Table S1. Sequences of primers used to generate Gateway entry clones for LC3B mutants, using either

 LC3B WT or LC3B G120 as a template.

LC3B mutation	PCR method	Forward primer sequence (5' to 3')	Reverse primer sequence (5' to 3')
F80A+L82A	Overlap extension PCR (step 1 of 2: 5' fragment)	GGGGACAAGTTTGTACA AAAAAGCAGGCTTAATG CCGTCGGAGAAGACC	GTCCGTTCACCGCCAGGG CGAAGGCCTG
F80A+L82A	Overlap extension PCR (step 1 of 2: 3' fragment)	CAGGCCTTCGCCCTGGCG GTGAACGGAC	GGGGACCACTTTGTACAA GAAAGCTGGGTATTACAC TGACAATTTCATCCCGAA C
F80A+L82A G120	Overlap extension PCR (step 1 of 2: 3' fragment)	CAGGCCTTCGCCCTGGCG GTGAACGGAC	GGGGACCACTTTGTACAA GAAAGCTGGGTATTACCC GAACGTCTCCTGGG
F80A+L82A	Overlap extension PCR (step 2 of 2: final product)	GGGGACAAGTTTGTACA AAAAAGCAGGCTTAATG CCGTCGGAGAAGACC	GGGGACCACTTTGTACAA GAAAGCTGGGTATTACAC TGACAATTTCATCCCGAA C
F80A+L82A G120	Overlap extension PCR (step 2 of 2: final product)	GGGGACAAGTTTGTACA AAAAAGCAGGCTTAATG CCGTCGGAGAAGACC	GGGGACCACTTTGTACAA GAAAGCTGGGTATTACCC GAACGTCTCCTGGG
Q116P	Site-directed mutagenesis (NEB Q5 method)	TATGCCTCCCCGGAGACG TTC	GACCATGTACAGGAATCC
E117P	Site-directed mutagenesis (NEB Q5 method)	TGCCTCCCAGCCGACGTT CGGG	TAGACCATGTACAGGAAT CC
F119A	Conventional PCR with mutagenic reverse primer	GGGGACAAGTTTGTACA AAAAAGCAGGCTTAATG CCGTCGGAGAAGACC	GGGGACCACTTTGTACAA GAAAGCTGGGTATTACAC TGACAATTTCATCCCGGCC GTCTC
F119A G120	Conventional PCR with mutagenic reverse primer	GGGGACAAGTTTGTACA AAAAAGCAGGCTTAATG CCGTCGGAGAAGACC	GGGGACCACTTTGTACAA GAAAGCTGGGTATTACCC GGCCGTCTCCTGGG

Table S2. Sequences of primers used for 3xFLAG-ATG3 mutagenesis via inverse PCR (mutated	l
nucleotide in lowercase).	

ATG3 mutation	Forward primer sequence (5' to 3')	Reverse primer sequence (5' to 3')
C264A	AGTTCACCCAgcCAGGCA TGCTG	GAACACATGGGAGGTGGT
K177R	GATACAAGGAgAATAGTA GAAGCTTG	TAGGGTAGCCTCATCTGT
K183R	GAAGCTTGTAgAGCCAAA ACTG	TACTATTTTCCTTGTATCT AGG
K185R	TGTAAAGCCAgAACTGAT GCTG	AGCTTCTACTATTTTCCTT G
K208R	ACTTATGATAgATATTAC CAGACTC	GATGTAAAGGTCATAAGT TC
K242R	GATCATGTGAgGAAAACA GTG	CTGACTGATGTCTTCATAC
K243R	CATGTGAAGAgAACAGTG ACC	ATCCTGACTGATGTCTTC
K271R	GAGGTGATGAgGAAAATC ATTGAGACTGTTG	AGCATGCCTGCATGGGTG
K272R	GTGATGAAGAGAAATCATT GAGACTGTTGC	CTCAGCATGCCTGCATGG
K295R	ATTTTCTTGAgATTTGTAC AAGCTG	AAGAAGATACATATGAAC TCC

Figure S1

Α

HeLa control

Figure S1. 3xFLAG-LC3B conjugate formation is unaffected by autophagy modulation.

- (A) HeLa control cells were transfected with 3xFLAG-LC3B constructs or GFP as a transfection control, prior to washing and incubating in EBSS for 0, 3 or 6 hours to induce amino acid and serum starvation. Lysates were subject to western blotting using anti-FLAG antibody, SQSTM1 as an autophagy marker and VINCULIN as a loading control.
- (B) HeLa control cells transfected with indicated constructs were subjected to combinations of pharmacological treatments to induce (Torin1, 250 nM) and/or inhibit (baf A1, 10 nM) autophagy for 3 hours prior to harvesting, with equivalent concentrations of DMSO used in untreated or single-treated samples. Lysates were analyzed by western blotting as for (A).

Figure S2. GFP-LC3B G120 forms conjugates in ATG4-deficient cells even when expressed at levels comparable to endogenous LC3B.

Western blotting of lysates from HeLa control and *ATG4A/B* DKO cells (- = untransduced) stably expressing *PGK* promoter-driven GFP-LC3B G120 or GFP-LC3B G120A. HeLa *ATG4A/B* DKO cells stably expressing *CMV*-driven GFP-LC3B G120 were used as a positive control. GFP-LC3B and conjugates were detected using anti-GFP antibody. Anti-LC3A/B antibody was used to detect both GFP-LC3B and endogenous LC3B in the same samples run on a separate gel. ACTIN and VINCULIN were used as loading controls.

Figure S3. Validation and use of cellular reconstitution systems to determine sets of ATG3 lysine residues required for LC3B-ATG3 conjugate formation, LC3B-ATG3 thioester formation and LC3B lipidation.

- (A) Specific reconstitution of the non-thioester conjugate between GFP-LC3B-G120 and transiently expressed 3xFLAG-ATG3 WT. HeLa ATG4B KO and ATG4B KO cells stably expressing GFP-LC3B G120 were transfected with 3xFLAG-ATG3 constructs, prior to western blot analysis under reducing conditions to disrupt thioester-linked species.
- (B) Western blot validation of HeLa *ATG3* KO cells. HeLa control and *ATG3* KO cells were treated with DMSO or 250 nM Torin1 and 10 nM baf A1 for 3 hours prior to harvesting and western blot analysis to assess endogenous LC3B lipidation, SQSTM1 protein level and ATG3 protein level.
- (C) Key for mutations present in 3xFLAG-ATG3 constructs used in (D) and (E). Wild-type human ATG3 protein sequence is shown, with the 22 lysine (K) residues in bold. The first 13 lysines are shown in green and the last 9 are shown in magenta. The specific residue positions of lysine to arginine mutations are given in the box below each mutation set name.
- (D) Effect of mutating lysine residue sets in 3xFLAG-ATG3 on: rescuing LC3B lipidation in ATG3 KO cells, and reconstituting GFP-LC3B-3xFLAG-ATG3 conjugate formation in ATG4B KO cells stably expressing GFP-LC3B G120. Cells were transfected with indicated constructs and treated for 3 hours with 250 nM Torin1 and 10 nM baf A1 prior to lysis in lysis buffer lacking NEM. Western blotting was performed under reducing conditions to disrupt thioester-linked species.
- (E) Effect of mutating lysine residue sets in 3xFLAG-ATG3 on its ability to form a thioester linkage with endogenous LC3/GABARAP. HeLa ATG3 KO cells were transfected with indicated constructs and treated for 3 hours with 250 nM Torin1 and 10 nM baf A1 prior to lysis in lysis buffer lacking NEM. Western blotting was performed under non-reducing conditions to preserve thioester-linked species.