF with follow-up lengths of 21 days (A) and 28 days (B). Estimated failure rates are shown for the different algorithms 

of molecular correction as a function of FOI and calculated using the per protocol method.   
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Figure S16 : Analysis of simulated trial data for failing AS-MQ with follow-up lengths of 42 days (A), 49 days (B) and 63 days (C). Estimated failure rates are shown for the 

different algorithms of molecular correction as a function of FOI and calculated using the per protocol method.  
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