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Single-cell HRMS of Embryonic Cells 
 

Reagents and Chemicals 
LC-MS grade methanol, acetonitrile, formic acid, and water were purchased from Fisher 
Scientific (Hampton, NH). ACS grade sodium chloride, potassium chloride, and magnesium 
sulfate were from Fisher Scientific. Trizma hydrochloride, trizma base, and cysteine were from 
Sigma Aldrich (Saint Louis, MO).  

Sample Collection and Metabolite Extraction 
Embryos were obtained via gonadotropin-induced natural mating of adult Xenopus laevis 
following established protocols,1 approved by the Institutional Animal Care and Use Committee 
(IACUC) of the University of Maryland, College Park (IACUC # R-DEC-17-57) or the George 
Washington University (IACUC # A311). The jelly coating from recently laid embryos was 
removed using a 2% cysteine solution as described elsewhere.1 Dejellied embryos were 
transferred to a Petri dish containing 100% Steinberg’s solution, prepared following previous 
protocols.2 A fabricated microprobe3 was used to aspirate ~10 nL of cellular content from 
identified dorsal-animal D11 cells in N = 5 different 16-cell X. laevis embryos, each collected 
from a different set of father and mother. Small polar metabolites were extracted from the 
aspirate in 4 µL of aqueous solution containing 40% (v/v) acetonitrile and 40% (v/v) methanol at 
4 °C, vortex-mixed for ~1 min to facilitate lysis and metabolite extraction and centrifuged at 
8,000 × g for 5 min at 4 °C to settle out cell debris. The cell debris was stored in the extraction 
solution at –80 °C until analysis. 

CE-ESI-MS Analysis 
Cell extracts were analyzed using a laboratory-built CE-ESI platform that was coupled to a 
quadrupole time-of-flight mass spectrometer (Impact HD, Bruker Daltonics, Billerica, MA). The 
same platform that we recently described in detail elsewhere was used here.2, 3 In this study, 10 
nL of cell extract were hydrodynamically injected into a fused silica capillary (40/105 µm 
inner/outer diameter, 1 m length) filled with 1% formic acid as the background electrolyte. 
Compounds were electrophoretically separated by applying +19,000–21,000 V to the 
background electrolyte at the inlet end of the capillary (yielding ~7.5 µA CE current). The outlet 
end of the CE capillary was fed into a coaxial sheath-flow electrospray ionization (ESI) interface, 
which supplied earth-grounded 50% (v/v) methanol in water (0.1% v/v formic acid) at 1 µL/min. 
Stereomicroscopic investigation of the electrified liquid meniscus at the tip of the emitter and 
mass spectrometric analysis of the generated ion current revealed the formation of stable Taylor-
cone at approx. –1,700 V spray potential (applied to the mass spectrometer inlet plate orifice) 
and ~5 mm distance from the mass spectrometer orifice.  The distance between the emitter tip 
and the mass spectrometer orifice was controlled to maintain the ESI source in the cone-jet 
electrospraying regime, which is most efficient for ion generation in the micro-flow regime.4 
Generated ions were analyzed at 2 Hz spectral acquisition rate between m/z 50–550 using the 
mass spectrometer under identical conditions to our previous study.3   
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Trace User Manual 

Introduction 
This document details the setup and execution of Trace, which uses deep learning (DL) to 
automate selection of signals from high-resolution mass spectrometry (HRMS) datasets. Input 
files are imported in open-access format (mzML), thus facilitating compatibility with broad types 
of mass spectrometers. The software package is provided as electronic supplementary document 
and can also be downloaded from: https://github.com/zhichaoliu2/Trace. 

Trace performs a two-step analysis of each HRMS data file. During preprocessing and initial 
screening of the raw data, centroid MS data are surveyed to construct a series of one-dimensional 
(1D) extracted ion chromatograms (EICs), which are then screened by a continuous wavelet 
transform (CWT) to locate the center of each potential signal in the [mass/charge (m/z), time (t)] 
space. These results are exported into the “Results_Initial-pks.txt” file. Next, a two-dimensional 
(2D) image is rendered for each of these detected molecular features in the (m/z, t) space based 
on the corresponding HRMS files in profile mode, thus ensuring finer resolution in the m/z 
dimension. Results from this data processing step are exported into the “Results_Images-pks.txt” 
file. Finally, molecular features from “Results_Initial-pks.txt” are evaluated using DL. Features 
passing quality check are exported into the “Results_Final-pks.txt” fine, which tabulates the 
following peak parameters: accurate m/z values, separation time, peak intensity, peak area, 
signal-to-noise ratio, and peak membership information. These results can be imported into other 
software tools to facilitate metabolite identifications and quantification. 

Our neural network model, once trained on a curated dataset, achieves consistent prediction of 
high accuracy and low false positive, independent of testing sets chosen from different initial 
screening criteria. Trace provides sufficient sensitivity and robustness to recognize trace-level 
signals in open-source HRMS datasets, even including single-cell studies (CE-ESI-HRMS 
demonstrated here).  

Computer and Programming Needs 

Hardware Requirements 
 Operating system: All codes are written in Python (Version 2.7, also compatible with 

Python 3) and supported on Linux, Mac, and Windows systems.  

 Memory: We recommend 32+ GB RAM for fast data processing and sufficient data 
storage capacity for raw and processed HRMS files.  

 CPU: Clock speed and core number are driving factors of processing time. 
Multiprocessing is implemented automatically based on the number of available cores. 
Therefore, faster CPUs and multiple cores are recommended. 

 GPU: A graphics processing unit (GPU) is recommended to speed up the initial training 
of the DL neural networks. While this training is provided under default settings for our 
CE-ESI-MS data, users are advised to perform independent training for their customized 
datasets. 
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Software Requirements 
 Trace requires prior installation of Anaconda. To install Anaconda, please follow 

instructions at: https://www.anaconda.com/download/.  Make sure to choose ‘add conda 
to your PATH’ during the installation.  

 TensorFlow is required to conduct target shape evaluation (TensorFlow 1.0 or higher). To 
install TensorFlow, please follow instructions at: https://www.tensorflow.org/. Please 
ensure that Joblib is also installed for multiprocessing, e.g., by executing the ‘pip install 
joblib’ in the MS-DOS terminal after Anaconda is installed. 

 

Installation Procedure 
1. Prepare Input Files 

 Export and convert the MS1 spectra from each raw (primary) HRMS data file into the 
open-access mzML file format in both centroid and profile mode.  
Note that Trace calls on both the centroid and profile data to reduce data processing time.  
Note: Facilitating these steps, data converters are available from each mass spectrometer 
vendor or are freely downloadable from Proteowizard at: 
http://proteowizard.sourceforge.net.  

 Organize profile files (“Input_profile.mzML”) and centroid files 
(“Input_centroid.mzML”) into the folder from which Trace is executed to simplify the 
execution of line commands. 

2. Software Usage 

1. Open the TRACE.py file (using an integrated development environment, IDE, such as 
PyCharm, or other editor capable of editing .py files) in the folder that contains the main 
program. Locate “Big_RAM” in the file and set BIG_RAM to: “0” if the available RAM 
is < 32 GB and “1” if the available RAM is ≥ 32 GB. 

2. Open terminal (e.g., Command Prompt “cmd” in Windows), and navigate the active 
directory to the folder of Trace.  

3. Execute Trace by running the line command: python TRACE.py (hit ENTER). Three text 
files will be generated in the “Results” folder, which are the following:  

 “Initial-pks.txt”: This file contains initial scanning results. 

 “Images-pks.txt”: This file contains 2D images of the potential signals by the 
initial scanning. 

 “Final-pks.txt”: This file contains the final peak list. 
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3. Parameters and Customization 

General Parameters 

“Input_centroid.mzML” Name of the HRMS file containing MS1-only spectra in centroid 
mode. 

‘Input_profile.mzML’ Name of the HRMS file containing MS1-only spectra in profile 
mode. 

BIG_RAM Specifies the available RAM on the computer. Set to “0” if 
RAM < 32 GB (default setting). Set to “1” if RAM ≥ 32 GB. 

mz_min The minimum m/z value to be evaluated. Default setting in our 
study: 25.0. 

mz_max The maximum m/z value to be evaluated. Default setting in our 
study: 550.0. 

mz_r The m/z bin for signal detection and evaluation (window is ± 
this value). Default setting in our study: ± 0.005 Da. 

window_mz m/z window used to plot the signal image on each side of the 
m/z value. This value is set depending on m/z sampling rate and 
the average width of each m/z peak. Default setting in our study: 
± 0.024 Da. 

window_rt Spectral window used to plot the signal image on each side of 
the separating peak. This value is set depending on the average 
peak width in a separation experiment. Default setting in our 
study: ± 30 spectra. 

ms_freq Spectral data acquisition rate. Default setting in our study: 2 
(spectra/second). 

K_means Option K-means cluster analysis of signal images. We did not 
utilize this option in this study. 
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Parameters of CWT* 

widths Wavelet widths for CWT initial scanning 
Default calculated as: range(1, 10* ms_freq, 1) + [20* 
ms_freq]   

min_len_eic Minimum length of a EIC to be scanned by CWT. Default 
setting: 6 data points. 

gap_thresh Threshold for ridge detection. Default setting: 1. 
min_length Minimum length a ridge line needs. Default setting calculated 

as: len(width)*0.2 (i.e., 1/5-th the number of widths.) 
min_snr The signal-to-noise (SNR) threshold for detecting a signal 

using CWT. Default setting: 4. 
window_size Size of window used to calculate noise. Default setting: 30 
perc Percentile within the window_size used to calculate noise 

floor. Default setting: 90. 
 
*Note: Additional information on CWT is available from reference (P. Du, R. Sudha, M. B. 
Prystowsky, and R. H. Angeletti, Data reduction of isotope-resolved LC-MS spectra, 
Bioinformatics 2007, 23, 1394-1400).  

 
Parameters of Deep Learning-based Image Evaluation 

W_conv1 First convolutional layer of CNN. Default setting: [4, 4, 1, 32] 
(4*4 convolutional filter; 1 channel; 32 filters). 

h_pool1 Pool layer after the first convolutional layer. Default setting: 
max_pool (ksize = [2,2], padding='SAME'). 

W_conv2 Similar to W_conv1. Default setting: [4, 4, 32, 64]  
h_pool2 Similar to h_pool1. Default setting: max_pool (ksize = [2,2], 

padding='SAME'). 
W_fc1 Fully connected layer after h_pool2. Default setting: 256 

(number of neurons in this layer). 
keep_prob The portion of information to be kept during training the 

machine. Default setting: 0.5. 
learning_rate The rate of adjusting the weights during the training process. 

Default setting: 0.0001. 
 
Output Files 

Initial_pks.txt Results of initial scanning based on centroid data. 
Images_pks.txt Images of the initial signals (60*12 pixels for each image by 

default). Each line stands for a flatted signal image, i.e., 720 
numbers in each line in default case. 

Final_pks.txt Final signal list, (m/z, retention time, intensity, peak area, 
SNR) for each signal. 
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Training the Deep Learning Model 
Although we are providing the trained DL model from this study, users are advised to perform 
independent training for customized datasets, particularly if different types of experimental 
conditions or technologies were used to acquire the data. Besides the python code provided 
(Training_Model.py), users need to prepare their own training data, specifically both positive 
(true) and negative (false) signal sample images (imgs-train.txt) and their labels (label-train.txt). 
In the image file, each line should stand for a flatted signal image (rows connect to a single row 
in order). The label file should be in one column indicating whether (1) or not (0) the signal 
image stands for a true signal in the image file of corresponding row. For example, if N (>1000 
recommended for better model performance) samples are collected and labeled, then the data 
size should be (N*720) for image file and N*1 for label file. To run the program, execute the 
Training_Model.py code by entering “python Training_Model.py” in the terminal window. The 
TRACE.py file highlights user-defined parameters for potential optimization: 

 

import os 
import math 
import numpy as np 
from scan_cwt_1 import scan 
from scan_cwt_1_mp import scan_mp 
from getImage_2 import get_image 
from predict_3 import predict 
import multiprocessing as mp 
 
num_cores = mp.cpu_count()   ## Count the cores of the PC. 
print ('Number of cores detected in this PC:', num_cores) 
 
NUM_C = np.max(num_cores-2, 1)   ## MP use (all-2) threads by default. 
 
Big_RAM = 0   ## 0 or 1: if the RAM of PC is big enough (>= 32 GB) 
 
K_means = None  ## Or some interger (2~10 recommended); for k-means 
clustering of signal images 
 
window_mz = 6  # the m/z range is 6 points (on both sides) 
window_rt = 30  # The time range is 30 points (on both sides) 
 
RESULTS_PATH = "./Results" 
if not os.path.isdir(RESULTS_PATH):  ## Will create a folder for results. 
os.makedirs(RESULTS_PATH) 
 
## First step: Preprocessing and initial scanning. 
pks_initial =  scan_mp( 'Input_centroid.mzML', NUM_C = NUM_C )  ## 
 
## Second step: Signal image evaluation. 
images = get_image( 'Input_profile.mzML', pks_initial, Big_RAM , window_mz, 
window_rt) 
 
pks_final = predict(images, pks_initial, K_means = K_means) 
 
print ('Done! Final results in ./Results folder.') 
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Supplementary Figures 
 

 
 
Figure S1. Examples of high-fidelity (top row) and low-fidelity (bottom row) signal images 
from our training dataset from single-cell CE-ESI-HRMS experiments. Each figure is annotated 
with the accurate mass and migration time information as well as compound name if identified. 
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Figure S2. Training and testing accuracy of two models: (Upper) CNN model and (Lower) 
SNN model. The training accuracy can achieve up to 99.9% for both models, while the test 
accuracy plateaued at around 91% and 90%, respectively. 
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Figure S3. Receiver operating characteristic (ROC) curve of CNN models. The model was 
trained and tested 5 times with the training set. 80% of labeled image samples were used for 
training and the remaining 20% of samples were used to calculate the ROC curve. 


